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In this work, we introduce families of multimodal maps based on logistic map, i.e., families of m-modal maps are defined on an
interval I ⊂ R, which is partitioned into non-uniform subdomains, with m ∈ N. Because the subdomains of the partition are not
uniform, each subdomain contains a unimodal map, given by the logistic map, that can have different heights. +erefore, we give
the necessary and sufficient conditions for these modal maps present a multimodal family of m-modal maps, i.e., a bifurcation
parameter can set a unimodal map, a bimodal map, up to a m-modal map. Some numerical examples are given according to the
developed theory. Some numerical examples are given in accordance with the developed theory.

1. Introduction

Many interesting results have been given in discrete dy-
namical systems, for example, in [1] the authors showed that
period three implies whatever period so as a consequence
chaos. Results about chaotic properties of non-autonomous
discrete dynamical systems have been extensively studied in
[2, 3]. Due to chaotic behavior presents ergodicity, sensi-
tivity to initial conditions, transitivity, and not predictable
evolution behaviors, chaotic dynamical systems have been
considered with great potential in engineering applications.
For example, to development pseudo-random number
generators [4–6]; some applications of these generators are
in video [7, 8], secure communications [9, 10], and cryp-
tographic systems [11–15] due to the close relationship
between chaos and cryptography. In [16, 17], a comparison
between the properties of chaos and cryptosystems is given
and showed that the ergodicity, sensitivity to initial con-
ditions and the bifurcation parameter, deterministic dy-
namics and complex structure are analogous to confusion,
diffusion, pseudo-randomness and algorithm complexity,
respectively.

Many proposals of bit generators have been developed
with new discrete dynamical systems called maps which are
capable of generating chaotic behavior via unidimensional
systems, so there is a great interest in developing new chaotic
maps for the purpose mentioned above or with the intention
to understand the chaotic behavior [18]. Different maps have
been used to tackle the aforementioned aims, like unimodal
chaotic maps [19, 20], piecewise linear chaotic maps [21],
and chaotic maps based on combining more that one chaotic
map [10, 22]. To ensure the boundedness of chaotic tra-
jectories, the systems are usually restricted to maps that are
mapping from a compact interval into itself, usually the
compact interval is I � [0, 1]. However, there is no con-
straint to this interval, for example, in [23] the authors
derived analytical expressions for the autocorrelation se-
quence and power spectral density of chaotic signals gen-
erated by one-dimensional continuous piecewise linear
maps with three slopes f: [−1, 1]⟶ [−1, 1].

Multimodal maps have been studied by Smania [24],
who studied the dynamics of the renormalization operator
for this kind of maps. Particularly, he developed a combi-
natory theory for a certain kind of multimodal maps. On the
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other hand, it is possible to generate multimodal maps based
on unimodal maps like logistic map or tent map. Campos-
Cantón et al. [25, 26] introduced multimodal maps based on
the logistic map, but restricted to a regular partition of the
space, i.e., the interval I is divided into uniform subintervals
and each subinterval has a critical point that presents the
same modal in all subintervals. +e consequence of using a
regular partition of the space is that the map shape in each
interval is the same. In the same spirit that the previous
work, mutimodal maps have been introduced based on the
tent map [27], where analytical expressions have been de-
rived for the autocorrelation function and the auto-spectral
density function of chaotic signals generated by a multi-
modal skew tent map. In this work we present results on
irregular partitions of space, this fact allows us to define
different modals in all subintervals and obtain different
maps. However, there are some map configurations that do
not allow multimodal maps. So in this work we give the
necessary and sufficient conditions for these modal maps
present a multimodal family of m-modal maps, i.e., a bi-
furcation parameter can set a unimodal map, a bimodal map,
up to a m-modal map.

+e useful insights for the study of chaos can be known
by analyzing one-dimensional (1D) maps, e.g., the logistic
and tent maps. +ese systems have been extensively studied
[28] and implemented experimentally [29–34]. A unimodal
map is a continuous 1D function R⟶ R with a single
critical point c0, monotonically increasing on one side of c0
and decreasing on the other. Here, we introduce a class of
multimodal maps which is obtained by translating and
scaling the logistic maps based on the bi-parametric equa-
tion proposed by Verhulst in 1838 [35].

dN

dt
� αg 1 −

N

cc

 N, (1)

where N(t) is the state of the system at time t, αg is the
intrinsic growth rate, and cc is the carrying capacity.

Motivate by a large number of applications of the chaotic
maps, we study a multimodal maps family based on the
logistic map. +e importance of having new unidimentional
chaotic maps helps to understand the properties of chaotic
behavior in discrete dynamical systems and allows appli-
cations such as new proposal of bit generators. Now, in this
work we study multimodal maps considering irregular
partitions of the space. Also the critical points present
different local modals giving extra degrees of freedom for
sequences generation. +e development of this new class of
families of chaotic map are based on piecewise continuous
function.+e map is defined such that only one parameter is
considered to takes different values, the others are fixed, thus
we will be working with monoparametric families formed
with multiple unimodal mappings.

+e article is organized as follows: In Section 2, we set the
basis of m-modal maps and give its definition. In Section 3,
we define a multimodal family of m-modal maps and give
the necessary and sufficient conditions for these families to
behave as a unimodal map, a bimodal map, up to a m modal
map. In Section 4, the conditions under a multimodal family
of maps can show transitivity are given and the analysis of
the fixed points is presented, as well. In Section 5, numerical
examples are given through a trimodal map. Finally, in the
last Section 6 conclusions are given.

2. m-Modal Maps

Let (I, d) be the compact metric space I � [0, 1] endowed
with the Euclidean metric. It is given the next definition:

Definition 1. Let S and f be an interval and a function,
respectively, such that S ⊂ I and f ∈ C(S, I). If there exists
an xc ∈ S such that for all x ∈ S we have that f|x<xc

is strictly
increasing and f|xc < x is strictly decreasing then f is called a
unimodal map on S.

Logistic map and tent map are examples of unimodal
maps (I � S). A bimodal map can be defined by considering
I � S1 ∪ S2, S1 ∩ S2 � ∅, such that the map f is a unimodal
map in each interval S1 ⊂ I and S2 ⊂ I. +erefore, there is a
map with twomodals on I, called a bimodal map on I. In this
way, it is possible to generalize to an arbitrary number of
modals to get a m-modal map based on a unimodal map.+e
interest of this work is to build piecewise functions to
generate m-modal maps based on a unimodal map. Par-
ticularly in this work, the logistic map is used, which is given
as follows:

fc(x) � c(β − x)(x − α), withx ∈ S � [α, β] ⊂ I, (2)

where x is the state variable; c ∈ R is a bifurcation pa-
rameter, and α, β are fixed arbitrary parameters with re-
stricted values 0≤ α< β≤ 1. +e first and second derivatives
of fc are fc

′ � c(−2x + α + β) and fc
″ � −2c, respectively,

then fc is continuous for all x ∈ R and has a local maximum
or a local minimum at xc � (α + β)/2, (fc

′(xc) � 0), for
c≠ 0.+erefore, to get a unimodal map on the interval (α, β)

based on the logistic map, it is necessary to consider
c> 0(c ∈ R+).

