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In computational mathematics, it is a matter of deep concern to recognize which of the given iteration schemes converges quickly
with lesser error to the desired solution. Fixed point iterative schemes are constructed to be used for solving equations emerging in
many fields of science and engineering. ,ese schemes reformulate a nonlinear equation f(s) � 0 into a fixed point equation of
the form s � g(s) ; such application determines the solution of the original equation via the support of fixed point iterative method
and is subject to existence and uniqueness. In this manuscript, we introduce a newmodified family of fixed point iterative schemes
for solving nonlinear equations which generalize further recursive methods as particular cases. We also prove the convergence of
our suggested schemes. We also consider some of the mathematical models which are categorically nonlinear in essence to
authenticate the performance and effectiveness of these schemes which can be seen as an expansion and rationalization of some
existing techniques.

1. Introduction

Inmany disciplines of engineering andmathematical sciences, a
broader class of problems are studied in the framework of a
nonlinear equation f(s) � 0, where f: D R⟶ R is a suf-
ficiently smooth function close to simple zero μ ∈ D. ,e
development of various iterative methods for finding the ap-
proximate solution of a nonlinear equation f(s) � 0 has be-
come an active area of research in many scientific fields. Several
numerical techniques such as Taylor series, decomposition
methods, quadrature formulas, modified homotopy perturba-
tionmethod, and variational iterativemethod have been used to
explore the diversity of iterative methods, for example, see
[1–30]. One of the most well-known and extensively used it-
erative methods for solving the nonlinear equation is Newton’s
method which was initiated by Traub [31]. Many numerical
methods have been constructed as an extension of Newton and
Newton’s like methods. Weerakoon and Fernando [30] have

improved the convergence of the Newton method by ap-
proximating the indefinite integral in Newton’s theorem by the
rectangular and trapezoidal rule. Frontini and Sormani [13]
have extended their results to determine another variant of the
Newtonmethod which is cubically convergent. Later on, Ozban
[25] has introduced some newly improved forms of the
Newton’s method by using the concept of harmonic mean and
midpoint rule. Abbasbandy [1], Chun [7], and Darvishi and
Barati [10] have constructed and introduced different higher-
order iterative methods by applying the decomposition tech-
nique of Adomian [32]. Implementation of this Adomian
decomposition technique required higher-order derivatives
evaluation which is a major pitfall of this method. To overcome
this drawback, Daftardar-Gejji and Jafari [11] have used dif-
ferent modifications of the Adomian decomposition method
and introduced a simple technique which does not require
derivative evaluation of the Adomian polynomial. ,is tech-
nique is useful to rewrite the nonlinear equation as the sum of
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linear and nonlinear parts. Bhalekar and Daftardar-Gejji [6]
have determined the convergence of the former method [11] in
detail and established its equivalence with Adomian decom-
position method. Numerous researchers are extensively using
technique [11] and derived several higher-order iterative
methods for solving nonlinear equations. Ali et al. [2] have
introduced a family of iterative methods using the quadrature
formula as well as the fundamental theorem of calculus and
checked the validity and performance of these methods by
examining two mathematical models. In [18, 20], decomposi-
tion technique [11] is implemented and merged sophistically
with a coupled system of equation to investigate various order
iterative methods. Alharbi et al. [4] have used the central idea of
the decomposition technique along with auxiliary function and
investigated generalized and comprehensive forms of higher-
order iterative methods for finding solutions of nonlinear
equations. Ali et al. [3] have constructed several new iterative
methods by using Taylor’s series expansion of the functiong(s).

,ese iterative methods can be viewed as a generalization of
some well-knownmethods such as the Newton method, Halley
method, and Traub’s method.

Inspired and motivated by the continuing research
ventures in this direction, we consider the well-known fixed
point iterative method [33], in which we rewrite the non-
linear equation f(s) � 0 as s � g(s) that satisfies the fol-
lowing properties for existence and uniqueness of fixed
point:

(i) If g(s) ∈ C[a, b] and g(s) ∈ [a, b] for all s ∈ [a, b],
then g has at least one fixed point in [a, b].

(ii) If, in addition, g′(s) exists on (a, (b) and a positive
constant L exists, such that

(iii) |g′(x)|≤ L< 1, for all s ∈ (a, b), then there is exactly
one fixed point in [a, b].

,en, we use Newton’s theorem along with writing the
functional equation s � g(s) as coupled system and applying
the decomposition technique presented in [11]. In the second
section of this study, we introduce some new iterative methods
and determine their special cases.,e third section comprises of
convergence analysis of the proposed iterative methods. Effi-
ciency and performance of newly constructed family of re-
cursive approaches are tested in the last section, by solving some
test examples alongwith twomodels, i.e., motion of a particle on
an inclined plane and Lenard–Jones potential applications to
minimization problem. We also present the graphical analysis
for these models. Numerical results of the examples reveal and
validate the efficacy of our newly proposed methods.

2. New Class of Family of Iterative Schemes

Consider the nonlinear equation

f(s) � 0, s ∈ R, (1)

which can be rewritten as

s � g(s), s ∈ R, (2)

where λ is an initial guess sufficiently close to μ which is
simple root of (1). Now, utilizing the technique of Noor et al.
[22], approximate the function f(s) using fundamental
theorem of calculus and quadrature formula:

s � g(λ) +(s − λ) 
κ

i�1
wig′ λ + τi(s − λ)( , (3)

where τi represents the knots and τi ∈ [0, 1] and wi satisfy
the condition:



κ

i�1
wi � 1. (4)

Applying the technique of He [15], and writing the
nonlinear equation as an equivalent coupled system of
equations,

s � g(λ) +(s − λ) 
κ

i�1
wig′ λ + τi(s − λ)(  + H(s), (5)

H(s) � g(s) − g(λ) − (s − λ) 
κ

i�1
wig′ λ + τi(s − λ)( . (6)

It can be rewritten as

s �
H(s)

1 − 
κ
i�1 wig′ λ + τi(s − λ)( 

+
g(λ) − λ

κ
i�1 wig′ λ + τi(s − λ)( 

1 − 
κ
i�1 wig′ λ + τi(s − λ)( 

,

(7)

s � c + M(s), (8)

where

c � λ, (9)

M(s) �
H(s)

1 − 
κ
i�1 wig′ λ + τi(s − λ)( 

+
g(λ) − λ

1 − 
κ
i�1 wig′ λ + τi(s − λ)( 

.

