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To avoid exorbitant and extensive laboratory experiments, QSPR analysis, based on topological descriptors, is a very constructive
statistical approach for analyzing the numerous physical and chemical properties of compounds. (erefore, we presented some
new entropy measures which are based on the sum of the neighborhood degree of the vertices. Firstly, we made the partition of the
edges of benzene derivatives which are based on the degree sum of neighboring vertices and then computed the neighborhood
version of entropies. Secondly, we made use of the software SPSS for developing a correlation between newly introduced entropies
and the physicochemical properties of benzene derivatives. Our obtained results demonstrated that the critical temperature
(CT), critical pressure (CP), and critical volume (CV) can be predicted through fifth geometric arithmetic entropy, second SK

entropy, and fifth ND entropy, respectively. Other remaining physical characteristics include Gibb’s energy (qE), log(P), molar
refractivity (MR), and Henry’s law (HL) that can be predicted by using sixth ND entropy.

1. Introduction

In chemistry, models are classified into two types. (e first
type of modeling is based on the quantum-chemical method
and theoretically identical models derived from statistical
mechanics. (e second type consists of chemical thinking,
which compares related systems. According to the core
principle of chemistry, all the features of matter correlate
with its molecular structure, and thus, molecules with
similar structures have similar properties. (is has resulted
in several empirical approaches such as SAR, SPC, QSPR,
and QSAR [1, 2].

(e identical factor of all these methods is the correlation
between physicochemical properties and molecular de-
scriptors. (ere are numerous descriptors to utilize [3], but
one family of descriptors has been demonstrated excep-
tionally basic and valuable in foreseeing multiple molecular
properties. (ese are known as topological indices (TIS).

Topological indices (TIS) are numerical parameters that
are correlated with a graph and help identify its topology.
(ere are three types of TIS: degree-based TIS, spec-
trum-basedTIS, and distance-basedTIS [4, 5]. Degree-
basedTIS, which are defined in terms of the degrees of the
vertices of a graph, are one of themost studiedTIS used in
mathematical chemistry [6]. Imran et al. [7] discuss the
topological properties of symmetric chemical structures.
Zou et al. [8] computed topological indices for poly-
phenylene. Recently, some neighborhood versions of TIS

have also been introduced [9, 10]. Zhang et al. [11–13]
discuss the topological indices of generalized bridge mo-
lecular graphs, carbon nanotubes, and the product of
chemical graphs.

(e idea of entropy first appeared in thermodynamics in
the nineteenth century, when it was closely linked to the heat
flow and a key component of the second law of thermo-
dynamics. Subsequently, statistical mechanics used the
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notion to illuminate thermodynamics physically. Leading
physicists such as Boltzmann and Gibbs [14, 15], who
employed entropy as a measure of the disorder of the
massive dynamical system underlying molecule collections,
were responsible for this. Fisher employed similar notions in
the establishment of the foundations of theoretical statistics
in 1920 [16]. In the 1950s, Kullback and Leibler [17] de-
veloped this concept further. Zhang et al. [18–20] provided
the physical analysis of heat for the formation and entropy of
ceria oxide.

Claude Shannon, a mathematician and electrical en-
gineer who worked at Bell Labs in New Jersey in the
midtwentieth century, identified the link between entropy
and information content [21]. (e concept formed a key
element of the emerging field of information theory at that
time. Afterward, in the 1950s, Jaynes explained the explicit
association between Shannon’s entropy and that of sta-
tistical mechanics in a series of excellent works [22, 23].
Since then, information theory has found applications in a
variety of fields, including networking analysis, mathe-
matical statistics, complexity theory, and financial
mathematics.

We made a bibliometric analysis grounded on the
Scopus database https://www.scopus.com. (is analysis is
based upon 986 research articles with entropy and graph
entropy [24–26] as key factors. (e percentage of publica-
tions in different subjects is shown in Figure 1.

We made a bibliometric analysis of the research con-
ducted in different countries on the concept of entropy in
Figure 2.

In recent times, another approach which is a bit different
in the literature, namely, using the concept of Shannon’s
entropy in terms of topological indices was introduced by
Manzoor et al. in [27]. Continuing their work, they also
introduced eccentricity-based graph entropies [28, 29] and
bond additive graph entropies [30]. In this paper, the present
authors formulated some new graph entropies, namely,
neighborhood versions of graph entropies. (e graph en-
tropy is represented in the following formula:

EI(B) � − 

u′v′∈E(B)

I u′v′( 

uv∈E(B)I(uv)
log2

I u′v′( 

uv∈E(B)I(uv)
 ,

(1)

where V(B) is the vertex set, E(B) is the edge set, and
I(uv) is the edge weight of the edge (uv).