In the case of m-modal maps based on a unimodal map,
the interval I is divided into multiple subintervals, where
each subinterval contains its own maximum, and every
subinterval can have the same or different length. Let us
consider a partition of the interval I as follows:

Definition 2. LetΠ be a partition of I which is determined by
a finite sequence ζ i 

m

i�0, with m ∈ N\ 1{ },such that
ζ0 � 0< ζ1 < · · · < ζm � 1:

Π � S1 � [ζ0, ζ1], S2 � (ζ1, ζ2], . . . , Sm−1 � (ζm−2, ζm−1], Sm � (ζm−1, ζm] . (3)
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If there exists at least a pair of subintervals Si and Sj, with
i≠ j, such that σi ≠ σj, where σi � d(ζ i−1, ζ i) is the diameter
of Si, with i, j ∈ 1, 2, . . . , m{ }, then the partition on I is called
nonuniform. In the contrary case, the partition on I is called
uniform.

To illustrate the above definition, it is given the following
example.

Example 1. Consider the following sequence of points on I,
ζ i 

3
i�0 � 0, 1/2, 2/3, 1{ }, we have ζ0 � 0< ζ1 � 1/2< ζ2 �

2/3< ζ3 � 1 which determine the partition of I,
Π � [0, 1/2]t, n(q1/2, 2/3h],x(72/3, 1] , where
σ1 � 1/2≠ σ2 � 1/6≠ σ3 � 1/3, therefore, the partition is
nonuniform.

Now, a m-modal map is defined based on m unimodal
maps as follows.

Definition 3. Let g ∈ C(I, R) and Π � S1, . . . , Sm  be a map
and a partition on I with m ∈ N 1{ },respectively. If the map g

is unimodal on each Si ∈ Π, with i � 1, . . . , m, then it is
called m-modal map.

Now, we construct a m-modal map based on the
unimodal maps given by Equation (2), which are defined
on all subintervals Si of the partition Π of I. To determine
the piecewise function that defines the m-modal map, we
start by giving the sequence of points
ζ i 

m
i�0 � ζ0, ζ1, ζ2, . . . , ζm , which determine a partition Π

on I. +erefore, the continuous piecewise function is
defined as follows:

hc(x) � c

ζ1 − x(  x − ζ0( , for ζ0 ≤ x≤ ζ1;

ζ2 − x(  x − ζ1( , for ζ1 < x≤ ζ2;

⋮ ⋮

ζm − x(  x − ζm−1( , for ζm−1 <x≤ ζm.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Equation (4) defines a map with m modals, where c is
the bifurcation parameter. Recall that the modal of each
subinterval Si is given by x(i)

c � (ζ i−1 + ζ i)/2, for
i � 1, . . . , m. +en, the local maximum of the map (4) is
given by h(x(i)

c ) � (c/4)σ2i ,in each Si. In the case that the
partition Π on I is uniform, each σi � 1/m with
i ∈ 1, 2, . . . , m{ } and the local maximum of each unimodal
map in Equation (4) is the same given by c/(4m2).But if Π
is nonuniform, then there exists at least a pair of sub-
intervals Si with different diameter σi ≠ σj; therefore, for a
given value of c, the m-modal map (4) presents multiple
local maximums h(x(i)

c )≠ h(x
(j)
c ). Notice that the local

maximums are determined by the parameter c and the
diameter σi of each subinterval Si. +e interest is to control
the local maximums independently of each σi, so a new
parameter ρi is considered in Equation (4). To avoid the
effect of the parameter σi to determine the local maxi-
mum, then we consider ρi/σ2i in each piece of the m-modal
map (4). A m-modal map is given as follows:

gc(x) � c

ρ1
σ21

ζ1 − x(  x − ζ0( , for ζ0 ≤ x≤ ζ1;

ρ2
σ22

ζ2 − x(  x − ζ1( , for ζ1 < x≤ ζ2;

⋮ ⋮

ρm

σ2m
ζm − x(  x − ζm−1( , for ζm−1 <x≤ ζm;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(5)

where ρi > 0, with i � 1, . . . , m, are arbitrary fixed parameters
but restricted to gc: ∪ k

i�1Si⟶ ∪ k
i�1Si, for 1≤ k≤m, for all

c ∈ (0, 4].

Lemma 1. Maximum ρ -value: Consider a m-modal map
given by (5). If g4: I⟶ I, then at least one ρi � 1 and the
others ρi ∈ (0, 1], with i � 1, . . . , m.

Proof. For c � 4, the local maximums are given by
ρ1, ρ2, . . . , ρm. Because g4: I⟶ I then at least one ρi � 1
and none of them is greater than 1. If the ρ’s are different
ρ1 ≠ ρ2 ≠ · · · ≠ ρm, then only one ρi � 1 and the others
ρi ∈ (0, 1), with i � 1, . . . , m. If all ρ’s are not different then
this allows the possibility of having more ρ′s � 1. However,
they can be always ordered as ρj1

≤ ρj2
≤ · · · ≤ ρjm−1

≤ ρjm
,

with j1, j2, . . . , jm � 1, 2, . . . , m. +is configuration allows to
have at least one ρi � 1, and the others ρi ∈ (0, 1]. +e proof
is completed. □

3. Multimodal Family of m-Modal Maps

One of the main contributions of this work is the definition
of the multimodal family of m-modal maps. However, we
are also interested in those families of m-modal maps that
are able to behave like a unimodal map, a bimodal map, etc.,
up to a m-modal map according to the bifurcation pa-
rameter c. In other words, these monoparametric families gc

behave like a k-modal map, with k � 1, . . . , m, if it is possible
to choose the appropriate values c1, c2, . . . , cm for the bi-
furcation parameter c which makes gck

behaves like a
unimodal map, a bimodal map, up to a m-modal map,
respectively. +e property is that ∪ k

i�1Si ⊂ I will be invariant
under each gck

such that arbitrary length orbits could be
calculated from iterating any initial value x0 ∈ I, i.e., for each
ck, the interval [0, ζk] would be invariant under gck

.

Definition 4. Let gck
∈ C(I, R) be a continuous m-modal

map given by (5), where m ∈ N\ 1{ },if there exist m different
values for the bifurcation parameter
c ∈ c1, c2, . . . , cm−1, cm  such that they fulfill

(i) gck
: [0, ζk]⟶ [0, ζk] is surjective, with

k � 1, . . . , m.

Complexity 3



+e monoparametric family gck
 

m

k�1 is called multi-
modal family of m-modal maps.

+e above definition allows us to see that to obtain a
multimodal family, parameter values of ζ i 

m

i�0, and ρi 
m

i�1
should determine the existence of parameters ck. So, in the
next theorem, necessary and sufficient conditions are given
to construct multimodal families by using m-modal maps.
Considering that for c � 4, gc is surjective on I.

Theorem 1 (configurations). Let gc(x) be a m-modal map
given by equation (5) on I with c � 4. <ere exist control
parameter values c1, c2, . . . , cm  such that the family
gck

 
m

k�1 is a multimodal family of m-modal map if and only
if:

ζ1
ρ1
≠

ζ2
max

i≤2
ρi

≠ · · · ≠
ζm−1

max
i≤m−1

ρi

, (6)

and for every j ∈ 1, 2, . . . , m − 1{ }:

ζj

max
i≤j

ρi

< 1. (7)

Proof. (⇐) We have that g4 is a m-modal map and is
sujerctive on I and suppose that conditions given by
equations (6) and (7) are fulfilled; it must be proved that
there exist m different control parameter values
c1, c2, . . . , cm, such that gci

: [0, ζ i]⟶ [0, ζ i] are surjective,
i.e., gci

(I)⊆I, where i ∈ 1, 2, . . . , m{ } .
As g4 is a m-modal map function given by (5), then each

subinterval of the partitionΠ � S1, S2, . . . , Sm  on I satisfies
that g4(ζ i) � 0, g4(x(i)

c ) � ρi and ρi > 0, due to they are local
maximums. According to Corollary 1, as g4 is surjective on I

there exists at least a local maximum ρi � 1 and it is also
satisfied that every ρi ≤ 1.