(10)

It is clear that M(s) is nonlinear operator. Now, we
construct sequence of higher-order iterative methods by
employing decomposition technique initiated by Gejji and
Jafari [11].With the support of this technique, solution of (8)
can be represented as in terms of the infinite series:

s � 
∞

r�0
sr. (11)

,e nonlinear operator can be decomposed as
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M(s) � M s0(  + 
∞

r�1
M 

r

q�0
sq

⎞⎠ − M 
r− 1

q�0
sq

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(12)

,us, from equations (8), (11), and (12), we have



∞

r�0
sr � c + M so(  + 

∞

r�1
M 

r

q�0
sq

⎛⎝ ⎞⎠ − M 
r− 1

q�0
sq

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(13)

which generates the following iterative scheme:

so � c,

s1 � M s0( ,

s2 � M s0 + s1(  − M s0( ,

·

·

·

sm+1 � M 
m

q�0
sq

⎛⎝ ⎞⎠ − M 
m− 1

q�0
sq

⎛⎝ ⎞⎠, m � 1, 2, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

It follows that

s1 + s2 + · · · sm+1 � M s0 + s1 + · · · sm( , m � 1, 2, . . . ,

s � c + 
∞

r�1
sr.

(15)

Notable approximation of s is conveyed as

lim
m⟶∞

Sm � s,

Sm � so + s1 + · · · sm,
(16)

For m � 0, we have

s ≈ S0 � s0 � c � λ. (17)

Implementing (10),

s1 �M s0(  �
H s0( 

1 − 
κ
i�1 wig′ λ + τi so − λ( ( 

+
g(λ) − λ

1 − 
κ
i�1 wig′ λ + τi so − λ( ( 

.

(18)

From (6), it can easily be computed as H(s0) � 0 and
using in (18), we get

�
g(λ) − λ

1 − 
κ
i�1 wig′ λ + τi so − λ( ( 

. (19)

For m � 1,

s ≈ S1 � s0 + s1 � s0 + M s0( ,

s � s0 + s1 +
g(λ) − λ

1 − 
κ
i�1 wig′ λ + τi so − λ( ( 

.
(20)

Using (4) and (17), we have

s �
g(λ) − λg′(λ)

1 − g′(λ)
. (21)

,is formulation suggests Algorithm 1.
Algorithm 2 and Algorithm 3 are the main iterative

schemes which generate further special cases for different
values k, w, and τ.

2.1. Some Particular Manifestations of Algorithm 2. Now, we
explore the particular cases of Algorithm 2, by considering
different values of κ, w, and τ. Taking
κ � 1, w1 � 1, and τ1 � 0, Algorithm 2 turns down to the
subsequent iterative scheme:

2.2. Some Special Manifestations of Algorithm 3. Picking
κ � 1, w1 � 1, and τ1 � 0, Algorithm 3 turns down to the
subsequent iterative scheme:

To the best of our knowledge, Algorithm 7, Algorithm 8,
Algorithm 9, Algorithm 11, and Algorithm 12 appear to be
new ones.

3. Convergence Analysis

Theorem 1. Let f: I⊆R⟶ R be differentiable function
where I is an open interval. Let μ ∈ I be a simple zero of
f(s) � 0 or s � g(s) where g: I⊆R⟶ R is sufficiently
smooth in the neighborhood of root. If so is an initial guess
existing nearly close to μ, then the multistep methods defined
by the Algorithms 2, 3, 7, 8, 9, 11, and 12 have convergence of
order at least 3, 4, 3, 3, 4, 4, and 4, respectively.

Proof. Let µ be root of nonlinear equation f(s) � 0 or
equivalently s � g(s). Let the errors at nth and (n+ 1)th
iterations be en and en+1, respectively.

Now, expanding g(s) and g′(sn) by using Taylor’s series
about µ,
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(i) For a given s0 , approximate solution sn+1 is computed by the following iterative scheme: Sn+1 � ((g(sn) − sng′(sn))

/(1 − g′(sn))), g′(sn)≠ 1, n � 0, 1, 2.

(ii) Kang et al. [20] developed this algorithm which has quadratic convergence. From (6) and (8), we have
H(s0 + s1) � g(s0 + s1) − g(λ) − (s0 + s1 − λ) 

κ
i�1 wig′(λ + τi(s0 + s1 − λ)),

M(s0 + s1) � (H(s0 + s1)/(1 − 
κ
i�1 wig′(λ + τi(so + s1 − λ)))) + ((g(λ) − λ)/(1 − 

κ
i�1 wig′(λ + τi(so + s1 − λ)))).

(iii) For m � 2, s ≈ S2 � s0 + s1 + s2 � c + M(s0 + s1).
(iv) Employing (17), Algorithm 1, and simplifying, we have s � λ − (λ/(1 − 

κ
i�1 wig′(λ + τi(so + s1 − λ)))) + (g(s0 + s1)/(1 −


κ
i�1 wig′(λ + τi(so + s1 − λ))))− , (((s0 + s1 − λ) 

κ
i�1 wig′(λ + τi(so + s1 − λ)))/(1 − 

κ
i�1 wig′(λ + τi(so + s1 − λ)))).

(v) From (19), we take s0 + s1 � t � ((g(λ) − λg′(λ))/(1 − g′(λ))).

(vi) By using Algorithm 1 and computing, we get s � (g(t)/(1 − 
κ
i�1 wig′(λ + τi(t − λ)))) − (t 

κ
i�1 wig′ (λ + τi(t − λ))

/(1 − 
κ
i�1 wig′(λ + τi(t − λ)))).

(vii) ,is relation yields the following two-step algorithm.

ALGORITHM 1: ,e proposed method.

(i) For a given s0 , approximate solution sn+1 is computed by the following iterative scheme tn � (g(sn) − sng′(sn))/(1 − g′(sn)),

sn+1 � ((g(tn) − tn 
κ
i�1 wig′(sn + τi(tn − sn)))/(1 − 

κ
i�1 wig′(sn + τi(tn − sn)))), n � 0, 1, 2.

(ii) It is noted that
s0 + s1 + s2 � u � (g(t)/(1 − 

κ
i�1 wig′(λ + τi(t − λ)))) − (t 

κ
i�1 wig′(λ + τi(t − λ))/(1 − 

κ
i�1 wig′(λ + τi(t − λ)))).