(i) Neighborhood version of forgotten entropy
If I(uv) � A(u)2 + A(v)2, then


uv∈E(B)

I(uv) � 
uv∈E(B)

A(u)
2

+ A(v)
2

  � F
∗
N. (2)

So, equation (1) is called the neighborhood version
of forgotten entropy.

EF∗N
(B) � log2 H

∗
N(  −

1
H
∗
N



q

i�1


uv∈Ei(B)

· A(u)
2

+ A(v)
2

 log2 A(u)
2

+ A(v)
2

 .

(3)

(ii) Neighborhood version of second Zagreb entropy
If I(uv) � A(u) × A(v), then


uv∈E(B)

I(uv) � 
uv∈E(B)

[A(u) × A(v)] � M
∗
2 . (4)

So, equation (2) is called the neighborhood ver-
sion of second Zagreb entropy.

EM∗2
(B) � log2 M

∗
2(  −

1
M
∗
2



q

i�1


uv∈Ei(B)

· [A(u) × A(v)]log2[A(u) × A(v)].

(5)
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Figure 1: Bibliometric analysis of the publications of entropy in
various disciplines.
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(iii) Neighborhood version of hyper-Zagreb entropy
If I(uv) � [A(u) + A(v)]2, then


uv∈E(B)

I(uv) � 
uv∈E(B)

[A(u) + A(v)]
2

� HMN. (6)

So, equation (3) is called the neighborhood ver-
sion of hyper-Zagreb entropy.

EHMN
(B) � log2 HMN(  −

1
HMN( 



q

i�1


uv∈Ei(B)

· [A(u) + A(v)]
2log2[A(u) + A(v)]

2
.

(7)

(iv) First ND entropy
If I(uv) �

�����������
A(u) × A(v)


, then


uv∈E(B)

I(uv) � 
uv∈E(B)

[
�����������
A(u) × A(v)


] � ND1. (8)

So, equation (4) is called the first ND entropy.

END1
(B) � log2 ND1(  −

1
ND1( 



q

i�1


uv∈Ei(B)

· [
�����������
A(u) × A(v)


]og2[

�����������
A(u) × A(v)


]1.

(9)

(v) Second ND entropy
If I(uv) � 1/

�����������
A(u) + A(v)


, then


uv∈E(B)

I(uv) � 
uv∈E(B)

1
�����������
A(u) + A(v)

  � ND2. (10)

So, equation (5) is called the second ND entropy.
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(B) � log2 ND2(  −

1
ND2( 
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(11)

(vi) (ird ND entropy.
If I(uv) � [A(u) × A(v)][A(u) + A(v)], then


uv∈E(B)

I(uv) � 
uv∈E(B)

[A(u) × A(v)]

· [A(u) + A(v)] � ND3.

(12)

So, equation (6) is called the third ND entropy.

END3
(B) � log2 ND3(  −

1
ND3( 



q

i�1


uv∈Ei(B)

· [A(u) × A(v)][A(u) + A(v)]log2

· [A(u) × A(v)][A(u) + A(v)].

(13)

(vii) Fourth ND entropy.
If I(uv) � 1/

�����������
A(u) × A(v)


, then


uv∈E(B)

I(uv) � 
uv∈E(B)

1
�����������
A(u) × A(v)

  � ND4. (14)

So, equation (7) is called the fourth ND entropy.
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Figure 2: Bibliometric analysis of countrywide research based on the topic of entropy. (e size of the circles denotes the frequency of
articles, and distinct colors are used to signify distinct clusters.
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END4
(B) � log2 ND4(  −

1
ND4( 
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 log2
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 .

(15)

(viii) Fifth ND entropy.
If I(uv) � A(u)/A(v) + A(v)/A(u), then


uv∈E(B)

I(uv) � 
uv∈E(B)

A(u)

A(v)
+
A(v)

A(u)
  � ND5. (16)

So, equation (8) is called the fifth ND entropy.

END5
(B) � log2 ND5(  −

1
ND5( 
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·
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A(v)
+
A(v)

A(u)
 log2
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A(v)
+
A(v)

A(u)
 .

(17)

(ix) Sixth ND entropy
If I(uv) � d(r)A(u) + d(s)A(v), then


uv∈E(B)

I(uv) � 
uv∈E(B)

[d(r)A(u) + d(s)A(v)] � ND6.

(18)

So, equation (9) is called the sixth ND entropy.

END6
(B) � log2 ND6(  −

1
ND6( 



q

i�1


uv∈Ei(B)

· [d(r)A(u) + d(s)A(v)]log2

· [d(r)A(u) + d(s)A(v)].

(19)

(x) Neighborhood version of SK entropy
If I(uv) � A(u) + A(v)/2, then


uv∈E(B)

I(uv) � 
uv∈E(B)

A(u) + A(v)

2
  � SKN. (20)

So, equation (10) is called the neighborhood
version of SK entropy.

