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Faster R-CNN architecture is used to solve the problems of moving path uncertainty, changeable coverage, and high complexity in
cold-air induced large-scale intensive temperature-reduction (ITR) detection and classification, since those problems usually lead
to path identification biases as well as low accuracy and generalization ability of recognition algorithm. In this paper, an improved
recognition method of national ITR (NITR) path in China based on faster R-CNN in complicated meteorological systems is
proposed. Firstly, quality control of the original dataset of strong cooling processes is carried out by means of data filtering. +en,
according to the NITR standard and the characteristics of NITR, the NITR dataset in China is established by the intensive
temperature-reduction areas located through spatial transformation. Meanwhile, considering that the selection of regularization
parameters of Softmax classification method will cause the problem of probability calculation, support vector machine (SVM) is
used for path classification to enhance the confidence of classification. Finally, the improved faster R-CNN model is used to
identify, classify, and locate the path of NITR events.+e experimental results show that, compared to other models, the improved
faster R-CNN algorithm greatly improves the performance of NITR’s path recognition, especially for the mixed NITR paths and
single NITR paths. +erefore, the improved faster R-CNN model has fast calculation speed, high recognition accuracy, good
robustness, and generalization ability of NITR path recognition.

1. Introduction

China, located in the east of Eurasian continent and adjacent
to the Northwest Pacific, is significantly influenced by the
prominent Asia monsoon system originating from the
thermal gradient between ocean (the Pacific and Indian
Ocean) and land (the Asia continent) [1]. Chinese climate
usually exhibits multiscale variability, from diurnal to de-
cadal [2], due to the complicated interactions among various
atmospheric circulation systems including the western Pa-
cific subtropical High, South Asia High, mid-latitude high
level jet, blocking High, and typhoon and the multisource
modulation including ENSO [3], the Indian Ocean sea
surface temperature [4], snow cover over the Tibetan-Pla-
teau [5], and sea ice in the polar regions [6].

In winter, China is frequently impacted by the cold-air
(CA) processes especially for the northeast and northwest
region, which may cause huge economic loss and serious
health threat. In January of 2008, most areas of southern
China suffered an extreme cold spell accompanied by severe
precipitation and snowfall [7, 8], which brought grave traffic
and energy pressure. Unfortunately, such cold wave hap-
pened in the Spring Festival travel season and thus many
people had to stay in railway stations or airports for several
days and could not come back home.

Under the background of global warming, subtropical
extreme cold events keep increasing rather than decreasing
because of the weakened westerly jet associated with the
lessened temperature gradient between polar and tropical
regions [9, 10], and therefore CA events become a hot topic
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in current climate research [11]. Generally speaking, CA
studies can be divided into three fields: case study, synoptic
dynamics study, and climate dynamics study. Case analyses
mainly focus on temporal-spatial characteristics and asso-
ciated physical mechanisms in certain extreme CA event
[12–14]. In the viewpoint of synoptic dynamics, the inten-
sity, persistency, and spatial coverage of CA events depend
on complicated and nonlinear interaction among different
circulation systems [15–17]. With climatic diagnostic
analysis and numerical sensitivity experiments, the clima-
tological background of CA events and the role of critical
external forcings can be understood [18–21]. Also, from the
perspective of spatial impact, the CA events can be separated
into national and regional processes, and the former can
cover larger areas and have stronger influences on economic
and social development. Due to frequent occurrence of
large-scale CA events after 2000, meteorologists’ interest in
national CA processes is fuelled in recent years.