+e local maximum under gc on each subinterval ofΠ is
given by

gc x
(i)
c  � ρi

c

4
. (8)

+us, when gc is restricted to the interval Jk � [0, ζk],
then there are k local maximums ρ1c/4 , ρ2c/4, · · ·, ρkc/4,
with k � 1, . . . , m. Since for each local maximum, the pa-
rameter value of c is the same, i.e., it is a constant, then the
maximum value of gc restricted to the interval Jk � [0, ζk] is

max
x∈Jk

gc(x) �
c

4
max
j≤k

ρj. (9)

We are finding a parameter value ck ∈ (0, 4) such that
max
x∈Jk

gck
(x) � ζk. Doing some algebra, it results that

ck � 4
ζk

max
j≤k

ρj

. (10)

Due to (7), ck < 4, for k ∈ 1, 2, . . . , m − 1{ }, and the local
maximum of gck

on Jk � [0, ζk] is

max
x∈Jk

gck
(x) �

4
max
j≤k

ρj

max
j≤k

ρj

4
ζk � ζk. (11)

As gck
is continuous on Jk then it is satisfied gck

is
surjective on Jk � [0, ζk]; besides, as k is arbitrary then there
exist m control parameters ck such that
gck

: [0, ζk]⟶ [0, ζk] are surjective, with k � 1, . . . , m. By
equations (10) and (6) we have:

c1 � 4
ζ1
ρ1
≠ c2 � 4

ζ2
max
j≤2

ρj

≠ · · · ≠ cm−1 � 4
ζm−1

max
j≤m−1

ρj

≠ cm � 4,

(12)

so ci ≠ cj for all i≠ j.+en there arem different values for the
bifurcation parameter c: c1 ≠ c2 ≠ · · · ≠ cm−1 ≠ cm and I is
invariant under each gck

where (k � 1, 2, . . . , m); therefore
the family gck

  is a multimodal family of a m-modal
maps.(⇒)

Now, we have that gc 
m

k�1, for c ∈ (0, 4], is a multimodal
family of m-modal maps given by (5), so g4 is surjective on I

and there exists ck such that gck
: [0, ζk]⟶ [0, ζk], for

k � 1, . . . , m. We need to prove that the existence of ck

implies that equations (6) and (7) are fulfilled.
We know that for each ck there are k local maximums at

gck
(x(1)

c ) � ρ1ck/4, gck
(x(2)

c ) � ρ2ck/4, · · ·,
gck

(x(k)
c ) � ρkck/4. Because gck

is surjective on Jk, then it is
satisfied that max

x∈Ji

gck
(x) � ζk. As a consequence

ρick/4≤ ζk(i ∈ 1, 2, . . . , k{ }) and max
j≤k

ρjck/4 � ζk. So the
control parameter value is given by ck � 4ζk/max

j≤k
ρj, then

ck/4 � ζk/max
j≤k

ρj. We also know that there are m different
values of c: c1 ≠ c2 ≠ . . . ≠ cm−1 ≠ cm. Since dividing the c

values by four does not affect the inequalities, then the
condition (6) is fulfilled.

ζ i

max
l≤i

ρl

≠
ζj

max
l≤j

ρl

. (13)

Due to ck ∈ (0, 4), for k � 1, . . . , m − 1 and cm � 4, then
ck < cm, for k � 1, . . . , m − 1. So ck/4< cm/4 � 1, therefore

ζj

max
i≤j

ρi

< 1, (14)

which fulfills equation (7) and the proof is
completed. □

Example 2. As an example, it is selected
ζ i 

3
i�0 � 0, 0.2, 0.6, 1{ } and ρi 

3
i�1 � 1, 0.7, 0.6{ } which de-

termine a nonuniform partition of I and the local maximum
for each subinterval Si 

3
i�1. With the aforementioned pa-

rameters, a trimodal map is defined by (5) as follows:

gck
(x) � ck

25(0.2 − x)(x − 0), for 0≤ x≤ 0.2;

4.375(0.6 − x)(x − 0.2), for 0.2<x≤ 0.6;

3.75(1 − x)(x − 0.6), for 0.6<x≤ 1;

⎧⎪⎪⎨

⎪⎪⎩
,

(15)
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because maxj≤3ρi � 1, then the trimodal map g4 is
surjective on I. Besides, it is easy to check that the trimodal
map given by (15) fulfills the equation (6) and (7) of+eorem
1; thus there exist control parameters that satisfy Definition
4 by calculating them with (10) results in c1 � 0.8, c2 � 2.4,
and c3 � 4. +erefore, gc given by (15) is a multimodal
family comprises by a unimodal map, bimodal map and
trimodal map, i.e., g0.8: [0, 0.2]⟶ [0, 0.2] defines a uni-
modal map, g2.4: [0, 0.6]⟶ [0, 0.6] defines a bimodal
map, and g4: I⟶ I defines a trimodal map. It is worth
mentioning that the trimodal map does not have a chaotic
behavior for all the considered values of c’s. +e Lyapunov
exponents are 0.6931, -1.0312, and 1.1162 for c1 � 0.8,
c2 � 2.4, and c3 � 4, respectively. Note that for c2 � 2.4 the
Lyapunov exponent is -1.0312, then the orbits converge at a
fixed point. +e interest is to consider multimodal families
with chaotic behavior for all considered values of c’s.
+erefore, we need to consider values of c such that the
multimodal families present unstable fixed points.

Corollary 1 (uniform partition). Let gc(x) be a m-modal
map given by equation (5) on I with c � 4, uniform partition
Π, and ρ1 � ρ2 � · · · � ρm. <en there exist control parameter
values c1, c2, . . . , cm  such that the family gck

 
m

k�1 is a
multimodal family of m m-modal map.

Proof. +is corollary is a direct consequence of +eorem
1. □

4. Dynamics of the Multimodal Family of
m-Modal Maps

Once the necessary and sufficient conditions to choose a
multimodal family of m-modal maps are given, the next step
is to analyze the dynamics of each m-modal map of a family.
As the interest of this work is to develop chaotic behavior,
the m-modal maps must display chaotic behavior in all of its
members of the family. In this section, the necessary and
sufficient conditions are given to avoid only regular motion
and obtain a multimodal family of chaotic maps.

4.1. Fixed Points Analysis. It is well known that there exist
orbits of maps which dynamics are not useful to create
chaotic behaviour, so it is better to avoid them. For example,
when a map convergences asymptotically to a stable fixed
point, it generates a time series without fluctuations, useless
to produce chaotic behavior.

To avoid the existence of multimodal families with stable
fixed points, it is made a local stability analysis and the result
is given in the following theorem.

Theorem 2 (stable fixed points). Let gc(x) be a m-modal
map given by equation (5) on I if the following interval exists

Υj �
ζj−1 + ζj + 2

�����
ζj−1ζj



ρj

,
ζj−1 + ζj + 2

���������

σ2j + ζj−1ζj



ρj

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(16)

and cj ∈ Υj, then two fixed points of system (5) exist in each
subinterval [ζj−1, ζj] and at least one is stable.