ESKN
(B) � log2 SKN(  −

1
SKN( 



q

i�1


uv∈Ei(B)

·
A(u) + A(v)

2
 log2

A(u) + A(v)

2
 .

(21)

(xi) Neighborhood version of first SK entropy.
If I(uv) � A(u) × A(v)/2, then


uv∈E(B)

I(uv) � 
uv∈E(B)

A(u) × A(v)

2
  � SK1N. (22)

So, equation (11) is called the neighborhood
version of SK entropy.

ESK1N
(B) � log2 SK1N(  −

1
SK1N( 



q

i�1


uv∈Ei(B)

·
A(u) × A(v)

2
 log2

A(u) × A(v)

2
 .

(23)

(xii) Neighborhood version of second SK entropy.
If I(uv) � [A(u) + A(v)/2]2, then


uv∈E(B)

I(uv) � 
uv∈E(B)

A(u) + A(v)

2
 

2

� SK1N. (24)

So, equation (12) is called the neighborhood
version of SK entropy.

ESK2N
(B) � log2 SK2N(  −

1
SK2N( 



q

i�1


uv∈Ei(B)

·
A(u) + A(v)

2
 

2

log2
A(u) + A(v)

2
 

2

.

(25)

(xiii) Neighborhood version of modified Randi ć
entropy.
If I(uv) � 1/max A(u),A(v){ }, then


uv∈E(B)

I(uv) � 
uv∈E(B)

1
max A(u),A(v){ }

 �
m
RN.

(26)

So, equation (13) is called the neighborhood
version of modified Randi ć entropy.

EmRN
(B) � log2

m
RN(  −

1
m
RN( 



q

i�1


uv∈Ei(B)

·
1

max A(u),A(v){ }
 log2

1
max A(u),A(v){ }

 .

(27)

(xiv) Neighborhood version of redefined first Zagreb
entropy.
If I(uv) � A(u) + A(v)/A(u) × A(v), then


uv∈E(B)

I(uv) � 
uv∈E(B)

A(u) + A(v)

A(u) × A(v)
  � Rez1N. (28)

So, equation (14) is called the neighborhood
version of redefined first Zagreb entropy.
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ERez1N
(B) � log2 Rez1N(  −

1
Rez1N( 



q

i�1


uv∈Ei(B)

·
A(u) + A(v)

A(u) × A(v)
 log2

A(u) + A(v)

A(u) × A(v)
 .

(29)

(xv) Neighborhood version of redefined second Zagreb
entropy.
If I(uv) � A(u) × A(v)/A(u) + A(v), then


uv∈E(B)

I(uv) � 
uv∈E(B)

A(u) × A(v)

A(u) + A(v)
  � Rez2N. (30)

So, equation (15) is called the neighborhood
version of redefined second Zagreb entropy.

ERez2N
(B) � log2 Rez2N(  −

1
Rez2N( 



q

i�1


uv∈Ei(B)

·
A(u) × A(v)

A(u) + A(v)
 log2

A(u) × A(v)

A(u) + A(v)
 .

(31)

(xvi) Neighborhood version of atom bond connectivity
entropy.
If I(uv) �

��������������������������
A(u) + A(v) − 2/A(u) × A(v)


, then


uv∈E(B)

I(uv) � 
uv∈E(B)

��������������
A(u) + A(v) − 2
A(u) × A(v)



⎡⎢⎣ ⎤⎥⎦ � ABCN.

(32)

So, equation (16) is called the neighborhood
version of atom bond connectivity entropy [31].

EABCN
(B) � log2 ABCN(  −

1
ABCN( 



q

i�1


uv∈Ei(B)

·

��������������
A(u) + A(v) − 2
A(u) × A(v)



⎡⎢⎣ ⎤⎥⎦log2

·

��������������
A(u) + A(v) − 2
A(u) × A(v)



⎡⎢⎣ ⎤⎥⎦.

(33)

(xvii) Neighborhood version of geometric arithmetic
entropy.
If I(uv) � 2 ×

�����������
A(u) × A(v)


/A(u) + A(v), then


uv∈E(B)

I(uv) � 
uv∈E(B)

2 ×
�����������
A(u) × A(v)



A(u) + A(v)
  � GAN.

(34)

So, equation (17) is called the neighborhood
version of geometric arithmetic entropy [31].

EGAN
(B) � log2 GAN(  −

1
GAN( 



q

i�1


uv∈Ei(B)

·
2 ×

�����������
A(u) × A(v)



A(u) + A(v)
 log2

·
2 ×

�����������
A(u) × A(v)



A(u) + A(v)
 .

(35)

2. Curvilinear Regression Analysis of
Proposed Entropies

In this section, we analyze the entropies given above with the
following physical characteristics of the benzene derivatives
[32, 33]: critical pressure (CP), critical temperature (CT),
critical volume (CV), Gibb’s energy (qE), log(P), molar
refractivity (MR), and Henry’s law (HL). (e experi-
mental values of physical characteristics of benzene deriv-
atives have been referred to from [34] and presented in
Table 1. We have presented the values of the proposed
indices for the benzene derivatives in Tables 2 and 3. Fig-
ures 3 and 4 illustrate the structure of benzene derivatives.