Although CA researches have made great progress in the
past decades, especially the investigation on the role of
subseasonal processes in triggering strong cold wave which
has gone deep, how to identify the routine of CA invasion
and associated intensive temperature-reduction (ITR) re-
mains unclear. In fact, the track of most moving synoptic
systems is hard to detect with simple statistical method. Even
for some single entity systems such as typhoon, determining
the exact path is also very difficult [22]. As for the march of
CA and ITR, considering that each air particle has its own
path, the composite pathway of CA actually reflects the
statistical characteristic of all particles, which is invisible and
arduous to calculate. In traditional CA and ITR monitoring
operation, the routine is usually and subjectively judged by
forecasters [23], which is obviously not precise. To improve
monitoring and diagnosis accuracy of CA events and large-
scale ITR, an objective identificationmethod for CA and ITR
path is urgently needed. In fact, the trajectory of ITR does
reflect the influence of CA and has intimate association with
meteorological-disaster prevention, and large-scale ITR
especially national ITR (NITR) usually causes extremely
serious damage, so, in this paper, we mainly focus on ob-
jective recognition for NITR path.

In the past ten years, artificial intelligence (AI) technology
has made great progress in the fields of computer vision [24],
language processing [25, 26], machine translation [27],
medical imaging [28], robotics [29], and biological infor-
mation control [30], especially for medical diagnoses [31]. For
example, it performs well in terms of unmanned driving [32]
and has higher recognition accuracy than the human brain for
image and voice recognition. As the core method of AI,
machine learning is the main method to implement artificial
intelligence. Machine learning is a collection of various al-
gorithms that allow computers to learn automatically. It helps
computers analyze large sets of sample data, obtain rules, and
then use these rules to classify or predict new data. +erefore,
it has triggered a historic revolution in many fields [33, 34]. In
common meteorological research, low-temperature fore-
casting involves the combination of numerical prediction
products and statistical theory [35–37]. +e rise of artificial
intelligence facilitates applying deep learning technology to

the forecasting of meteorological elements and improving the
accuracy of the forecast core research problems. As an ex-
tension of machine learning algorithms, deep learning is
currently and mostly used and limited to image recognition
technology in meteorology. How to better to apply it to in-
telligent seamless grid weather forecasting is an urgent
problem. Compared with the establishment of forecast
equations point by point in the past, deep learning can directly
establish the forecast of the entire element field, which can not
only correct the forecast results in the numerical model but
also consider the continuity of the spatial distribution of the
elements. It has a very considerable advantage in developing
objective forecasting techniques for grid points and is also
more in line with forecasters’ forecasting ideas.

Convolutional deep learning neural networks models,
including convolutional neural networks (CNNs) [38], re-
current neural networks (RNNs) [39], deep neural networks
(DNNs), and gated recurrent units (GRUs) [40], are mainly
used to extract and recognize image features of the mete-
orological element field. Long short-term memory (LSTM)
[41] networks are particularly suitable for predicting and
analyzing big data time series and are continuously im-
proving for meteorology.

To detect the exact track of NITR events and make
reasonable classification, faster R-CNN target detection
architecture is used to solve the problems of moving path
uncertainty, changeable coverage, and high complexity. On
this basis, an improved recognition method based on faster
R-CNN and SVM is proposed. +is algorithm adopts SVM
for NITR’s path classification to enhance the confidence of
classification. Finally, the improved faster R-CNN model is
used to identify, classify, and locate the path of NITR events.
+e experimental results show that, compared to the original
algorithm, the improved faster R-CNN algorithm greatly
improves the performance of path identification, especially
for the mixed directions and incomplete development
scenarios. In general, the amended faster R-CNN algorithm
has fast calculation speed, high recognition accuracy, good
robustness, and generalization ability of the practical ap-
plication of NITR pathway detection.

+e remainder of this paper is organized as follows.
Section 2 describes data processing, the overall architecture,
and the methods for the Faster R-CNN and SVM model of
intensive NITR recognition and classification, including the
faster R-CNN network, network training, recognition, and
classification method. Section 3 presents the experimental
environment and method used to evaluate and analyze the
performance of the improved faster R-CNN and SVM
model. Section 4 concludes the paper.