Proof. We start by calculating the fixed points of a multi-
modal family with m maps gcj

 
m

j�1
, then the following

equation is solved

xn+1 � gcj
xn(  � xn, forxn ∈ I, (17)

where gck
is a multimodal map given by (5) and defined in m

intervals S1 � [ζ0, ζ1], S2 � (ζ1, ζ2], . . ., Sm � (ζm−1, ζm]. +e
fixed points are calculated by the following equation

cj

ρj

σ2j
ζj − xn  xn − ζj−1  � xn, forxn ∈ Sj, (18)

where j ∈ 1, 2, . . . , m{ }. Each part of the function must have
a maximum of two fixed points; thus an m-modal map must
have a maximum of 2m fixed points. +e fixed points are
given as follows:

x
(j)

L,R �
σ2j − cjρj ζj + ζj−1  ± σj

�����������������������

c
2
jρ

2
j − 2cjρj ζj + ζj−1  + σ2j



−2cjρj

.

(19)

+ere are two fixed points if the discriminant is positive.
ck > 0 for each mutimodal family, thus the fixed points exist
if the following inequality is fulfills:

ck >
ζj−1 + ζj + 2

�����
ζj−1ζj



ρj

. (20)

Now, we need to prove that at least one of the fixed
points is stable. In our case x

(j)
R is stable if |gcj

′(x
(j)
R )|< 1 for

gc defined in Sj which is satisfied when

ck ∈
ζj−1 + ζj + 2

�����
ζj−1ζj



ρj

,
ζj−1 + ζj + 2

���������

σ2j + ζj−1ζj



ρj

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(21)

+e proof is completed.
+e inequality (20) warranties the existence of two fixed

points in each interval Si, with i � 1, . . . , m. However, when
gcj

domain is restricted to the interval S1 � [ζ0 � 0, ζ1], there
always exists the fixed point x

(1)
L � 0 which is asymptotically

stable when the condition |gc1
′(x

(1)
L )|< 1 is fulfilled.

gc1
′(0)



 � −2ck

ρ1
σ21

(0) + ck

ρ1
σ21

ζ0 + ζ1( 




� ck

ρ1
ζ1




< 1. (22)

+is results in c1 ∈ (0, ζ1/ρ1), then x
(1)
L � 0 is asymp-

totically stable and is unique.When ck > ζ1/ρ1 there exist two
fixed points and the second fixed point is given by

x
(1)
R �

c1ζ1ρ1 − ζ21
c1ρ1

. (23)

+is fixed point x
(1)
R is asymptotically stable always that

c1 ∈ (ζ1/ρ1, 3ζ1/ρ1) is fulfilled, according to (21). □
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Definition 5. +e set Υ is given by the union of the intervals
[0, ζ1/ρ1] andΥj, ifΥj exists.+us,Υ is called the stable set of
c parameter values.

+erefore, if c ∈ Υ, then the m-modal map gc(x) given
by (5) on I presents at least one stable fixed point.

Definition 6. +e set Υ∗ � [0, 4] − Υ is called the set of c

parameter values such that the m-modal map gc(x) given by
Equation (5) on I presents unstable fixed points, where Υ is
the closure of Υ.

If any ck of the multimodal family gc1
, gc2

, . . . , gcm
 

belongs to the set Υ, then the data series from the multi-
modal map are useless to generate chaotic behaviour.

4.2. Transitivity. One of the important characteristics of
dynamical systems is the transitivity property, which de-
scribes that given any open subsets U1, U2 ∈ X, there exists
an x0 ∈ U1, and n> 0, such that fn(x0) ∈ U2. It is worth to
mention that +eorem 1 only states the parameters useful to
get a multimodal family of maps, but these maps could be
non-transitive. Now, it is important to establish the nec-
essary conditions to obtain the transitivity property for each
map of a multimodal family gck

 
m

k�1 on the interval
J � [0, ζk], after the parameter values ζ i and ρi are selected,
so the transitivity is warrantied by the next proposition:

Theorem 3. Let gck
 

m

k�1 be a multimodal family of m-modal
maps given by equation (5) on I, with ck ∈ Υ∗. <en the
multimodal family of m-modal maps is transitive for
c1, . . . , cm. If any of the following cases occur:

(a)

gck
x

(1)
c  � gck

x
(2)
c  � · · · � gck

x
(m)
c , with k � 1, . . . , m.

(24)

(b)

gck
x

(1)
c >gck

x
(2)
c > . . . >gck

x
(m)
c , with k � 1, . . . , m.

(25)

and x
(j)
L >g2

ck
(x

(j)
c ) for all j � 2, . . . , m, if there exist x

(j)
L and

gck
(x

(j)
c ) in the Sj interval.

(c)

gck
x

(1)
c <gck

x
(2)
c < . . . <gck

x
(m)
c , with k � 1, . . . , m.

(26)

and the following inequality is always preserved

gck
x

(j)
c >x

(j+1)
L , for j � 1, . . . , m − 1, (27)

where x
(j)
c and x

(j)
L are the critical point and the left fixed

point in the j-th interval, with j � 1, . . . , m, and x
(j+1)
L is the

fixed point in the Sj+1 interval.

Proof. See appendix A.
If the m-modal map presents combined modals, i.e.,
gck

(x
(j)
c )>gck

(x
(j+1)
c )<gck

(x
(j+2)
c ), with

j � 1, . . . , m − 2, then +eorem 3 (b) and (c) needs to be
checked. □

Example 3. Analysis of an example of transitivity of mul-
timodal maps. Specifically, the aim is to design a trimodal
family of transitive maps gci

 
3
i�1, such that +eorem 3 (c) is

fulfilled. +erefore, the parameter m � 3 determines that the
interval I is partitioned in three subintervals. Arbitrarily, we
propose the following parameters to generate the partition:
ζ i 

3
i�0 � 0, 1/4, 1/2, 1{ }. We also know that

gc3
(x(1)

c )<gc3
(x(2)

c )<gc3
(x(3)

c ) � 1, then ρ3 � 1 and
ρ3/σ23 � 4. +erefore, gc3

(xn) is defined in the subinterval
(0.5, 1] as follows:

xn+1 � ck · 4 1 − xn(  xn − 0.50( , (28)

the fixed points x
(3)
L and x

(3)
R are given by 0.5899 and 0.8475,

respectively. Accordingly +eorem 3 c)0.5899<ρ2< 1, so we
set ρ2 � 0.7 that generates ρ2/σ22 � 11.2. Now gc3

(xn) is
defined in the subinterval (0.25, 0.5] as follows:

xn+1 � ck · 11.2 0.5 − xn(  xn − 0.25( , (29)

the fixed points x
(2)
L and x

(2)
R are given by 0.2779 and 0.4497,

respectively.+en 0.2779<ρ1< 0.7, so ρ1 � 0.5 and ρ1/σ22 � 8.
+erefore, gc3

(xn) is defined in the subinterval [0, 0.25] as
follows:

xn+1 � ck · 8 0.25 − xn(  xn − 0( , (30)

the fixed points x
(2)
L and x

(2)
R are given by 0 and 0.2187,

respectively. +erefore, ρi 
3
i�1 � 0.5, 0.7, 1{ } forms a tri-

modal map given as follows:

xn+1 � gck
xn(  � ck

8 0.25 − xn( xn, for 0≤ xn ≤ 0.25;

11.2 0.50 − xn(  xn − 0.25( , for 0.25< xn ≤ 0.50;

4 1 − xn(  xn − 0.50( , for 0.50< xn ≤ 1.