(iii) For m� 3, s ≈ S3 � s0 + s1 + s2 + s3 � c + M(s0 + s1 + s2).
(iv) Using (6), (10), and (17), we have s � λ − s � λ(λ/(1 − 

κ
i�1 wig′(λ + τi(so + s1 + s2 − λ)))) + (g(λ)/(1 − 

κ
i�1 wig′(λ + τi(so +

s1 + s2 − λ)))) − (((s0 + s1 + s2 − λ) 
κ
i�1 wig′(λ + τi(so + s1 + s2 − λ)))/(1 − 

κ
i�1 wig′(λ + τi(so + s1 + s2 − λ)))).

(v) Applying Algorithm 2, we get s � λ − (λ/(1 − 
k
i�1 wig′(λ + τi(u − λ))))

+(g(λ)/(1 − 
k
i�1 wig′(λ + τi(u − λ)))) − (((z − λ) 

k
i�1 wig′(λ + τi(u − λ)))/(1 − 

k
i�1 wig′(λ + τi(u − λ)))), � (g(u)/(1 −


k
i�1 wig′(λ + τi(u − λ)))) − (u 

k
i�1 wig′(λ + τi(u − λ))/(1 − 

k
i�1 wig′(λ + τi(u − λ)))).

(vi) ,is formulation yields the following three-step method for solving nonlinear (1).

ALGORITHM 2: Kang’s method.

(i) Let s0 be an initial guess, then one can figure out sn+1 (approximate solution) with the support of the subsequent recursive scheme:
tn � ((g(sn) − sng′(sn))/(1 − g′(sn))), un � (g(sn) − tn 

k
i�1 wig′(sn + τi(tn − sn)))/(1 − 

k
i�1 wig′(sn + τi(tn − sn))),

sn+1 � ((g(un) − un 
k
i�1 wig′(sn + τi(tn − sn)))/(1 − 

k
i�1 wig′(sn + τi(tn − sn)))), n � 0, 1, 2.

ALGORITHM 3: ,e proposed method.

(i) Let s0 be an initial guess, then one can figure out the approximate solution sn+1 by the following recursive method:
tn � ((g(sn) − sng′(sn))/(1 − g′(sn))), sn+1 � ((g(tn) − tng′(sn))/(1 − g′(sn))), n � 0, 1, 2.

(ii) ,is algorithm was established by Kwun et al. [21] which has third-order convergence.
(iii) Taking κ � 1, w1 � 1, and τ1 � 1, Algorithm 2 minimizes to the succeeding iterative scheme.

ALGORITHM 4: Kwun’s method.

(i) Let s0 be an initial guess, then the approximate solution sn+1 by the following recursive method:
tn � (g(sn) − sng′(sn))/(1 − g′(sn)), sn+1 � ((g(tn) − tng′(tn))/(1 − g′(tn))), n � 0, 1, 2.

(ii) Saqib et al. [27] have derived this algorithm which has fourth-order convergence.
(iii) Taking κ � 1, w1 � 1, and τ1 � 1/2, Algorithm 2 turns down to the subsequent iterative scheme.

ALGORITHM 5: Saqib’s method.
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(i) Let s0 be an initial guess, then one can figure out the approximate solution sn+1 by the following recursive technique:
tn � (g(sn) − sng′(sn))/(1 − g′(sn)), sn+1 � ((g(tn) − tng′((sn + tn)/2))/(1 − g′((sn + tn)/2))), n � 0, 1, 2.

(ii) Gul et al. [29] investigated this algorithm which has third-order convergence.
(iii) Choosing κ � 2, w1 � 1/4, w2 � 3/4, τ1 � 0, and τ2 � 2/3, Algorithm 2 is restructured to the following recursive method.

ALGORITHM 6: Gul’s method (1).

(i) Let s0 be an initial guess, then one can figure out the approximate solution sn+1 by the following recursive scheme: tn �

(g(sn) − sng′(sn))/(1 − g′(sn)), sn+1 � (4g(tn) − tn g′(sn) + 3g′((sn + 2tn)/3) )/(4 − g′(sn) + 3g′((sn + 2tn)/3) ), n � 0, 1, 2.

(ii) Taking κ � 2, w1 � 1/2, w2 � 1/2, τ1 � 0, and τ2 � 1/2, Algorithm 2 turns down to the subsequent iterative scheme.

ALGORITHM 7: A recent iterative method.

(i) Let s0 be an initial guess, then the approximate solution sn+1 is computed by the following iterative scheme: tn � (g(sn) −

sng′(sn))/(1 − g′(sn)), sn+1 � ((2g(tn) − tn g′(sn) + g′((sn + tn)/2) )/(2 − g′(sn) + g′((sn + tn)/2) )), n � 0, 1, 2.

ALGORITHM 8: A newly designed scheme.

(i) For a given s0, compute approximate solution sn+1 by the following iterative scheme: tn � (g(sn) − sng′(sn))/(1 − g′(sn)), un �

((g(tn) − tng′(sn))/(1 − g′(sn))), sn+1 � ((g(un) − ung′(sn))/(1 − g′(sn))), n � 0, 1, 2.

(ii) Taking κ � 1, w1 � 1, and τ1 � 1/2 , Algorithm 3 reduces to the following recursive approach as follows.

ALGORITHM 9: ,e constructed method.

(i) Let s0 be an initial guess, then the approximate solution sn+1 is computed by the following recursive method: tn � (g(sn) −

sng(sn))/(1 − g′(sn)), un � (g(tn) − tn g′((sn + tn)/2))/(1 − g′((sn + tn)/2)), sn+1 � ((g(un) − un g′((sn + un)/2))/(1 − g′((sn +

un)/2))), n � 0, 1, 2.

(ii) Gul et al. [29] suggested this algorithm which has fourth-order convergence.
(iii) Choosing κ � 2, w1 � 1/4, w2 � 3/4, τ1 � 0, and τ2 � 2/3, Algorithm 3 reduces to the subsequent iterative method.

ALGORITHM 10: Gul’s method (2).