2. Methodology

In this section, we describe our model in detail. First, we
introduce data used in this paper and the division of source
regions of the NITR events. Next, we present overall
structure of the faster-RCNN model. Finally, the improved
faster-RCNN model for intensive NITR recognition and
classification is provided.
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2.1. Data and Methods. Based on the daily dataset of China’s
surface observational temperature (including mean tempera-
ture, maximum temperature, and minimum temperature over
1995 national conventional stations) from January 1st, 1961 to
December 31st, 2018, provided by the National Meteorological
Information Center, the surface observational data of 1995
stations were processed by simple time series investigation,
neighbour interpolation, and outlier detection analysis
methods, and different station datasets of intensive tempera-
ture-reduction processes were generated. As shown in Figure 1,
there is a comparison of original data and revised data of
national conventional station dataset from 1961 to 2018. +ere
are invalid values and missing measured data in Figures 1(a),
1(c), and 1(e), which are corrected by simple time series in-
vestigation, neighbour interpolation, and outlier detection
analysis methods. +e revised results shown in Figures 1(b),
1(d), and 1(f) are used as the original dataset of this paper.

According to the results of massive studies associated
with large-scale ITR over China induced by heavy cold-air
processes, NITR events are mainly originated from dense
cold-air invasion (CAI) from three source regions: north-
west, North, and northeast of China. Although all the
southward movement of CA is related to the negative phase
of the Arctic Oscillation, each path is dominated by separate
circulation system. +e northwest pathway is usually con-
trolled by the Siberia High, and the northeast routine is
linked to activity of the northeast cold vortex and Okhotsk
High. +e existence of the north path can be attributed to
interaction/competition between the Siberia High and
northeast cold vortex.+erefore, three source regions of CAI
can be preassigned, i.e., the northwest region (73°E-95°E),
the north region (95°E-115°E), and the northeast region (115°
E-135° E) (see Figure 2). Considering that there may exist
compound pathways, actually we have seven types of NITR
routines: the single northwest (NW), north (N), northeast
(NE) path and the composite northwest + north (NW+N),
northeast + north (NE+N), northwest + northeast (NW
+NE), and northwest + north + northeast (NW+N+NE)
path.

2.2. National Intensive Temperature-Reduction Recognition

2.2.1. Faster R-CNN Network. Convolutional neural net-
work (CNN) has been widely used in many fields, such as
target detection and speech recognition. Besides, the region
based convolutional neural network (R-CNN), which was
proposed by Ross Girshick in 2014 [42], also performs well
and gets rapid development. R-CNN is a classic algorithm
and basic method for image recognition using region rec-
ommendation, and, on the basis of R-CNN, two new
technologies, the Fast R-CNN and faster R-CNN algorithms,
are further proposed and improved.

In general, R-CNN algorithm can be divided into four
steps: (1) candidate region generation, (2) feature extraction,
(3) category judgment, and (4) location refinement. Firstly, a
large number of candidate regions are generated by visual
method, and then the high-dimensional feature vectors of
these regions are formed by convolution operation with

CNNmethod. Subsequently, these feature vectors are sent to
some classifiers, such as simple logical regression and
Softmax regression. After calculating the overlap degree IOU
of the object score and bounding box of the candidate re-
gions, the candidate box is refined to realize object recog-
nition and location.

Compared with the traditional target detection algo-
rithm which uses sliding window to judge all possible re-
gions in turn, the R-CNN algorithm extracts a series of
candidate regions which are more likely to be objects in
advance and then extracts features only on these candidate
regions (using CNN) for judgment, which effectively reduces
the calculation of subsequent feature vectors and can better
deal with the scale problem. +e implementation of CNN
adopts GPU parallel computing, which improves the
computing speed and efficiency. In addition, the regression
step of the peripheral box improves the accuracy of target
location.