⎧⎪⎪⎨

⎪⎪⎩
(31)

Due to max
i≤3

ρi � 1, ζ1/ρ1 � 0.5< ζ2/max
j≤2

ρi � 0.7143< 1,
conditions of+eorem 1 are fulfilled, then there exist control
parameter values that form a multimodal family which are

c1 � 2, c2 � 2.8571 and c3 � 4, see Figure 1. Meanwhile fixed
points and maximum values of this family of multimodal
maps g2, g2.857 1, and g4 are shown in Table 1.+e cobweb
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diagrams of the maps: gc3�4: I⟶ I, see Figure 1(a);
gc2�2.8571: [0, 0.5]⟶ [0, 0.5], see Figure 1(b); and
gc1�2: [0, 0.25]⟶ [0, 0.25] (see Figure 1(c)), using the (31)
with x0 � 0.05. +ese maps gci

are surjective on Ji � [0, ζ i],
with i � 1, 2, 3; besides, these maps fulfill theorem (3). +en
maps gc1

, gc2
and gc3

are transitive on [0, ζ1], [0, ζ2] and I,
respectively, as is shown in Figure 1. Figure 2 shows the
bifurcation diagram where it is possible to observe that
period 2 is a route to chaos because the family is based on the
logistic map.

+e Lyapunov exponents of these sequences are 0.6932,
1.0127 and 1.3374 for c1 � 2, c2 � 2.85, and c3 � 4, re-
spectively. +en, the family composed of a unimodal map, a
bimodal map, and a trimodal map is given by (31) exhibits
chaotic behavior.

Example 4. Analysis of a non-transitivity example, we define
a multimodal family with the following parameters: m � 3,
ζ i 

3
i�0 � 0, 1/4, 1/2, 1{ }. ρi 

3
i�1 � 0.26, 0.51, 1{ }, which form a

trimodal map given as follows:

xn+1 � gck
xn(  � ck

4.16 0.25 − xn( xn, for 0≤ xn ≤ 0.25;

8.16 0.50 − xn(  xn − 0.25( , for 0.25< xn ≤ 0.50;

4 1 − xn(  xn − 0.50( , for 0.50< xn ≤ 1.

⎧⎪⎪⎨

⎪⎪⎩
(32)

Notice that the values of ρi 
3
i�1 do not fulfill +eorem 3

(c), only the conditions of +eorem 1 are fulfilled,
max

i≤3
ρi � 1, ζ1/ρ1 � 0.9615< ζ2/max

j≤2
ρi � 0.9804< 1. +en

there exist control parameter values that form a multimodal

family which are c1 � 3.8462, c2 � 3.9216 and c3 � 4, see
Figure 3(a)–3(c)), respectively. Meanwhile, fixed points and
maximum values of this family of multimodal family gci

 
3
i�1

are shown in Table 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

xn

x n
+1

(a)

0

0.5

1

x n
+1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xn

(b)

0

0.5

1

x n
+1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
xn

(c)

Figure 1: Cobweb diagram of the maps: (a)gc3�4: I⟶ I, (b)gc2�2.8571: [0, 0.5]⟶ [0, 0.5] and (c)gc1�2: [0, 0.25]⟶ [0, 0.25], using
equation (31) with x0 � 0.05 which a long evolution covers completely the intervals I, [0, ζ2] and [0, ζ1], for c3, c2, c1, respectively.

Table 1: Maximum values and fixed points of the multimodal family gck
 

3
k�1, for c1 � 2, c2 � 2.85, and c3 � 4.

k gck
(x(1)

c ) gck
(x(2)

c ) gck
(x(3)

c ) x
(1)
L,R x

(2)
L,R x

(3)
L,R

1 0.25 0.35 0.5 0, 0.1875 −, − −, −

2 0.3563 0.5 0.7143 0, 0.2062 0.2949, 0.4238 −, −

3 0.5 0.7 1 0, 0.2187 0.2779, 0.4497 0.5899, 0.8475

1

0.8

0.6

0.4

0.2

0

X n

0 1 2 3 4
γk

Figure 2: Bifurcation diagram of system (31).
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Each map gci
  is surjective on Ji � [0, ζ i], with

i � 1, 2, 3; however, all of them are not transitive because
+eorem 3 is not fulfilled. +en the maps gc2

, gc3
are not

transitive on [0, ζ2] and I, respectively. Only the map gc1
is

transitive, see Figure 3(c).
Figure 4 shows the bifurcation diagram of system (32),

where it is possible to observe that this bifurcation diagram
resembles the bifurcation diagram of the logistic map. It is
worth mentioning that the initial condition used to compute
the bifurcation diagram is x0 � 0.3. Multistability was nu-
merically observed for this system, however, multistability is
not addressed in this work because it is off target.

5. Numerical Example of Trimodal Family

Now, in this Section 5 we use the developed theory of this
class of discrete maps to create a trimodal family which is
comprised by a unimodal map, a bimodal map and a tri-
modal map. Consequently, a procedure to construct mul-
timodal family of maps is given and a numerical example is
also provided as follows: Select m parameters to generate a
partition of the interval I, (ζ i < )

m
i�0 (where

ζ0 � 0< ζ1 · · · < ζm � 1). Set the parameter values ρi 
m

i�1
taking into account that +eorems 1 and 3 are fulfilled, and
select the control parameters ck outside the regions where
there exists asymptotically stable fixed points.

Example 5. Now, we give an example using the afore-
mentioned steps to design a multimodal family based on a

unimodal map, bimodal map, and a trimodal map. So m � 3,
and we select ζ{ }

3
i�0 � 0, 1/5, 1/2, 1{ }.

We want that gc3
(x(1)

c )>gc3
(x(2)

c )<gc3
(x(3)

c ), but
gc3

(x(1)
c )>gc3

(x(3)
c ), then ρ1 � 1 and ρ1/σ21 � 25. +erefore,

we define gc3
(xn) in the subinterval (0, 1/5] as follows:

xn+1 � ck · 25 1/5 − xn(  xn − 0( . (33)

+e fixed points x
(1)
L and x

(1)
R are given by 0 and 0.1900,

respectively. Because ρ1 � 1 and ζ1 ≠ ζ2 ≠ ζ3, then +eorem1
is fulfilled. We have gc3

(x(1)
c )>gc3

(x(2)
c ) then ρ1 � 1> ρ2, so

we set ρ2 � 0.91 that generates ρ2/σ22 � 10.1111. +erefore,
we have that gc3

(xn) is defined in the subinterval (1/5, 1/2]

as follows:

xn+1 � ck · 10.1111 1/2 − xn(  xn − 1/5( . (34)

+e fixed points x
(2)
L and x

(2)
R are given by 0.2193, and

0.4560, respectively. Due to g2
4(x(2)

c ) ∉ S2 then+eorem 3 b)
is fulfilled. Now we want that ρ2 < ρ3 < 1, so we set ρ3 � 0.95
and ρ3/σ23 � 3.8. +erefore, gc3

(xn) is defined in the sub-
interval [1/2, 1] as follows:

xn+1 � ck · 3.8 1 − xn(  xn − 1/2( , (35)

the fixed points x
(3)
L and x

(3)
R are given by 0.5978 and 0.8364,

respectively. Because g2
4(x(3)

c ) � 0.3420< x
(3)
L � 0.5978 and

x
(3)
L <g4(x(2)

c ) then +eorem 3 b) and c) is fulfilled. So
ρi 

3
i�1 � 1, 0.91, 0.95{ } is given and determine different
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0
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1
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xn

x n
+1

(c)

Figure 3: Cobweb diagrams of the maps gci
 

3
i�1 given by equation (32) with x0 � 0.9 for: (a)c3 � 4, (b)c2 � 3.9216 and (c)c1 � 3.8462.