(i) Let s0 be an initial guess, then the approximate solution sn+1 is computed by the following iterative scheme: tn �

((g(sn) − sng′(sn))/(1 − g′(sn))), un � (4g(tn) − tn g′(sn) + 3g′((sn + 2tn/3) )/(4 − g′(sn) + 3g′((sn + 2tn)/3) ),

sn+1 � (4g(un) − un g′(sn) + 3g′((sn + 2un/3) )/(4 − g′(sn) + 3g′((sn + 2un/3) ), n � 0, 1, 2.

(ii) Choosing κ � 2, w1 � 1/2, w2 � 1/2, τ1 � 0, and τ2 � 1/2, Algorithm 3 turns down to the subsequent iterative method.

ALGORITHM 11: A novel iterative method.

(i) Let s0 be an initial guess, then one can figure out the approximate solution sn+1 by the following recursive scheme: tn �

(g(sn) − sng′(sn))/(1 − g′(sn)), un � (2g(tn) − tn g′(sn) + g′(sn + tn/2) )/2 − g′(sn) + g′(sn + tn/2) ,

sn+1 � ((2g(un) − un g′(sn) + g′((sn + un)/2) )/(2 − g′(sn) + g′((sn + un)/2) )), n � 0, 1, 2.

ALGORITHM 12: A new recursive approach.
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g sn(  � µ + en g′(µ) +
e
2
n

2
g″(µ) +

e
3
n

6
g
‴

(µ) + O e
4
n , (22)

g′ sn(  � g′(µ) + en g″(µ) +
e
2
n

2
g
‴

(µ) +
e
3
n

6
g

iv
(µ) + O e

4
n , (23)

1 − g′ sn(  � 1 − g′(µ) − eng″(µ) −
e
2
n

2
g
‴

(µ) −
e
3
n

6
g

iv
(µ) + O e

4
n , (24)

g sn(  − sng sn(  � µ − µg′(µ) − µg″(µ)en −
1
2

g″(µ) + µg
‴

(µ) e
2
n +

1
6

2g
‴

(µ) + µg
iv

(µ) e
3
n + O e

4
n , (25)

g sn(  − sng sn( 

1 − g′ sn( 
� µ +

g″(µ)

2 − 1 + g′(µ )( 
e
2
n −

2g
‴

(µ) − 2g
‴

(µ)g′(µ) + 3g″
2

(µ)

6 − 1 + g′(µ )( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n + O e

4
n . (26)

Considering Algorithm 2 and following (26), where
g′(µ)≠ 1, we obtain

tn � µ +
g″(µ)

2 − 1 + g′(µ )( 
e
2
n +

− 2g
‴

(µ) + 2g
‴

(µ)g′(µ) − 3g″2 (µ)

6 − 1 + g′(µ )( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n + O e

4
n , (27)

g tn(  � µ +
g′(µ)g″(µ)

2 − 1 + g′(µ )( 
e
2
n +

g′(µ) − 2g
‴

(µ) + 2g
‴

(µ)g′(µ) − 3g″2 (µ) 

6 − 1 + g′(µ )( 
2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
e
3
n + O e

4
n . (28)

Taylor’s series expansion of 
κ
i�1 wig′(sn + τi(tn − sn))

about µ,



κ

i�1
wig′ sn + τi tn − sn( ( 

� g′(µ) − g″(µ) 
κ

i�1
wi − 1 + τi( 

⎧⎨

⎩

⎫⎬

⎭en

+
1

2 − 1 + g′(µ)( 


κ

i�1
wi

τi g″2(µ) − g
‴

(µ) + g′(µ)g
‴

(µ) + 2g
‴

(µ)τi

− 2τig
‴

(µ)g′(µ) − τ2i g
‴

(µ) + g
‴

(µ)τ2i g′(µ)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
e
2
n + O e

3
n .

(29)

By substituting (27)–(29) into Algorithm 2, we obtain
the error term of Algorithm 2,

un � µ −
1

2 − 1 + g′(µ)( 
2 g″2(µ) 

κ

i�1
wi − 1 + τi( ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭e
3
n + O e

4
n . (30)

Expanding g(un) in terms of Taylor series about µ,
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g un(  � µ −
1

2 − 1 + g′(µ)( 
2 g′(µ)g″(µ) 

κ

i�1
wi − 1 + τi( ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭ e
3
n + O e

4
n . (31)

Expanding 
κ
i�1 wig′(sn + τi(un − sn)) by Taylor’s series,

� 
κ

i− 1
wig′ sn + τi un − sn( (  � g′(µ) − g″(µ) 

κ

i�1
wi − 1 + τi( 

⎧⎨

⎩

⎫⎬

⎭en

+
1
2
g
‴

(µ) 
κ

i�1
wi − 2wiτi + wiτ

2
i 

⎧⎨

⎩

⎫⎬

⎭ e
2
n + O e

3
n .

(32)

Applying (30)–(32) into Algorithm 3, we get the error
term of Algorithm 3,

sn+1 � µ +
g″3(µ) 

κ
i− 1 wi − 1 + τi( (  

κ
i− 1 wi τi − 1( (  

2 − 1 + g′(µ)( 
3 e

4
n + O e

5
n , g′(µ)≠ 1,

en+1 �
g″3(µ) 

κ
i− 1 wi − 1 + τi( (  

κ
i− 1 wi τi − 1( (  

2 − 1 + g′(µ)( 
3 e

4
n + O e

5
n .

(33)

Now, we investigate the convergence order of special
cases of Algorithms 2 and 3.

Amplifying g′(sn + 2tn/3) in terms of Taylor series about
µ,

g′
sn + 2tn

3
  � g′(μ) + +

1
3
g″(µ)en +

1
18 − 1 + g′(µ)( 

6g″
2
(µ) − g

‴
(µ) + g′(µ)g

‴
(µ)  e

2
n + O e

3
n . (34)

Starting with (23), (27), (29), and (34), we obtain

4g tn(  − tn g′ sn(  + 3g′
sn + 2tn

3
  

� − 4µ − 1 + g′(µ )(  − 2µg″(µ)en −
µ − 2g

‴
(µ) + 2g

‴
(µ)g′(µ) + 3g″

2
(µ) 

3 − 1 + g′(µ )( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
e
2
n + O e

3
n ,

(35)

4 − g′ sn(  + 3g′
sn + 2tn

3
  

� 4 − 4g′(µ ) − 2g″(µ)en −
3g″3(µ) + 2g

‴
(µ)g′(µ) − 2g

‴
(µ)

3 − 1 + g′(µ )( 

⎧⎨

⎩

⎫⎬

⎭e
2
n + O e

3
n .