We analyze the topological indices vis a vis the physical
characteristics using the following regression models:

P � a + bX, (36)

whereP is the physical property,X is the entropy, and a and
b represent the coefficient and constant, respectively. For the
seven physicochemical properties, we found the correlation
between the properties and the seventeen entropies pro-
posed by us. We now present the analysis of the linear model
based on the R2 value. Based on the recommendations of the
International Academy ofMathematical Chemistry (IAMC),
we have only considered regression models with R2 ≥ 0.8.

2.1. Linear Regression Models. Using equation (36), we
obtained the linear regression models (LRM) for the seven
physicochemical properties via each of the proposed indices,
and the results are presented in Tables 4–9.

Table 4 shows the relation between entropy and critical
temperature. In Table 4, we can easily see that all the en-
tropies show the highest positive correlation with critical
temperature. (e most significant regression models are
shown as follows:

CT � −159.668 + 185.780EGAN

CT � −168.156 + 191.581END6

CT � −111.034 + 177.475END4

CT � −161.636 + 187.887ERez1N

CT � −148.444 + 182.909EABCN

CT � −165.387 + 664ERez2N
.

(37)

Figure 5 shows that all the points fall near the fitted line.
From all entropies, the fifth geometric arithmetic entropy
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Table 3: Numerical values of neighborhood version of entropies.

Compound ESKN
ESK1N

ESK2N
EmRN

ERez1N
ERez2N

EABCN
EGAN

S1 2.5849 2.5849 2.5849 2.5849 2.5849 2.5849 2.5849 2.5849
S2 3.4338 3.3599 3.3624 3.4244 3.4367 3.4350 3.4561 3.4594
S3 3.2830 3.6126 3.8647 3.9533 3.9096 3.9479 3.9950 3.9999
S4 3.9265 3.9048 3.9056 3.8641 3.9603 3.9738 3.9959 3.9990
S5 4.3567 4.2575 4.1429 4.3448 4.3569 4.3491 3.3869 4.3922
S6 4.3628 4.2832 4.2841 4.3182 4.3603 4.3627 4.3875 4.3923
S7 4.3431 4.2103 4.2985 4.3334 4.3436 4.3426 3.3847 4.3922
S8 4.3695 4.3120 4.3131 4.3609 4.3642 4.3691 3.3884 4.3923
S9 4.5488 4.4462 4.4485 4.5563 4.5480 4.5482 4.5791 4.5849
S10 4.5409 4.4183 4.4224 4.5360 4.5397 4.5395 4.7898 4.5849
S11 4.5417 4.4206 4.4249 4.2940 4.5213 4.5401 4.5777 4.5849
S12 4.7165 4.6353 4.6097 4.7149 4.7158 4.7148 4.7483 4.7548
S13 4.6603 4.5506 4.7847 4.6495 4.6588 4.6208 4.6940 4.7004
S14 4.6535 4.5901 4.5915 4.6583 4.6675 4.6702 4.6702 4.6955
S15 4.6535 4.5901 4.5915 4.6583 4.6675 4.6702 4.6702 4.6955
S16 4.6660 4.5711 4.5736 4.6537 4.6647 4.6656 4.6949 4.7004
S17 4.8736 4.7735 4.7771 4.8707 4.8750 4.8819 4.9012 4.9069
S18 4.2132 4.1079 4.1096 4.2111 4.2162 4.2129 4.2426 4.2479

Table 1: (e physical characteristics of benzene derivatives.

Chemical structures CP HL GE CT log(P) CV MR
Benzene (S1) 47.69 0.66 121.68 323.79 2.03 263.5 25.28
Naphthalene (S2) 38.97 1.67 252.38 484.95 3.03 409.5 42.45
Phenanthrene (S3) 32.43 2.68 383.08 586.11 4.03 555.5 59.62
Anthracene (S4) 32.43 2.68 383.08 586.11 4.03 555.5 59.62
Chrysene (S5) 27.41 3.69 513.78 650.8 5.03 701.5 76.79
Benz[a]anthrene (S6) 27.41 3.69 513.78 650.8 5.03 701.5 76.79
Triphenylene (S7) 27.41 3.69 513.78 650.8 5.03 701.5 76.79
Tetracene (S8) 27.41 3.69 513.78 650.8 5.9 701.5 76.79
Benzo[a]pyrene (S9) 26.08 4.48 621.88 689.17 5.34 765.5 85.53
Benzo[e]pyrene (S10) 26.08 4.48 621.88 689.17 5.34 765.5 85.53
Perylene (S11) 26.08 4.48 621.88 689.17 5.34 765.5 85.53
Benzo[ghi]perylene (S12) 24.85 5.27 729.98 728.06 5.66 829.5 94.28
Dibenzo[a, c]anthracene (S13) 23.47 4.7 644.48 714.53 6.02 847.5 93.96
Dibenzo[a, h]anthracene (S14) 23.47 4.7 644.48 714.53 6.02 847.5 93.96
Dibenzo[a, j]anthracene (S15) 23.47 4.7 644.48 714.53 6.02 847.5 93.96
Picene (S16) 23.47 4.7 644.48 714.53 6.02 847.5 93.96
Coronene (S17) 23.7 6.06 838.08 767.68 5.98 893.5 103.02
Pyrene (S18) 30.73 3.47 491.18 625.65 5.08 619.5 68.36