2.2.2. National Intensive Temperature-Reduction
Recognition. Although R-CNN has become a typical algo-
rithm in the field of image recognition, the bottleneck of the
algorithm is that it needs to take long time to generate region
suggestions in the first step. Aiming at this defect, faster-
RCNN came into being. As for the new algorithm, an RPN is
proposed, which is a network based on full convolution. It
can simultaneously predict the target area box and target
score of each position of the input image, aiming at effi-
ciently generating high-quality area suggestion box. Its
appearance replaces the previous methods such as selective
search and edge boxes. It shares the convolution charac-
teristics of the whole image with the detection network, so
that the detection of region recommendation is almost time-
consuming. +erefore, the faster R-CNN is used for NITR
recognition in this paper, and, moreover, Support Vector
Machine (SVM) model is adopted to classify the type of
NITR.

(1) Network Training. Faster R-CNN algorithm includes
RPN and faster CNN detection network. In this paper,
ZFNet [43] is pretrained to initialize the detection network
of RPN and faster R-CNN. +e typical structure of ZFNet is
shown in Figure 3.+e pretraining process of this method in
this paper is as follows.

(1) Pretraining CNN. +e typical structure of ZFNet
consists of five Convolutional Layers and two Fully
Connected (FC) Layers. A pooling layer is added
behind convolution layers, and the filter size and
convolution step size of each layer are slightly dif-
ferent. +e last Convolution Layer 5 (Layer 5) of
ZFNet outputs 256 channel feature maps, and the
Full Connection Layer 6 (Layer 6) concatenates all
the features in 256 channels to generate a single
channel high-dimensional feature vector with 4096
dimensions. Different types of images have great
differences in deep features. +e classifier is used for
the feature vectors output by Layer 5, Layer 6, and
Layer 7, which can output image recognition results.
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(2) Training RPN. +e pretrained ZFNet is used to
initialize the RPN, and a small Convolution Layer 6
(Layer 6) with specific function is added after the
original Convolution Layer 5 (Layer 5). On this layer,
the convolution operation of the feature map output
by Convolution Layer 5 (Layer 5) is carried out in a
sliding window way and the shapes of the sliding
window were squares or rectangles and overlapping
ratio is 0.5. For each position of the image, nine fixed
dimensions and aspect ratio (1 :1, 1 : 2, 1 : 2, and 1 : 2)
are considered as 2 :1. +e output of Layer 6 is used
as the input of two independent full connection
layers, box regression layer and box classification
layer, and finally multiplied by 9. +e probability is
that two windows belong to the target or back-
ground, and four pan zoom parameters are multi-
plied by 9.

(3) Training Faster R-CNNDetection Network. In the same
way, the ZFNet is used to initialize the detection
network, and the region recommendation obtained
fromRPN is used as the input of the detection network.
+e feature is extracted by five Convolution Layers, and
the feature map is compressed through the corre-
sponding pooling layer to get 256 channel feature
maps. +en, the feature map is connected in series
through Fully Connected Layer 6 and Fully Connected
Layer 7 and finally classified by SVM. In this manner,
whether there is the type of intensive temperature-
reduction in the suggestion box and the associated
location can be obtained. +e samples are used for
training and fine-tuning many times, and the layer
connection weight matrix is updated in the process of
error backpropagation. Finally, a detection network
suitable for NITR recognition is acquired.
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Figure 1: Comparison of original data and revised data of national conventional station dataset from 1961 to 2018. (a) Original minimum
temperature in the last 24 hours. (b) Minimum temperature in the last 24 hours by quality control. (c) Original maximum temperature in
the last 24 hours. (d) Maximum temperature in the last 24 hours by quality control. (e) Original average temperature in the last 24 hours.
(f ) Average temperature in the last 24 hours by quality control.
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(4) RPN and Faster R-CNN Sharing Convolution Layer.
After the above training processes, the two networks
are still independent of each other, so it is necessary
to share the Convolution Layer so that the features
can be used for both region suggestion box gener-
ation and target detection. +e specific methods are
the following: (a) using ZFNet to generate RPN
independently; (b) training the faster R-CNN de-
tection network with the region suggestions and
network parameters generated by RPN in (a); (c)
applying the faster R-CNN detection network pa-
rameters to initialize RPN. At this time, it is nec-
essary to pay attention to set the learning rate of
convolution layers shared by RPN and faster R-CNN
network to 0, that is, not to update these convolution
layers, but only updating those network layers
unique to RPN and retraining them. +en, RPN and
faster R-CNN detection network share all the
common convolution layers, which improves the
region recommendation procedure and effectively
reduces the run time of the algorithm.