Table 2: Maximum values and fixed points of the multimodal
family gck

 
3
k�1, for c1 � 3.846, c2 � 3.922, and c3 � 4.

k gck
(x(1)

c ) gck
(x(2)

c ) gck
(x(3)

c ) x
(1)
L,R x

(2)
L,R x

(3)
L,R

1 0.25 0.49 0.962 0,
0.188

0.296,
0.422

0.596,
0.839

2 0.255 0.5 0.98 0,
0.189

0.295,
0.424

0.593,
0.843

3 0.26 0.51 1 0, 0.19 0.294,
0.426

0.59,
0.848

0.3

0.2

-0.1

0

x n

γk
0 1 2 3 4

Figure 4: Bifurcation diagram of system (32) by using x0 � 0.3.
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modal values for a not uniform partition on I. +us ζ{ }
3
i�0

and ρi 
3
i�1 define a trimodal map as follows:

xn+1 � gck
xn(  � ck

25 0.2 − xn(  xn − 0( , for 0≤ xn ≤ 0.2;

10.1111 0.5 − xn(  xn − 0.2( , for 0.2 <xn ≤ 0.5;

3.8 1 − xn(  xn − 0.5( , for 0.5 < xn ≤ 1.

⎧⎪⎨

⎪⎩
(36)

+e control parameter values for amultimodal family are
c1 � 4ζ1 � 0.8, c2 � 4ζ2 � 2, c3 � 4. In Table 3, the maxi-
mum values and fixed points of the multimodal family
gck

 
3
k�1 are given. +e control parameter values where the

fixed points are asymptotically stable are given as follows

ck ∈ Υ � (0, 0.2)∪ (0.2, 0.6)∪ (1.4642, 1.7272)∪ (3.0676, 3.4022).

(37)

Since none of the control parameter values of the
multimodal family

gck
 

3
k�1 belongs to the above interval Υ, then there are

not asymptotic stable fixed points. Now, we only need to
verify transitivity for g2, because for the unimodal case g0.8

the map is transitive due to it is unimodal. For c � 2, we have
g2
2(x(2)

c ) � 0.2320<x
(2)
L � 0.2500, therefore +eorem 3 is

fulfilled. Figure 5 shows a cobweb diagrams under the map:
(a) xn+1 � gc1�0.8(xn), (b) xn+1 � gc2�2(xn), and (c)
xn+1 � gc3�4(xn).

Figure 6 shows three time series obtained from trimodal
map calculated with (36): (a) g0.8, (b) g2, and (c) g4, with
x0 � 0.127.

+emaps of the multimodal family are iterated up to one
million data are generated, where each datum (with 16
significant digits) is distributed in the interval (0, 1). Af-
terwards, the Lyapunov exponents of these sequences are
computed. For these numerical computation, more than
2000 initial values are employed for eachmap and, we do not

Table 3: +e maximum values and fixed points of the multimodal family gck
 

3
k�1, with c1 � 0.8, c2 � 2, and c3 � 4.

k gck
(x(1)

c ) gck
(x(2)

c ) gck
(x(3)

c ) x
(1)
L,R x

(2)
L,R x

(3)
L,R

1 0.2 0.18 0.19 0, 0.15 − −

2 0.5 0.45 0.475 0, 0.18 0.2491, 0.4015 −

3 1 0.91 0.95 0, 0.19 0.2193, 0.4560 0.5978, 0.8364
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Figure 5: Cobweb Diagrams obtained from trimodal family equation (36) for initial condition x0 � 0.127: (a)gc1�0.8(xn); (b)gc2�2(xn); and
(c)gc3�4(xn).
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find an orbit that has no positive Lyapunov exponent. +en
the family comprise by a unimodal map, a bimodal map, and
a trimodal map is given by (36) and exhibit chaotic behavior.

Figure 7 shows the bifurcation diagram of the system
given by (36), where it is possible to observe that this bi-
furcation diagram resembles the bifurcation diagram of the
logistic map. It is worthmentioning that the initial condition
used to compute the bifurcation diagram is x0 � 0.127.

In the literature, others piecewise multimodal maps
have been reported that show regular partition intervals
and use the same height for all modals. For example, in
reference [25] a multimodal map and its basin of at-
traction were presented, where all modals have the same
height and only numerical results were presented. Also in
[27] the authors derived analytic expressions for the
autocorrelation function and the auto-spectral density

function of chaotic signals generated by a multimodal
skew tent map and all modals with the same height.

6. Conclusions

In this work, the concept of multimodal family of m-modal
maps based on the logistic map was introduced, we also gave
the necessary and sufficient conditions to build amultimodal
family in regular and irregular intervals. +ese families can
display a unimodal map, bimodal map, up to m-modal map.
+e generation of a multimodal family of m-modal maps is
warranty by means of the transitivity property. Also the
stability of the fixed points was analyzed.

+is work could be continued in applications about
pseudo-random bit generators to use them in the devel-
opment of cryptographic systems.
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Figure 6: Time series obtained from trimodal map calculated with equation (36): (a)g0.8, (b)g2, and (c)g4, with x0 � 0.127.
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Figure 7: Bifurcation diagram of system (36) by using x0 � 0.127.
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Appendix

A. Transitivity

Proof (a). ⟹We need to prove that any open subsets
U1, U2 ∈ Jk, k � 1, . . . , m, there exists an x0 ∈ U1, and n> 0,
such that gn

ck
(x0) ∈ U2.

For the case k � 1, we have gc1
: J1⟶ J1, with J1 �

[0, ζ1] and the critical point x(1)
c ∈ J1 divides this interval in

two intervals J21 � [0, x(1)
c ] and J22 � [x(1)

c , ζ1]. +erefore,
we have gc1

: J21⟶ J1 and gc1
: J22⟶ J1. +en there are

two points τ21 and τ22, g2
c1

(τ21) � g2
c1

(τ22) � ζ1, that divide
the intervals J21 and J22, respectively, such that
g2

c1
: J31⟶ J1, g2

c1
: J32⟶ J1, g2

c1
: J33⟶ J1, and

g2
c1

: J34⟶ J1, with J31 � [0, τ21], J32 � [τ21, x(1)
c ],

J34 � [x(1)
c , τ22], and J34 � [τ22, ζ1].

+e intervals J31, J32, J33 and J34 contain points
τ31, τ32, τ33, and τ34, respectively, such that
g3

c1
(τ31) � g3

c1
(τ32) � g3

c1
(τ33) � g3

c1
(τ34) � ζ1, and each

interval J3i, with i� 1,. . .,4, is divided into two, generating
eight subintervals J41, J42, . . . , J47, J48. Now we have that
each of these intervals are mapped by g3

c1
: J4i⟶ J1, with

i � 1, . . . , 23.
Notice that the points τ’s always exit in the intervals J’s.