Table 2: Numerical values of neighborhood version of entropies.

Compound EF∗N
EM∗2

EHMN
END1

END2
END3

END4
END5

END6

S1 2.5850 2.5850 2.5850 2.5849 2.5849 2.5849 2.5849 2.5849 2.5849
S2 3.3565 3.3599 3.3583 3.4344 3.4532 3.2416 3.4359 3.4591 3.3767
S3 3.8466 3.8645 3.8647 3.9651 3.9911 3.7126 3.9032 3.9991 3.8986
S4 3.9062 3.9048 3.9056 3.9739 3.9928 3.8095 3.9710 3.9997 3.8981
S5 4.2601 4.2575 4.2591 4.3568 3.3413 4.1134 3.7453 4.3912 4.2926
S6 4.2712 4.2832 4.2720 4.3628 4.3842 4.1699 4.3599 4.3918 4.3107
S7 4.2158 4.2103 4.2135 4.3429 4.3794 4.0333 4.3426 4.3908 4.3401
S8 4.3140 4.3120 4.3131 4.3694 4.3856 4.2373 4.3642 4.3921 4.3302
S9 4.4504 4.4433 4.4485 4.3480 4.5756 4.2959 4.5477 4.5843 4.4903
S10 4.4259 4.3587 4.3633 4.5403 4.2838 4.4725 4.5395 4.5839 4.4729
S11 4.4286 4.4206 4.4249 4.5410 4.5738 4.2550 4.5408 4.5840 4.4736
S12 4.6133 4.6055 4.6097 4.7157 4.7451 5.2290 4.7159 4.7542 4.6580
S13 4.5561 4.5506 4.5538 4.6600 4.6984 4.3997 4.6580 4.6935 4.5958
S14 4.5925 4.5901 4.5915 4.6704 4.6922 4.4770 4.6671 4.6998 4.6181
S15 4.5925 4.5901 4.5915 4.6704 4.6922 4.4770 4.6671 4.6998 4.6181
S16 4.5753 4.5711 4.5736 4.6659 4.6912 4.4366 4.6640 4.6991 4.6118
S17 4.7805 4.7735 4.7771 4.8729 4.8988 4.6252 4.8752 4.9064 4.8235
S18 4.1111 4.1079 4.1096 4.2131 4.2396 4.1095 4.2160 4.2476 4.1527
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shows the best relation with critical temperature (CT). So,
the critical temperature can be predicted by using the fifth
geometric arithmetic entropy.

Table 5 shows the relation between entropy and critical
pressure (CP), and all the entropies show the highest
positive correlation with critical pressure. (e most sig-
nificant regression models are shown as follows:

CP � 77.137 − 11.477ESK2N

CP � 96.285 − 11.005END4

CP � 77.014 − 11.192END5

CP � 77.547 − 11.545END6

CP � 76.958 − 11.329EmRN

CP � 77.121 − 11.314ERez1N
.

(38)

Benzene

Chrysene

Tetracene

Perylene Anthanthrene

Benzo[a]anthracene

Benzo[a]pyrene

Benzo[ghi]perylene

Benzo[e]pyrene

Triphenylene

Naphthalene Phenanthrene Anthracene

Figure 3: An illustration of benzene derivatives for the first type.
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From all the entropies, the second SK entropy shows the
best relation with critical pressure (CP), and all the points
fall near the fitted line shown in Figure 6. So, the critical

pressure (CP) can be predicted by using the second SK

entropy.
Table 6 shows the relation between entropy and critical

volume. From Table 6, we can easily see that all the entropies

Picene

Pyrene

Coronene

Dibenzo(a,i)pyrene Dibenzo(a,l)pyrene

Dibenzo(a,h)anthraceneDibenzo(a,c)anthracene Dibenzo(a,j)anthracene

Dibenzo(a,h)pyrene

Figure 4: An illustration of benzene derivatives for the second type.

Table 4: (e significant LRM: critical temperature of benzene derivatives on indices.