(2) Classification Method. SVM is a machine learning
method based on statistical learning theory. By seeking the
minimum structural risk, the empirical risk and confidence
range areminimized, so that the system can get better statistical
rules even when the number of samples is small. Compared
with traditional pattern recognition methods, SVM has strong
generalization ability and can guarantee the global optimiza-
tion. +e core idea of SVM algorithm is to find an optimal
classification to meet the classification requirements.

In reality, most of the classification is nonlinear, and
the strong cooling path recognition in this paper is also
nonlinear. At this time, the nonlinear problem can be
transformed into a linear problem in a high-dimensional
space through space transformation, and the optimal
classification surface or the optimal generalized classifi-
cation surface can be obtained in the transformed high-
dimensional space. +e kernel function is used to map the
linear nonseparable low dimensional space to the linear
separable high-dimensional space. +e common kernel
functions are the Polynomial function, the Radial Basis
function (RBF), and the Sigmoid function. In this paper,
RBF is used in the NITR pathway recognition algorithm,
which can be expressed as

K(x, y) � exp −
x − y

2

2σ2
 , (1)

where σ is the kernel parameter. x and y are the vector.
NITR pathway recognition is a multiclassification issue.

Given a set of training samples, it is necessary to divide those
raw data into seven categories, namely, NW (marked as 1), N
(marked as 2), NE (marked as 3), NW+N (marked as 4),
NE+N (marked as 5), NW+NE (marked as 6), and
NW+N+NE (marked as 7), so we need totally 7 SVM
classifiers. In practice, SVM can be trained and used for
classification through the following steps: (1) the first is
feature extraction of classified images; (2) a simple linear
method is used to normalize the feature vector to prevent
large data fluctuation from dominating data perturbation
and small data fluctuation from being ignored; (3) the RBF
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Figure 2: Division of source regions of the CAI events.
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kernel is used to select the kernel function; (4) the cross
validation method was used to select parameter C; (5) the
optimal parameters are used to train the training set to
obtain the SVM classification model; (6) the trained SVM
model is used to classify and predict the output eigenvectors,
and the output eigenvector matrix is dot-multiplied with the
SVM weight matrix to get the score of the recommendation
box in the region, that is, the NITR path type in the rec-
ommendation box in the region.

(3) Recognition and Classification Method. From the
above network training process and SVM classification
method, we can see that the two networks using faster
R-CNN for recognition share convolution layer. +erefore,
the whole recognition process only needs to complete a
series of convolution operations, which is able to effectively
realize recognition and solve the long time-consuming
problem of regional recommendation. In addition, SVM is
used as the final classifier to minimize the empirical risk and
confidence range, which can get better statistical rules for the
number of samples is small. +e structure of faster R-CNN
and SVM model is demonstrated in Figure 4. First of all, the
structure of proposed model with RPN has been imple-
mented on the available dataset to extract the features on the
convolution layer. And, second, the feature map from
convolution layer enters RPN and generates a large number
of regional suggestion boxes on the feature map. It should be
noted that, for each position of the feature map, nine
candidate windows with fixed scale and aspect ratio are
considered. +irdly, nonmaximum suppression was applied
to the RPN-generated regional suggestion boxes, and 200
boxes with higher scores were retained. Fourthly, the faster
R-CNN recognition network extracts feature vectors from
the image in the region suggestion boxes, inputting them
into the full connection layer, and then inputs them into the
SVM classifier to calculate the score of each region sug-
gestion box. Finally, the faster R-CNN recognition network
refines the region suggestion box by regression.