(36)

Now, by substituting (33) and (34) into Algorithm 7 and
simplifying, we obtain the error term of Algorithm 7,
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sn+1 � μ −
g″(µ)

4 − 1 + g′(µ )( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n + O e

4
n , g′(μ)≠ 1,

(37)

en+1 �
g″(µ)

4 − 1 + g′(µ )( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n + O e

4
n . (38)

Unfolding g′(sn + tn/2) in terms of Taylors’ series
about µ,

g′
sn + tn

2
  � g′(µ) +

1
2
g″(µ)en +

2g″(µ)
2

− g
‴

(µ) + g
‴

(µ)g′(µ)

8 − 1 + g′(µ)( 

⎧⎨

⎩

⎫⎬

⎭e
2
n + O e

3
n . (39)

Employing (23), (27), (28), and (37) and simplifying, we
have

2g tn(  − tn g′ sn(  + g′
sn + tn

2
   − 2

− 2µ − 1 + g′(µ)(  −
3
2
µ g″(µ)( en −

µ − 5g
‴

(µ) + 5g
‴

(µ)g′
(μ)

+ 2g″
2
(µ) 

8 − 1 + g′(µ)( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
e
2
n + O e

3
n ,

(40)

2 − g′ sn(  + g′
sn + tn

2
   � − 2 − 2g′(µ) −

3
2
g″(µ)en −

1
8 − 1 + g′(µ)( 

− 5g
‴

(µ) + 5g
‴

(µ)g′
(μ)

+ 2g″
2
(µ)

8 − 1 + g′(µ)( 

⎧⎨

⎩

⎫⎬

⎭e
2
n + O e

3
n .

(41)

By substituting (40) and (41) into Algorithm 8, we get the
error term of Algorithm 8,

sn+1 � µ +
g″2( µ)

8 − 1 + g′( µ)( 
2

⎧⎨

⎩

⎫⎬

⎭ e
3
n + O e

4
n , g′(µ )≠ 1, (42)

en+1 �
g″2( µ)

8 − 1 + g′( µ)( 
2

⎧⎨

⎩

⎫⎬

⎭ e
3
n + O e

4
n  . (43)

Now, again considering the error term of Algorithm 4
investigated by Kwun et al. [21],

µ +
g′( µ)( 

2

2 − 1 + g′( µ)( 
2un � e

3
n +

g″( µ) 14g
‴

( µ)g′(µ ) − 27 g″( µ)( 
2

− 14g
‴

( µ) 

24 − 1 + g′(µ )( 
3

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
e
4
n + O e

5
n . (44)

Amplifying g(un) in terms of Taylors’ series about µ,
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g un(  � µ +
g′( µ)g″

2
( µ)

2 − 1 + g′( µ)( 
2e

3
n +

1
24

g′( µ)g″( µ) 14g
‴

( µ)g′(µ ) − 27 g″( µ)( 
2

− 14g
‴

( µ) 

− 1 + g′(µ )( 
3

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
e
4
n + O e

5
n , (45)

g un(  − ung′ sn(  � µ − µg′( µ) − µg″( µ)en −
µg
‴

( µ)

2
e
2
n −

µg
(iv)

( µ)

6
e
3
n −

g″3( µ)

2 − 1 + g′( µ)( 
2e

4
n + O e

5
n . (46)

By substituting (24) and (46) into Algorithm 9, we get the
error term of Algorithm 9,

sn+1 � µ +
g″

3
(µ)

2 − 1 + g′(µ )( 
3

⎧⎨

⎩

⎫⎬

⎭e
4
n + O e

5
n , g′(µ )≠ 1, (47)

en+1 �
g″

3
(µ)

2 − 1 + g′(µ )( 
3

⎧⎨

⎩

⎫⎬

⎭e
4
n + O e

5
n . (48)

Now, considering (41) and expanding g(un) in terms of
Taylor’s series about µ,

g un(  � µ +
g″2(µ)g′(µ)

4 − 1 + g′(µ )( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n + o e

4
n . (49)

Opening up the term g′(sn + 2un/3) in the form of
Taylor’s series about µ,

g′
sn + 2un

3
  � g′(µ) +

1
3
g″(µ)en +

1
18

g
‴

(µ)e
2
n +

g″3(µ)

6 − 1 + g′(µ )( 
2 +

g
iv

(µ)

162
⎧⎨

⎩

⎫⎬

⎭e
3
n + o e

4
n . (50)

From (23), (48), and (49) and simplifying, we have

4g un(  − un g′ sn(  + 3g′
sn( + 2un

3
   � − 4 1 − µg′(µ)(  − 2µg″(µ)en −

2
3
µg
‴

(µ)e
2
n

+ −
5
27

µg
iv

(µ) −
g″

3
(µ)

2 − 1 + g′(µ )( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n + O e

4
n ,

(51)

4 − g′ sn(  + 3g′
sn + 2un( 

3
   � 4 1 − g′(µ )(  − 2g″(µ)en −

2
3

g
‴

(µ)e
2
n

+
5
27

g
iv

(µ) +
g″

3
(µ)

2 − 1 + g′(µ )( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n + O e

4
n .

(52)

By substituting (51) and (52) into Algorithm 11, we get
the error term of Algorithm 11,

sn+1 � µ +
3g″

3
(µ)

16 − 1 + g′(µ)( 
3

⎧⎨

⎩

⎫⎬

⎭e
4
n + O e

5
n , g′(µ )≠ 1, (53)

en+1 �
3g″

3
(µ)

16 − 1 + g′(µ)( 
3

⎧⎨

⎩

⎫⎬

⎭e
4
n + O e

5
n . (54)

From (42) considering the error equation of
Algorithm 8,
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un � µ −
g″

2
(µ)

8 − 1 + g′(µ)( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n + O e

4
n . (55)

Expanding g(un) in terms of Taylor’s series about µ,

g un(  � µ +
g′(µ)g′

2
(µ)

8 − 1 + g′(µ)( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n +

g′(µ)g″(µ) 13g
‴

(µ)g′(µ) − 13g
‴

(µ) − 23g″
2
(µ) 

32 − 1 + g′(µ)( 
3

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
e
4
n + O e

5
n . (56)

Elaborating g′(sn + un/2) in the terminology of Taylor’s
series about µ,

g′
sn + un

2
  � g′(µ) +

1
2
g″(µ)en +

1
8
g
‴

(µ)e
2
n

+
9g″

3
(µ) + g

iv
(µ) − 2g

iv
(µ)g′(µ) + g

iv
(µ)g′

2
(µ)

48 − 1 + g′(µ)( 
2

⎧⎨

⎩

⎫⎬

⎭e
3
n + O e

4
n .