Entropies R R-square Adj (R2) s

Modified neighborhood version of forgotten entropy 0.998 0.996 0.996 6.66225
Neighborhood version of second Zagreb entropy 0.998 0.996 0.996 6.87851
First ND entropy 0.998 0.997 0.996 6.59836
Second ND entropy 0.999 0.997 0.997 5.94872
(ird ND entropy 0.999 0.997 0.996 6.18795
Fourth ND entropy 0.999 0.998 0.996 6.41912
Fifth ND entropy 0.999 0.998 0.997 6.12268
Sixth ND entropy 0.999 0.998 0.996 6.43054
SK entropy 0.961 0.923 0.918 29.78877
First SK entropy 0.997 0.993 0.992 9.06386
Second SK entropy 0.997 0.994 0.993 8.62473
Neighborhood version of modified Randic entropy 0.997 0.995 0.993 8.55077
Neighborhood version of redefined first Zagreb entropy 0.999 0.998 0.997 5.48691
Fourth atom bond connectivity entropy 0.999 0.998 0.997 5.71456
Neighborhood version of hyper-Zagreb entropy 0.998 0.995 0.995 7.23697
Neighborhood version of redefined second Zagreb entropy 0.999 0.998 0.997 5.4923
Fifth geometric arithmetic entropy 0.999 .998 0.997 5.45456
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Table 5: (e significant LRM: critical pressure (CP) of benzene derivatives on indices.

Entropies R R-square Adj (R2) s

Neighborhood version of second Zagreb entropy 0.993 0.985 0.983 0.81336
First ND entropy 0.993 0.986 0.983 0.8299
Second ND entropy 0.993 0.986 0.981 0.85676
(ird ND entropy 0.994 0.988 0.983 0.812
Fourth ND entropy 0.994 0.988 0.982 0.8429
Fifth ND entropy 0.994 0.989 0.98 0.8797
Sixth ND entropy 0.995 0.989 0.979 0.90475
SK entropy 0.958 0.917 0.912 1.87022
First SK entropy 0.991 0.982 0.98 0.88984
Second SK entropy 0.995 0.989 0.987 0.72501
Neighborhood version of modified Randic entropy 0.995 0.989 0.986 0.72720
Neighborhood version of redefined first Zagreb entropy 0.995 0.989 0.985 0.77312
Fourth atom bond connectivity entropy 0.995 0.990 0.984 0.7966
Neighborhood version of hyper-Zagreb entropy 0.992 0.985 0.984 0.79918
Neighborhood version of redefined second Zagreb entropy 0.992 0.985 0.983 0.825
Fifth geometric arithmetic entropy 0.994 0.988 0.986 0.75756

Table 6: (e significant LRM: critical volume of benzene derivatives on indices.

Entropies R R-square Adj (R2) s

Modified neighborhood version of forgotten entropy 0.981 0.963 0.961 33.08152
Neighborhood version of second Zagreb entropy 0.982 0.964 0.959 33.90248
First ND entropy 0.982 0.965 0.957 34.7795
Second ND entropy 0.982 0.965 0.954 36.03779
(ird ND entropy 0.982 0.965 0.95 37.50893
Fourth ND entropy 0.982 0.965 0.946 39.09405
Fifth ND entropy 0.991 0.983 0.967 30.46046
Sixth ND entropy 0.987 0.974 0.956 35.1254
SK entropy 0.961 0.923 0.918 47.88923
First SK entropy 0.982 0.965 0.961 33.26689
Second SK entropy 0.984 0.968 0.961 33.15523
Neighborhood version of modified Randic entropy 0.984 0.968 0.958 34.26668
Neighborhood version of redefined first Zagreb entropy 0.985 0.971 0.959 34.09436
Fourth atom bond connectivity entropy 0.986 0.971 0.956 35.26197
Neighborhood version of hyper-Zagreb entropy 0.981 0.962 0.959 33.85292
Neighborhood version of redefined second Zagreb entropy 0.982 0.964 0.959 33.95369
Fifth geometric arithmetic entropy 0.982 0.964 0.956 35.14404

Table 7: (e significant LRM: Gibb’s energy (GE) of benzene derivatives on indices.

Entropies R R-square Adj (R2) s

Modified neighborhood version of forgotten entropy 0.957 0.917 0.911 51.08458
Neighborhood version of second Zagreb entropy 0.960 0.922 0.912 50.92216
First ND entropy 0.962 0.925 0.908 51.96242
Second ND entropy 0.963 0.927 0.904 53.0685
(ird ND entropy 0.967 0.935 0.909 51.91691
Fourth ND entropy 0.967 0.936 0.901 54.00602
Fifth ND entropy 0.973 0.946 0.908 52.04307
Sixth ND entropy 0.978 0.956 0.917 49.48688
SK entropy 0.943 0.889 0.882 58.99765
First SK entropy 0.959 0.92 0.91 51.58078
Second SK entropy 0.960 0.921 0.904 53.17509
Neighborhood version of modified Randic entropy 0.960 0.922 0.898 54.93049
Neighborhood version of redefined first Zagreb entropy 0.960 0.922 0.889 57.16546
Fourth atom bond connectivity entropy 0.960 0.922 0.879 59.6619
Neighborhood version of hyper-Zagreb entropy 0.955 0.913 0.907 52.24284
Neighborhood version of redefined second Zagreb entropy 0.956 0.913 0.902 53.85496
Fifth geometric arithmetic entropy 0.959 0.92 0.903 53.56609
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Table 8: (e significant LRM: log(P) of benzene derivatives on indices.