3. Experiments and Analysis

To examine the performance and effectiveness of NITR
identification based on the faster R-CNN model, the deep
learning experiments are constructed by using Python 3.7.
+e CPU of the experiment is an Intel Core i5 @ 2.30GHz
with 8GB of memory, and the operation system is 64-bit
Windows 10. +e proposed hybrid faster R-CNN model has

default parameter settings; the number in the 1st convolution
layer is 64; the filter size in the 1st convolution layer is 3; the
pooling size is 2; the dropout rate is 0.46.

+e experimental process of the faster R-CNN model
includes data acquisition, data preprocessing, feature im-
portance assessment, model training, model testing, and
model evaluation. Data preprocessing includes data nor-
malization, training set partition, test set construction, and
time series construction. After data preprocessing, the
training data are used to generate the model that is to adjust
the network weight through the optimization function to
minimize the loss function of the model until the number of
iterations reaches the set value. +en, the training model is
applied to the test set data, and the performance of the model
is measured by the average precision (AP), the mean average
precision (mAP), and other evaluation indicators.

3.1. Dataset. How to describe climatic characteristics of the
NITR events including cooling amplitude and related
coverage is an important issue in NITR path identification.
In a national standard published by the China Meteoro-
logical Administration, the change of daily minimum
temperature is chosen to reflect the intensity of heavy CA or
cold wave processes. +us, the time series of daily minimum
temperature over 1995 national conventional stations is
selected here as the original dataset.

Table 1 shows the classification of stational ITR by
reference to Chinese national standard (GBT 20484-2017).
Based on this standard, the linear interpolation method has
been chosen to make grid analysis and pictures for national
station data; 497 NITR processes from 1961 to 2018 are
generated, with a total of 3434 target images. +e image size
is 800 pixels× 800 pixels, and the storage format is JPG.

After strict selection, there are totally 2800 exactly
suitable images, marked with LabelImg tool, and the
location of NITR is recorded. According to the preas-
signed types of NITR paths, the dataset is divided into
seven different kinds of NITR processes: NW, N, NE,
NW+N, NE +N, NW+NE, and NW+N+NE, as shown
in Figure 5. In accordance with the ratio of 8 : 1:1, the
dataset is divided into training set (80%), verification set
(10%), and test set (10%). +ese three datasets are in-
dependent and mutually exclusive, which are used for
training, parameter optimization, and performance
evaluation of target detection model, respectively.
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3.2. Model Training. In order to improve the training speed
and convergence performance of target model. Firstly, the
ImageNet dataset is preprocessed to convert the training set
and verification set data into TFRecord format. +en, the
training is started based on the TFRecord data file. During
the training procedure, critical parameters are settled as
follows: the batch size is 64; the image size is scaled to 224
pixels× 224 pixels; the training cycle is 85; the number of
iterations in each cycle is 10000 and the total number of
iterations is 850000; the momentum factor is 0.9; the weight
attenuation coefficient is 0.0001; the initial learning rate is
0.01. +e learning rate is attenuated by using the segmen-
tation constant, and the final learning rate is faded to
0.00001.

Finally, the random gradient descent method is used
to deploy the target detection model. In the process of
network training, there are altogether 2240 images in the
training set; the momentum factor is 0.9; the weight at-
tenuation system is 0.0005; the initial learning rate is
0.0001; the attenuation rate is 0.9 and the total number of
iterations is 6000.

3.3. Evaluation. To objectively evaluate the generalization
ability of the NITR path type recognition model, the AP and
mAP criteria are used as measurements of derivation be-
tween observed and predicted values. In the application
scenario of this paper, NITR events are set as positive
samples and the corresponding backgrounds are negative
samples. +e ratio between the number of strong cooling
paths correctly detected by the model and the entire number
of predicted strong cooling tracks is defined as precision (P),
which is used to measure the recognition ability of positive
samples. Recall (R) is defined as the ratio of the amount of
correctly identified data of a certain type of strong cooling
pathway in the test set data to the total number of such
strong cooling pathways, which is used to measure the
coverage of positive samples.