(57)

From (55)–(57), we have

2g un(  − un g′ sn(  + g′
xn( + un

2
  

� − 2µ − 1 + g′(µ)(  −
3
2
µg″(µ)en

−
5
8
µg
‴

(µ)e
2
n −

3 µg
iv

(µ) − 2g
iv

(µ)g′(µ) + g
iv

(µ)g′
2
(µ) + g″

3
(µ) 

16 − 1 + g′(µ)( 
2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
e
3
n + O e

4
n ,

(58)

2 − g′ sn(  + g′
sn + un

2
  

� 2 − g′(µ) − g″(µ)en −
1
2
g
‴

(µ)e
2
n −

1
6
g

iv
(µ)e

3
n + O e

4
n .

(59)

By substituting (58) and (59) into Algorithm 12, we get
the error term of Algorithm 12,

sn+1 � µ +
9g″

3
(µ)

32 − 1 + g′(µ)( 
3

⎧⎨

⎩

⎫⎬

⎭e
4
n + O e

5
n , (60)

en+1 �
9g″

3
(µ)

32 − 1 + g′(µ)( 
3

⎧⎨

⎩

⎫⎬

⎭e
4
n + O e

5
n . (61)

,is completes the proof. □

4. Efficiency Index

Commonly in literature, the efficiency index [31] of an al-
gorithm supplies us with information about the numeric
behavior and performance of the method under

examination. It is also used to compare different iterative
methods and mathematically defined as EI � P

1/m , where P

represents the order of themethod and m is the total number
of function evaluations (the function and the derivatives
involved) per iteration necessary by the method. Taking into
account this fact, one can calculate the EI of different it-
erative methods. Since the Ullah method (UM) [5] is
quadratically convergent and needs three function evalua-
tions per iteration, thus EI for this method will be 21/4 ≈
1.18921. Similarly, EI of Farooq method FM [28] is 31/5 ≈
1.24573 because order of convergence of the method is three
and requires five function evaluations per iteration. ,e
efficiency indexes of Noor methods [22] with cubic and
fourth order of convergence are 31/5 ≈ 1.24573,
41/6 ≈ 1.2592, and 41 /8 ≈ 1.18921. Now, we compute the
efficiency indexes of newly proposed algorithms. ,e
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convergence order of the methods described in Algorithms 7
and 8 is 3, see (37) and (42), and requires four function
evaluations per iteration. ,us, the efficiency index for both
methods is 31/4 ≈ 1.31607. ,e convergence order of the
methods described in Algorithms 9, 11, and 12 is 4, see
equations (47), (53), and (60), and the total number of
evaluations per iteration is 4, 6, and 6, respectively. ,us, the
efficiency indexes for these methods are
EI � 41/4 ≈ � 1.41421, 41/6 ≈ 1.25992, and 41/6 ≈ 1.25992,
respectively. Table 1 summarizes the efficiency indexes of
different algorithms that we have computed above, and it
can easily be noted that efficiency indexes of the newly
established algorithms AG1, AG2, AG3, AG4, and AG5 are
better than the efficiency indexes of other iterative methods.

5. Applications

In this section, we consider two well-known models related
to mathematics, physics, and physical chemistry which in-
clude a nonlinear model formed due to the motion of
particles on an inclined plane and Lenard–Jones potential, a
renowned model that represents the interaction between
neutral molecules or atoms. We also include some examples
used by Chun [7] to elaborate the efficacy of the proposed
algorithms. For computational work, we implement codes in
MAPLE software and MATLAB for graphical analysis, and
the following stopping criterion is taken into account for
entire computations:

sn+1 − sn


< ε,

f sn+1( 


< ε .
(62)

We display a comparative representation of newly
established methods: Algorithm 7 (AG1), Algorithm 8
(AG2), Algorithm 9 (AG3), Algorithm 11 (AG4), and Al-
gorithm 12 (AG5), introduced in this paper, with second-
order Ullah method (UM) [5], third-order Farooq method
(Algorithm 13) (FM) [28], with alpha� 0.9, and Noor
methods [22] {(Algorithm 2.8) (NR1), (Algorithm 2.12)
(NR2), and (Algorithm 2.15) (NR3)}, to show that the
proposed methods perform more efficiently, see Tables 2–4
and Figures 1–3. We obtain an estimated simple root rather
than the exact based on the exactness ε of the computer and
use ε � 10− 15. As for the convergence criteria is concerned it
is desired that the distance δ among two consecutive esti-
mations for zero is not more than 10− 15. In Tables 2–4, s0 is
the initial guess, (IT) represents the number of the iterations,
sn is the approximate root, and f(sn) is its corresponding
functional value.

f1(s) − f5(s). (68)

,e computational order of convergence (COC) (see [9])
is computed to check the behavior of the proposed methods
for presented examples and given by

COC ≈
ln sn+1 − sn


/ln sn − sn− 1




ln sn − sn− 1


/ln sn− 1 − sn− 2



. (63)

Example 1 (model based on population growth [33]).
Assume the mathematical modeling of the growth of

population over short periods of time whose governing
equation is nonlinear in nature as follows:

1564, 000 � 1, 000, 000e
λ

+
435000

λ
e
λ

− 1 . (64)

Wewant to determine the value of λwhich demonstrates
the constant birth rate of population. For computational
work, we take s0 � 3 as an initial estimate. ,e solution of
this example approximated to 16 decimal digits is
0.1009979296857498.,e numerical results for this problem
are given in Table 2. Figure 1 shows the fall of residuals for
this example. It is clear from the computational results in
terms of number of iterations that new fixed point iterative
methods AG1, AG2, AG3, AG4, and AG5 are more efficient
in their performance as compared to the already known
ordinary methods UM, FM, NR1, NR2, and NR3.

Example 2 (Lenard–Jones potential model [24]).
Consider a specific model for atom potential referred as

Lenard–Jones potential which is a well-known model in
atomic physics and physical chemistry.