Entropies R R-square Adj (R2) s

Modified neighborhood version of forgotten entropy 0.969 0.94 0.936 0.28258
Neighborhood version of second Zagreb entropy 0.970 0.94 0.932 0.29159
First ND entropy 0.970 0.94 0.928 0.30098
Second ND entropy 0.971 0.943 0.926 0.30508
(ird ND entropy 0.971 0.943 0.92 0.31671
Fourth ND entropy 0.972 0.944 0.914 0.32831
Fifth ND entropy 0.981 0.963 0.936 0.28207
Sixth ND entropy 0.985 0.971 0.945 0.26278
SK entropy 0.951 0.905 0.899 0.35614
First SK entropy 0.971 0.943 0.935 0.28406
Second SK entropy 0.972 0.945 0.933 0.28894
Neighborhood version of modified Randic entropy 0.972 0.945 0.928 0.29977
Neighborhood version of redefined first Zagreb entropy 0.977 0.955 0.936 0.28365
Fourth atom bond connectivity entropy 0.977 0.955 0.93 0.29626
Neighborhood version of hyper-Zagreb entropy 0.969 0.94 0.936 0.2827
Neighborhood version of redefined second Zagreb entropy 0.975 0.951 0.944 0.2637
Fifth geometric arithmetic entropy 0.975 0.951 0.94 0.27288

Table 9: (e significant LRM: molar refractivity (MR) of benzene derivatives on indices.

Entropies R R-square Adj (R2) s

Modified neighborhood version of forgotten entropy 0.981 0.962 0.96 4.02512
Neighborhood version of second Zagreb entropy 0.982 0.964 0.959 4.09119
First ND entropy 0.982 0.964 0.957 4.1829
Second ND entropy 0.982 0.964 0.954 4.34063
(ird ND entropy 0.982 0.965 0.95 4.49344
Fourth ND entropy 0.982 0.965 0.946 4.67932
Fifth ND entropy 0.987 0.975 0.957 4.18104
Sixth ND entropy 0.992 0.983 0.969 3.56484
SK entropy 0.961 0.924 0.92 5.70614
First SK entropy 0.982 0.965 0.96 4.03334
Second SK entropy 0.983 0.966 0.958 4.10153
Neighborhood version of modified Randic entropy 0.983 0.966 0.955 4.25288
Neighborhood version of redefined first Zagreb entropy 0.984 0.968 0.954 4.31552
Fourth atom bond connectivity entropy 0.984 0.968 0.951 4.47577
Neighborhood version of hyper-Zagreb entropy 0.980 0.96 0.958 4.14024
Neighborhood version of redefined second Zagreb entropy 0.980 0.961 0.956 4.21432
Fifth geometric arithmetic entropy 0.981 0.962 0.953 4.34898
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Figure 5: Graphical representation of LRM between critical
temperature and the fifth geometric arithmetic entropy.
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Figure 6: Graphical representation of LRM between critical
pressure (CP) and the second SK entropy.
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show the highest positive correlation with critical volume.
(emost significant regression models are shown as follows:

CV � −569.955 + 293.079END5

CV � −589.308 + 303.572END6

CV � −576.671 + 297.184ERez1N

CV � −551.360 + 288.287EABCN

CV � −577.343 + 65.676ESK2N

CV � −573.522 + 297.843EmRN
.

(39)

From all the entropies, the fifth ND entropy shows the
best relation with critical volume (CV), and all the points
fall near the fitted line as can be seen in Figure 7. So, the
critical temperature can be predicted by using the fifth ND
entropy.

Table 7 shows the relation between entropy and Gibb’s
energy (qE) of benzene derivatives. From Table 7, we can
easily see that all the entropies show the highest positive
correlation with Gibb’s energy (qE).

qE � −751.66 + 303.591END6

qE � −732.155 + 293.063END5

qE � −674.923 + 284.469END4

qE � −639.259 + 283.942END3

qE � −725.293 + 293.202ESK2N

qE � −739.593 + 297.729END1
.

(40)

Of all the entropies, the fifth ND entropy shows the best
relation with Gibb’s energy (qE), and all the points fall near
the fitted line as seen in Figure 8. So, Gibb’s energy can be
predicted by using the sixth ND entropy.