+e average accuracy is related to the accuracy and recall.
It is the integral of the accuracy recall curve and the co-
ordinate axis, which is used to measure the recognition effect
of the model. +e larger the value is, the better the recog-
nition effect of strong cooling path is. +e average value is
able to reflect mean accuracy of multicategory strong cooling
path identification. Similarly, the larger the value is, the
higher the accuracy of model realization is.

(1) AP can more intuitively show the classifier per-
formance, which is defined in the following
equation:

AP � 
1

0
p(r)dr, (2)

where p(r) is a function of precision as a function of
r. +e area between the function curve and the
coordinate axis is the average accuracy.

(2) +e calculation formulas of accuracy and recall are as
follows:

P �
TP

TP + FP

,

R �
TP

TP + FN

,

(3)

where P is the accuracy rate; R is the recall rate. TP is
the number of truly positive samples, and such
samples as positive members in observation are also
determined to be positive samples by recognition
model, so the prediction is correct. FP is the number
of falsely positive samples, and such samples as
actually negative members in observation are
judging as positive samples by model, so the pre-
diction is wrong. FN is the number of falsely negative
cases, and such cases are positive ones in fact but
judging as negative samples by model, and thus these
samples are mistakenly omitted.

(3) mAP is defined in the following equation:

mAP � 
n

i�1
APi, (4)

where mAP represents the average precision and n is the
number of targets to be detected. +ere are 7 detection
targets in this paper.

3.4. Performance and Analysis. Faster R-CNN and R-FCN
models are trained with the same training set samples, and
the performance of the trained models are compared with
our new model proposed in this paper.

Table 2 shows performance comparison of the three
models. In terms of accuracy, the average accuracy of our

RPN

Convolution ROI Pooling Fully Connected Layers Classification

Region Proposal

SVM

NW

NE

NW

N

Figure 4: +e architecture of the proposed Faster R-CNN and SVM model.
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Table 1: Classification of stational ITR in China.

Grade Division index
Weak +e daily minimum temperature drops by less than 6°C within 48 hours

Medium
strong

+e daily minimum temperature drops by more than or equal to 6°C but less than 8°C within 48 hours; or the daily
minimum temperature drops by more than or equal to 8°C within 48 hours but fails to reduce the daily minimum

temperature to 8°C or below

Strong +e daily minimum temperature drops by more than or equal to 8°C within 48 hours, and the daily minimum temperature
also reduces to 8°C or below
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30°N

25°N

20°N

85°E 90°E 95°E 100°E 105°E 110°E 115°E 120°E 125°E

Strong

Medium
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(a)
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(b)
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(c)
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(d)
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(e)
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(f )

Figure 5: Continued.
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model for NITR paths is 1.7% and 1.4% higher than that of
faster R-CNN and R-FCN, respectively, and has strong
ability of feature extraction and accurate location regression.
In terms of real-time efficiency, the number of image frames
processed per second is used as the speed measurement
index. Due to the lightweight design of feature extraction
network and detection head in our model, the network
complexity is reduced, and the reasoning speed is 3.4 times
and 1.7 times higher than that of faster R-CNN and R-FCN,
respectively. In terms of network scale, storage space of our
model is 85MB, less than that of faster R-CNN (112MB) and
R-FCN (91MB).+e experimental results show that our new
model has significant advantages over faster R-CNN and
R-FCN in average accuracy, detection speed, and network
scale.