V(s) � Vo

µ
s

 
12

−
µ
s

 
6

 , (65)

where Vo denotes the depth of the potential and µ is the
length scale representing the distance where the interparticle
interaction between two atoms becomes zero. ,e function
V(s) in (65) has minimum value at s � 21/6µ. We choose
Vo � 1 and µ � 2, then the actual minimum value of
function V(s) will be s � 27/6. Now, differentiating V(s) in
(65), minimization problem is transformed into the problem
of finding the solution of the nonlinear equation given by

f(s) �
d
ds

V(s) � Vo

− 12µ12

s
13 +

6µ6

s
7  � 0  . (66)

In this example for computational evaluations, we utilize
so � 1.4 as an initial estimate. ,e columns in Table 3 il-
lustrate the comparison of numerical results in terms of
number of iterations for this problem. Figure 2 projects the
drop of residuals for this example. It is concluded from
Table 3 and Figure 2 that the effectiveness and presentation
of the proposed schemes are much refined than other similar
standard methods. Results of this example also show that
fixed point iterative methods converge more rapidly towards
solution as compared to the existing ones.
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Table 1: Comparison of efficiency indices of different recursive schemes.

Methods Order of convergence No. of required computations EI
UM 2 4 1.18921
FM 3 5 1.24573
NR1 3 5 1.24573
NR2 4 6 1.25992
NR3 4 8 1.18921
AG1 3 4 1.31607
AG2 3 4 1.31607
AG3 4 4 1.41421
AG4 4 6 1.25992
AG5 4 6 1.25992

Table 2: Computation results for motion of particle on an inclined plane (equation (64)).

Methods IT sn f(sn) Δ � |sn − sn− 1| COC

g(s) � log(435000 + 1564000s/435000 + 1000000s), so � 3.0
UM 8 0.1009979296857498 2.504358e − 32 1.991639e − 19 2.00
FM 7 0.1009979296857498 4.711728e − 46 1.242165e − 17 3.00
NR1 5 0.1009979296857498 3.310599e − 17 4.808886e − 08 2.97
NR2 4 0.1009979296857498 7.942106e − 20 8.672936e − 07 3.99
NR3 4 0.1009979296857498 2.520548e − 18 2.058524e − 06 3.99
AG1 4 0.1009979296857498 1.129996e − 05 5.259956e − 05 2.99
AG2 5 0.1009979296857498 6.531994e − 22 1.775751e − 10 2.99
AG3 4 0.1009979296857498 5.805863e − 19 1.250969e − 07 3.98
AG4 4 0.1009979296857498 1.873858e27 1.333454e − 09 3.99
AG5 4 0.1009979296857498 3.261799e − 22 2.223887e − 08 3.99

Table 3: Computational results, Lenard–Jones potential model (equation (66)).

Methods IT sn f(sn) Δ � |sn − sn− 1| COC

g(s) � (12V0µ12/6sV0µ6)
1/5, . . ., s0 � 1.4

UM 11 2.2449240966187460 5.732991e − 25 1.852517e − 13 2.00
FM 8 2.2449240966187460 5.417184e − 15 3.653371e − 06 2.99
NR1 8 2.2449240966187460 1.362441e − 26 5.586731e − 10 2.97
NR2 6 2.2449240966187460 1.585806e − 19 4.564142e − 06 3.98
NR3 6 2.2449240966187460 1.027689e − 16 2.302915e − 05 3.99
AG1 3 2.2449240966187460 7.477787e − 34 4.725369e − 11 2.99
AG2 3 2.2449240966187460 1.904114e − 31 2.616447e − 10 2.99
AG3 3 2.2449240966187460 5.664676e − 68 8.183945e − 17 4.00
AG4 3 2.2449240966187460 8.482495e − 82 4.048693e − 20 4.00
AG5 3 2.2449240966187460 7.407196e − 74 3.195595e − 18 4.00

Table 4: Numerical comparison between different algorithms for test problems.

Methods IT xn f(xn) Δ � |xn − xn− 1| COC

f1(s) � s3 − 10, . . ., g(s) �
����
10/x

√
, . . ., s0 � 1.5

UM 6 2.1544346900318837 2.003246e − 15 1.760515e − 08 2.00
FM 4 2.1544346900318837 6.796495e − 18 1.369664e − 06 2.99
NR1 4 2.1544346900318839 6.359558e − 34 5.962594e − 12 3.02
NR2 3 2.1544346900318839 6.993369e − 26 4.733961e − 07 4.27
NR3 3 2.1544346900318839 1.274020e − 26 3.092766e − 07 4.00
AG1 4 2.1544346900318837 3.769672e − 82 1.262120e − 27 2.99
AG2 3 2.1544346900318837 8.598170e+ 60 2.696187e − 15 2.99
AG3 3 2.1544346900318837 6.765235e − 52 2.969298e − 13 3.99
AG4 3 2.1544346900318837 1.413885e − 64 2.839236e − 16 4.00
AG5 3 2.1544346900318837 4.990636e − 01 2.625771e − 13 4.00
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Table 4: Continued.

Methods IT xn f(xn) Δ � |xn − xn− 1| COC

f2(s) � (s − 1)3 − 1, . . ., g(s) � 1 +
������
1/s − 1

√
, . . ., s0 � 3.5

UM 6 2.0000000000000024 7.300615e − 15 4.933091e − 08 2.00
FM 4 2.0000000000000000 8.664196e − 17 1.424022e − 05 2.99
R1 5 2.0000000000000000 3.312983e − 40 4.797695e − 14 2.99
NR2 4 2.0000000000000000 5.783669e − 43 2.095417e − 11 3.87
NR3 4 2.0000000000000000 2.932850e − 42 3.144431e − 11 3.99
AG1 4 2.0000000000000000 2.746057e − 54 2.446636e − 18 2.99
AG2 4 2.0000000000000000 1.318575e − 48 1.673674e − 16 2.99
AG3 3 2.0000000000000000 1.301962e − 33 9.128497e − 09 3.99
AG4 3 2.0000000000000000 9.099015e − 43 6.637634e − 11 4.00
AG5 3 2.0000000000000000 3.700702e − 37 1.368643e − 09 3.99