We can continue up to any of the intervals
J(n+1)1, J(n+1)2, . . . , J(n+1)(2n−1), J(n+1)(2n) is contained in U1.
Suppose that the interval J(n+1)i is contained in U1, then this
interval J(n+1)i is mapped to the whole interval J1,
gn

c1
: J(n+1)i⟶ J1, with i � 1, . . . , 2n. +is implies that there

exists an x0 ∈ U1, and n> 0, such that gn
c1

(x0) ∈ U2. +e
dynamical system gc1

is transitive.
For the case k � 2, there are two critical points in

J2 � [0, ζ2] � Si ∪ S2, i.e., x(1)
c ∈ S1 � [0, ζ1] and

x(2)
c ∈ S2 � (ζ1, ζ2], and gc2

: J2⟶ J2. +e critical points
x(1)

c and x(2)
c divide these intervals into intervals

J21 � [0, x(1)
c ], J22 � [x(1)

c , ζ1], J23 � [ζ1, x(2)
c ], and

J24 � [x(2)
c , ζ2], such that gc2

: J2i⟶ J2, with i � 1, . . . , 4,
then there are four points τ2i, with i � 1, . . . , 4 that divide the
intervals J2i, respectively, such that g2

c2
: J3i⟶ J1, with

i � 1, . . . , 8, with J31 � [0, τ21], J32 � [τ21, x(1)
c ], J34

� [x(1)
c , τ22], J34 � [τ22, ζ1]. J35 � [ζ1, τ23], J36 � [τ23, x(2)

c ],

J37 � [x(2)
c , τ24], J38 � [τ24, ζ2].

Now, the intervals J3i, with i � 1, . . . , 8, contain points
τ3i, with i � 1, . . . , 8, respectively, such that each interval is
divided into two, generating sixteen subintervals J4i, with
i � 1, . . . , 16. Now we have that each of these intervals maps
g3

c1
: J4i⟶ J1, with i � 1, . . . , 24.
Notice that the points τ’s always exist in the intervals J’s.

We can continue up to any of the intervals
J(n+1)1, J(n+1)2, . . . , J(n+1)(2n+1−1), J(n+1)(2n+1) is contained in
U1. Suppose that the interval J(n+1)i is contained in U1, then
this interval J(n+1)i is mapped to the whole interval J1,
gn

c2
: J(n+1)i⟶ J1, with i � 1, . . . , 2n+1. +is implies that

there exists an x0 ∈ U1, and n> 0, such that gn
c2

(x0) ∈ U2.
+e dynamical system gc2

is transitive.
In general, for k � m, we have

gcm
: Jm � [0, ζm]⟶ [0, ζm] � I and there are m critical

points x(i)
c , with i � 1, . . . , m that divide the intervals Si, with

i � 1, . . . , m, into 2∗m intervals J2i such that gcm
: J2i⟶ I,

with i � 1, . . . , 2∗m. +erefore, there exist 2∗m τ’s that
divide the intervals J2i, with i � 1, . . . , 2∗m, into 22 ∗m

intervals J3i such that g2
cm

: J3i⟶ I, with i � 1, . . . , 22 ∗m.
+e points τ’s always exist into the intervals J’s. We can
continue up to any of the intervals J(n+1)i, with
i � 1, . . . , 2n ∗m, is contained in U1. Suppose that the in-
terval J(n+1)i is contained in U1, then this interval J(n+1)i is
mapped to the whole interval I, gn

cm
: J(n+1)i⟶ I, with

i � 1, . . . , 2n ∗m. +is implies that there exists an x0 ∈ U1,
and n> 0, such that gn

cm
(x0) ∈ U2.+e dynamical system gcm

is transitive for the case (a).
(b) ⇒
Weneed to prove that any open subsetsU1, U2 ∈ Jk, with

k � 1, . . . , m, there exists an x0 ∈ U1, and n> 0, such that
gn

ck
(x0) ∈ U2. For the case k � 1, we have gc1

: J1⟶ J1,
with J1 � [0, ζ1]. +is case is proved in the same way that the
previous case (a) for k � 1.

For the case k � 2, gc2
: J2⟶ J2, with J2 � [0, ζ2], and

there are two critical points x(1)
c ∈ S1 � [0, ζ1] and

x(2)
c ∈ S2 � (ζ1, ζ2], with gc2

(x(1)
c ) � ζ2 and gc2

(x(2)
c )< ζ2 .

+e critical points x(1)
c and x(2)

c divide the intervals S1 and S2,
respectively, into four intervals J21 � [0, x(1)

c ],
J22 � [x(1)

c , ζ1], J23 � [ζ1, x(2)
c ], J24 � [x(2)

c , ζ2]. +erefore,
we have gc2

: J2i⟶ J2, with i � 1, 2, and
gc2

: J2i⟶ [0, gc2
(x(2)

c )] ⊂ J2, with i � 3, 4. Firstly, we
analyze the cases i � 1, 2, and later cases i � 3, 4.

For i � 1, 2, there are τ21 ∈ J21 and τ22 ∈ J22 such that
g2

c2
(τ21) � g2

c2
(τ22) � ζ2. +en it is possible to generate four

intervals J31 � [0, τ21], J32 � [τ21, x(1)
c ], J33 � [x(1)

c , τ22], and
J34 � [τ22, ζ1]. Each of these intervals fulfills g2

c2
: J3i⟶ J2,

with i � 1, . . . , 4. +is implies that there are τ3i ∈ J3i such
that g3

c2
(τ3i) � ζ2, with i � 1, . . . , 23. +en it is possible to

generate eight (23) intervals J4i such that g3
c2

: J4i⟶ J2,
with i � 1, . . . , 23. Once again, the τ’s always exist because we
have that each of the (2n) intervals J(n+1)i fulfills
gn

c2
: J(n+1)i⟶ J2, with i � 1, . . . , 2n. +e refinement of the

intervals continues up to any of the intervals J(n+1)i is
contained in U1 ⊂ S1. Suppose that the interval J(n+1)i is
contained in U1, then this interval J(n+1)i is mapped to the
whole interval J2, gn

c2
: J(n+1)i⟶ J2, with i � 1, . . . , 2n. +is

implies that there exists an x0 ∈ U1 ⊂ S1, and n> 0, such that
gn

c2
(x0) ∈ U2 ⊂ J2.
For the cases i � 3, 4, gc2

: J2i⟶ [0, gc2
(x(2)

c )]. +ere
are three cases: gc2

(x(2)
c )≤ ζ1 < x(2)

c ; ζ1 <gc2
(x(2)

c )<x(2)
c ; and

x(2)
c <gc2

(x(2)
c )< ζ2.

For the first case, if gc2
(x(2)

c )≤ ζ1, then
gc2

: S2⟶ [0, gc2
(x(2)

c )]⊆S1. We know that there exist 2n− 1

intervals J(n)i ∈ S1, with i � 1, . . . , 2n− 1, such that each in-
terval fulfills gn−1

c2
: J(n)i⟶ J2. If n⟶∞, then the di-

ameter of each interval J(n)i⟶ 0 and each of these intervals
has four preimages g−1

c2
(J(n)i) ⊂ J2. Two in S1 and two in S2.