In many cases of the NITR events, there appear mixed
NITR paths and some single NITR paths, which bring
difficulties to the identification of severe cooling paths. In
order to distinguish multiple intense cooling routes in
different directions and the model recognition accuracy in
the case of incomplete development, 160 samples are ran-
domly selected for each fine condition and input into faster

R-CNN, R-FCN, and our model, respectively, for recogni-
tion test. +e results are shown in Table 3, the average
precision of our model for recognizing mixed NITR paths
and single NITR paths in different directions is 86.3% and
87.6%, respectively, and the average value in two cases is
86.95%. All the three indices are higher than those of the
faster R-CNN and R-FCNmodels.+is is because our model
uses convolution kernels of different sizes for operation,
which has strong multiscale feature extraction ability. FPN
unit fuses different scale feature information to strengthen
the expression ability of target characteristics. Under such
circumstance, various strong cooling paths in different di-
rections and incomplete development processes can be ef-
fectively identified even if the semantic information is lost on
the feature map.

Figures 6 and 7 show the recognition effect of ourmodels
on single and mixed NITR paths under medium strong
cooling conditions. Figure 6 shows an example of single
NITR path and Figure 7 shows the performance of all models
onmixed NITR paths. It can be clearly seen that ourmodel is
able to accurately detect the types of NITR paths in different
environments.

85°E

20°N

25°N

30°N

35°N

40°N

45°N

90°E 95°E 100°E 105°E 110°E 115°E 120°E 125°E

Strong

Medium

Weak

(g)

Figure 5: +e kinds of different NITR pathways. (a) is the NW path, (b) is the N path, (c) is the NE path, (d) is the NW+N path, (e) is the
NE+N path, (f ) is the NW+NE path, and (g) is the NW+N+NE path.

Table 2: Comparison of performance of different models.

Model mAP (%) Speed (f/s) Storage space (MB)
Our model 86.5 11.1 85
Faster R-CNN 84.8 3.3 112
R-FCN 85.1 6.5 91

Table 3: Evaluation results of different models in mixed and single NITR paths recognition.

Model
mAP

Average
Mixed paths Single paths

Our model 86.3 87.6 86.95
Faster R-CNN 82.2 84.5 83.35
R-FCN 83.6 85.1 84.35
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Figure 6: +e effect of different single NITR paths. (a) is the NW+N path, (b) is the NE+N path, and (c) is the NW+N+NE path.
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Figure 7: Continued.
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4. Conclusion and Future Work

With the development of deep learning technology, an
improved recognition and classification method of national
ITR path in China based on the faster R-CNN and SVM
Model in complicated meteorological systems has fast cal-
culation speed and high recognition accuracy. +e method
proposed in the paper improves the recognition perfor-
mance of NITR paths. First, quality control of the original
dataset of strong cooling processes is carried out by means of
data filtering. +en, based on the Chinese national standard
(GBT 20484-2017), the linear interpolation method has been
chosen to make grid analysis and pictures for national
station data; 497 NITR processes from 1961 to 2018 are
generated. Meanwhile, the regularization parameters of
Softmax classificationmethod will cause approximate results
of probability calculation, so SVM is used for path classi-
fication, which can obtain better results when the number of
samples is small, ensure the global optimization, and im-
prove the reliability of classification.

+e experimental results show that, compared with other
models, the storage space of the faster R-CNN and SVMModel
is 85MB and the recognition speed is 11.1f/s, which effectively
reduces the network scale and significantly improves the
recognition speed. In addition, themAP of newmodel is 86.5%,
1.7%, and 1.4% higher than that of faster R-CNN and R-FCN,
respectively. At the same time, it has good generalization
performance for mixed paths and single NITR paths. +ere-
fore, the improved faster R-CNN model is new method in the
meteorological application of NITR path recognition.

In the future, with the development of deep learning
technology and cloud computing, we will study the methods of
migrating the model computing tasks in this paper to edge
devices, including mobile edge computing [44], privacy aware
deployment of machine learning applications [45], and dy-
namic resource allocation [46]. +en, we try to use the idle
computing power of edge devices to share the computing
pressure of cloud servers and improve computing efficiency.
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