f3(s) � es2+7s− 30 − 1, g(s) � 1
7 (30 − s2), s0 � 3.5

UM 10 3.0000000000000000 9.951599e − 17 1.078856e − 09 2.00
FM 7 3.0000000000000000 9.507655e − 19 1.314119e − 07 2.98
NR1 8 3.0000000000000000 7.833171e − 38 5.183816e − 14 2.99
NR2 6 3.0000000000000000 3.341483e − 27 3.083060e − 08 3.99
NR3 6 3.0000000000000000 1.707093e − 23 2.606524e − 07 3.99
AG1 3 3.0000000000000000 3.811229e − 37 1.704784e − 12 2.99
AG2 3 3.0000000000000000 5.677785e − 35 7.894846e − 12 2.99
AG3 3 3.0000000000000000 4.305207e − 78 1.161329e − 19 3.99
AG4 3 3.0000000000000000 4.174513e − 90 1.629758e − 22 3.98
AG5 3 3.0000000000000000 4.769844e − 83 7.736635e − 21 3.99

f5(s) � sin2(s) − s2 + 1, . . ., g(s) � sin(s) + 1/(sin(s) + s), . . ., s0 � − 1
UM 6 1.4044916482153412 2.217875e − 15 3.376658e − 08 1.99
FM 5 1.4044916482153412 7.221491e − 16 2.778662e − 05 3.06
NR1 4 1.4044916482153412 1.814668e − 31 4.919474e − 11 3.03
NR2 3 1.4044916482153412 2.712791e − 24 1.227650e − 06 4.37
NR3 3 1.4044916482153412 7.318030e − 25 8.847467e − 07 4.33
AG1 4 1.4044916482153412 1.731515e − 90 1.996553e − 30 2.99
AG2 4 1.4044916482153412 1.723974e − 84 1.741614e − 28 2.99
AG3 3 1.4044916482153412 2.351397e − 61 9.774245e − 16 4.00
AG4 3 1.4044916482153412 2.878031e − 70 8.175994e − 18 3.99
AG5 3 1..4044916482153178 2.905287e − 64 2.116013e − 16 3.99

f6(s) � s2 − es − 3s + 2, . . ., g(s) � (s2 − es + 2)/3, . . ., s0 � 2
UM 5 0.2575302854398608 1.723039e − 24 2.208907e − 12 2.00
FM 11 0.2575302854398608 2.922830e − 27 9.219828e − 10 2.99
NR1 3 0.2575302854398608 3.807427e − 17 1.048816e − 05 3.00
NR2 3 0.2575302854398608 7.862110e − 56 7.105574e − 14 3.99
NR3 3 0.2575302854398608 4.088124e − 45 3.393090e − 11 4.14
AG1 3 0.2575302854398608 4.715256e − 17 1.126308e − 05 3.50
AG2 4 0.2575302854398608 6.577461e − 46 2.368510e − 15 2.99
AG3 3 0.2575302854398608 9.720474e − 29 2.979348e − 07 4.00
AG4 3 0.2575302854398608 2.935314e − 44 5.554284e − 11 4.00
AG5 3 0.2575302854398608 1.293390e − 34 1.168400e − 08 4.00
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Figure 1: Log of residuals for equation (64).
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Figure 2: Log of residuals for (equation (66)).
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Example 3 (transcendental and algebraic problems).
To numerically analyze the suggested algorithms, we

consider the following transcendental and algebraic equa-
tions used by Chun [7]:

f1(s) � s
3

− 10, g(s) �

��
10
s



, s0 � 1.5,

f2(s) � (s − 1)
3

− 1, g(s) � 1 +

����
1

s − 1



, s0 � 3.5,

f3(s) � e
s2+7s− 30

− 1, g(s) �
1
7

30 − s
2

 , s0 � 3.5,

f4(s) � sin2 s − s
2

+ 1, g(s) � sins +
1

(sins + s)
, s0 � − 1,

(67)

In Table 4, we display the numerical results for examples
f1(s), f2(s), f3(s), f4(s), and f5(s) to validate the theo-
retical results. ,e second column in Table 4 shows the
number of iterations required to reach the stopping criteria
(62). It is clear from the results obtained that new methods
need a smaller number of iterations when compared with
other methods.

,e columns in Table 5 represent the number of itera-
tions for different nonlinear functions along with initial
guess s0. Figure 3 shows the comparison of the iterative
methods with respect to number of iterations. A compar-
ative representation of number of iterations is presented,
needed for different methods with our developed methods
using the stopping criteria (62) with the accuracy ε � 10− 200.
It is clear from Table 5 that settling the same convergence
criteria for all the methods, the number of iterations re-
quired for the new methods remains less than the number of
iterations needed by the other methods of the same order.

AG5AG4AG3AG2AG1NR3
Iterative methods

N
o 

of
 It

er
at

io
ns

NR2NR1FMUM
0

2

4

6

8

10

12

14

16

Equation (5.2)
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f1
f2
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Figure 3: Comparison of iterative methods and number of iterations.

Table 5: Comparison of number of iterations of iterative method for ε � 10− 200.

Iterative Method Equation (64)
so � 3

Equation (66)
so � 1.4

f1(s)

so � 1.5
f2(s)

s0 � 3.5
f3(s)

so � 3.5
f4(s)

so � − 1
f5(s)

so � 2

UM 10 13 9 10 14 9 7
FM 8 9 5 6 9 7 12
NR1 6 9 6 7 10 5 5
NR2 5 7 5 5 7 5 4
NR3 6 8 5 5 8 5 4
AG1 4 3 3 4 3 3 3
AG2 5 3 3 4 3 3 4
AG3 4 3 3 3 3 3 3
AG4 4 3 3 3 3 3 3
AG5 4 3 3 3 3 3 3
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6. Conclusion

We have introduced a new modified family of recently
developed iterative methods (Algorithms 2 and 3) by using a
decomposition technique for solving nonlinear equations.
Various new iterative methods of different order have been
constructed as special cases with the support of recently
constructed family. ,e convergence criteria of newly
proposed methods is reviewed and inspected in order to
ensure convergence order. In Tables 2–5 and Figures 1–3, we
furnish the comparative by taking into account both
mathematically and graphically for these strategies with a
few known procedures by examining two models and a few
algebraic nonlinear equations. ,e numerical results and
graphical depiction certified the swiftness and finest per-
formance of the methods with reference to the number of
iterations even though the accuracy has been raised up to
ε� 10− 200.
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