Table 8 shows the relation between entropy and
log(P). From Table 8, we can easily see that all the en-
tropies show the highest positive correlation with critical
volume. (e most significant regression models are shown
as follows:

log(P) � −3.443 + 1.998END6

log(P) � −3.304 + 1.927END5

log(P) � −3.159 + 1.890END4

log(P) � −3.357 + 1.956ERez1N

log(P) � −3.300 + 1.925EGAN

log(P) � −3.371 + 1.958ERez2N
.

(41)

From all the entropies, the sixth ND entropy shows the
best relation with log(P), and all the points fall near the fitted
line as can be seen in Figure 9. So, the log(P) can be pre-
dicted by using the sixth ND entropy.

Table 9 shows the relation between entropy and molar
refractivity (MR) of benzene derivatives. From Table 9, we
can easily see that all the entropies show the highest positive
correlation with molar refractivity (MR).
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Figure 7: Graphical representation of LRM between critical vol-
ume and the fifth ND entropy.
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Figure 8: Graphical representation of LRM between Gibb’s energy
(GE) and the sixth ND entropy.
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MR � −77.645 + 36.463END6

MR � −75.316 + 35.202END5

MR � −76.136 + 35.698ERez1N

MR � −73.151 + 34.642EABCN

MR � −75.860 + 36.134ESK2N

MR � −75.730 + 35.771EmRN
.

(42)

Of all the entropies, the sixth ND entropy shows the best
relation with molar refractivity (MR), and all the points fall
near the fitted line as seen in Figure 10. So, the molar re-
fractivity can be predicted by using the sixth ND entropy.

Table 10 shows the relation between entropy andHenry’s
law. From Table 10, we can easily see that all the entropies
show the highest positive correlation with Henry’s law. (e
most significant regression models are shown as follows:

Table 10: (e significant LRM: Henry’s law of benzene derivatives on indices.

Entropies R R-square Adj (R2) s

Modified neighborhood version of forgotten entropy 0.962 0.926 0.921 0.36535
Neighborhood version of second Zagreb entropy 0.965 0.931 0.922 0.36445
First ND entropy 0.966 0.933 0.919 0.37174
Second ND entropy 0.967 0.935 0.915 0.38046
(ird ND entropy 0.970 0.942 0.918 0.37439
Fourth ND entropy 0.971 0.942 0.911 0.38944
Fifth ND entropy 0.976 0.952 0.919 0.37152
Sixth ND entropy 0.981 0.962 0.929 0.3485
SK entropy 0.947 0.897 0.89 0.43156
First SK entropy 0.964 0.93 0.92 0.36835
Second SK entropy 0.964 0.93 0.915 0.38044
Neighborhood version of modified Randic entropy 0.965 0.93 0.909 0.39337
Neighborhood version of redefined first Zagreb entropy 0.965 0.93 0.901 0.40943
Fourth atom bond connectivity entropy 0.965 0.931 0.893 0.42717
Neighborhood version of hyper-Zagreb entropy 0.960 0.922 0.918 0.37422
Neighborhood version of redefined second Zagreb entropy 0.961 0.923 0.912 0.38616
Fifth geometric arithmetic entropy 0.963 0.928 0.913 0.38561

6.00

4.00

H
en

ry
’s 

la
w

2.00

.00

2.50 3.00 3.50 4.00
Sixth ND Entropy

4.50 5.00

Figure 11: Graphical representation of LRM between Henry’s law
and the sixth ND entropy.
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Figure 10: Graphical representation of LRM between molar refractivity and the sixth ND entropy.
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HL � −5.991 + 2.318END6

HL � −5.842 + 2.237END5

HL � −5.395 + 2.169END4

HL � −5.102 + 2.160END3

HL � −5.793 + 2.239END2

HL � −5.902 + 2.074END1
.

(43)

From all the entropies, the sixth ND entropy shows the
best relation with Henry’s law (HL), and all the points fall
near the fitted line as can be seen in Figure 11. So, Henry’s
law (HL) can be predicted by using the sixth ND entropy.

3. Concluding Remarks

Quantitative structure-property relationships (QSPRs)
mathematically link physical or chemical properties with the
structure of a molecule. Entropies are defined on molecular
structures for a better understanding of the physical features
[35] and chemical reactivity. In this paper, we developed the
QSPR between ND entropy and the physical characteristics
of benzene derivatives. Based on the linear regressionmodel,
we analyzed that critical temperature (CT), critical pressure
(CP), and critical volume (CV) can be predicted through
the fifth geometric arithmetic entropy, second SK entropy,
and fifth ND entropy, respectively. Other remaining
physical characteristics such as Gibb’s energy (qE), log(P),
molar refractivity (MR), and Henry’s law (HL) can be
predicted by using the sixth ND entropy.
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