So, if J(n+1)i � g−1
c2

(J(n)i) ∈ U1 ⊂ S2 then gn
c2

: J(n+1)i⟶ J2.
+is implies that there exists an x0 ∈ U1 ⊂ S2, and n> 0, such
that gn

c2
(x0) ∈ U2 ⊂ J2. +erefore, gc2

(x0) is transitive in J2
for x0 ∈ S2. • +e second case ζ1 <gc2

(x(2)
c )< x(2)

c . +ere are
points κ1, κ2 ∈ S2 such that gc2

(κ1) � gc2
(κ2) � ζ1, and

ζ1 < κ1 < κ2 < ζ2, then the intervals (ζ1, κ1] and [κ2, ζ2] are
mapped to the whole interval S1. +erefore, these two
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intervals can be considered as the first case, however, the
other interval
gc2

: (κ1, κ2)⟶ (ζ1, gc2
(x(2)

c )] ⊂ (ζ1, x(2)
c ] ⊂ S2.

(κ1, κ2) ∋ x(2)
c , such that

gk
c2

(x(2)
c )< · · · <g2

c2
(x(2)

c )<gc2
(x(2)

c )<x(2)
c , with k ∈ N

because gc2
(x)<x for all x ∈ S2. +ere exists a k ∈ N such

that gk
c2

(x(2)
c ) ∈ S1 and gk−1

c2
(x(2)

c ) ∈ S2, then gk
c2

: S2⟶ S1
at least once any point x ∈ S2 has been mapped to the in-
terval S1. +is implies that there exists an x0 ∈ U1 ⊂ S2, and
0< n ∈ N, such that gn

c2
(x0) ∈ U2 ⊂ J2. +erefore, gc2

(x0) is
transitive in J2 for x0 ∈ S2. • For the third case
x(2)

c <gc2
(x(2)

c )< ζ2, there are two unstable fixed points
x

(2)
L , x

(2)
R ∈ S2, with x

(2)
L >g2

c2
(x(2)

c ). +ere are two intervals
(ζ1, x

(2)
L ) and (x

(2)

L′ , ζ2), with gc2
(x

(2)
L ) � gc2

(x
(2)

L′ ) that fall in
the previous case because gc2

(x)< x, for all
x ∈ (ζ1, x

(2)
L )∪ (x

(2)

L′ , ζ2]. +erefore, gc2
(x0) is transitive in

J2 for (ζ1, x
(2)
L )t∪ n(qx

(2)

L′ , ζ2]. +e middle interval
(x

(2)
L , x

(2)

L′ ) contains an interval (x(2)
c − δ, x(2)

c + δ), with
gc2

(x(2)
c − δ) � x

(2)
L , such that gc2

: (x(2)
c − δ)⟶ (x

(2)

L′ , ζ2],
so this case falls in the previous case. For the intervals
(x

(2)
L , x(2)

c − δ) and (x(2)
c + δ, x

(2)

L′ ), we have gk
c2

: (x
(2)
L , x(2)

c −

δ)∪ (x(2)
c + δ, x

(2)

L′ )⟶ (x(2)
c − δ, x(2)

c + δ), for some k ∈ N.
+is implies that there exists an x0 ∈ U1 ⊂ S2, and 0< n ∈ N,
such that gn

c2
(x0) ∈ U2 ⊂ J2. +erefore, gc2

(x0) is transitive
in J2 for x0 ∈ S2.

+e general case k � m, because
gck

(x(1)
c )>gck

(x(2)
c )> · · · >gck

(x(m)
c ), with k � 1, . . . , m

and x
(j)
L >g2

ck
(x

(j)
c ) for all j � 2, . . . , m, then there are

ki ∈ N such that g
ki
cm

: Si⟶ S1, with i � 2, 3 . . . , m. And gcm

is always transitive in I because gcm
: S1 ∈ I. +is implies that

there exists an x0 ∈ U1 ⊂ I, and n> 0, such that
gn

cm
(x0) ∈ U2 ⊂ I. +e dynamical system gcm

is transitive for
the case (b).

(c) ⇒For the case k � 1, we have gc1
: J1⟶ J1, with

J1 � [0, ζ1]. +is case is proved in the same way that the
previous case (a) for k � 1.

For the case k � 2, gc2
: J2⟶ J2, with J2 � [0, ζ2], and

there are two critical points x(1)
c ∈ S1 � [0, ζ1] and

x(2)
c ∈ S2 � (ζ1, ζ2], with x

(2)
L <gc2

(x(1)
c )< ζ2 and

gc2
(x(2)

c ) � ζ2. +ere are two points κ1, κ2 ∈ S1 such that
gc2

(κ1) � gc2
(κ2) � x

(2)
L , then gc2

: (κ1, κ2)⟶ S2. For all
x0 ∈ (0, κ1) there is a k − 1 ∈ N such that
gk−1

c2
(x0) ∈ (κ1, κ2), so gk

c2
(x0) ∈ S2, and the same for all

x0 ∈ (κ2, ζ1). +erefore, for all x0 ∈ S1 there is a k ∈ N such
that gk

c2
(x0) ∈ S2. Now, to prove transitivity, we only need to

show that there exist intervals of whatever tiny diameter in
S2 that are mapped by gc2

to the whole interval J2.
+e critical point x(2)

c divides the interval S2, into two
intervals J21 � [ζ1, x(2)

c ], and J22 � [x(2)
c , ζ2]. So, we have

gc2
: J2i⟶ J2, with i � 1, 2, because gc2

(x(2)
c ) � ζ2. +ere

are τ21 ∈ J21 and τ22 ∈ J22 such that
g2

c2
(τ21) � g2

c2
(τ22) � ζ2. +en it is possible to generate four

intervals J31 � [0, τ21], J32 � [τ21, x(1)
c ], J33 � [x(1)

c , τ22], and
J34 � [τ22, ζ1]. Each of these intervals fulfills g2

c2
: J3i⟶ J2,

with i � 1, . . . , 4. +is implies that there are τ3i ∈ J3i such
that g3

c2
(τ3i) � ζ2, with i � 1, . . . , 23. +en it is possible to

generate eight (23) intervals J4i such that g3
c2

: J4i⟶ J2,
with i � 1, . . . , 23. Once again, the τ’s always exist because we
have that each of the (2n) intervals J(n+1)i fulfills

gn
c2

: J(n+1)i⟶ J2, with i � 1, . . . , 2n. +e refinement of the
intervals continues up to any of the intervals J(n+1)i is
contained in U1 ⊂ S2. Suppose that the interval J(n+1)i is
contained in U1, then this interval J(n+1)i is mapped to the
whole interval J2, gn

c2
: J(n+1)i⟶ J2, with i � 1, . . . , 2n. For

all x ∈ S1 is mapped to S2 then there is a n ∈ N such that
gn

c2
: U1⟶ J2, so there are preimages of the J(n+1)i such that

U1 ⊂ g
−n2
c2 (J(n1+1)i), with n � n1 + n2. +is implies that there

exists an x0 ∈ U1 ⊂ J2, and n> 0, such that
gn

c2
(x0) ∈ U2 ⊂ J2.
We prove an arbitrary case gc2

(x(1)
c )<gc2

(x(2)
c ) � ζ2.

+en the general case k � m is a direct consequence of this
case because gck

(x(1)
c )<gck

(x(2)
c )< · · · <gck

(x(m)
c ) � ζm,

with k � 1, . . . , m, and the following inequality is always
preserved gck

(x
(j)
c )>x

(j+1)
L , for j � 1, . . . , m − 1.

+erefore, for all x0 ∈ U1 ⊂ I there is a k ∈ N such that
gk

c2
(x0) ∈ U2 ⊂ I. +en gck

is transitive, for k � 1, . . . , m.
+is completes the proof. □
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