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In this paper, DSEKmodel with fractional derivatives of the Atangana-Baleanu Caputo (ABC) is proposed.)is paper gives a brief
overview of the ABC fractional derivative and its attributes. Fixed point theory has been used to establish the uniqueness and
existence of solutions for the fractional DSEKmodel. According to this theory, we will define two operators based on Lipschitzian
and prove that they are contraction mapping and relatively compact. Ulam-Hyers stability theorem is implemented to prove the
fractional DSEK model’s stability in Banach space. Also, fractional Euler’s numerical method is derived for initial value problems
with ABC fractional derivative and implemented on fractional DSEK model. )e symmetric properties contribute to determining
the appropriate method for finding the correct solution to fractional differential equations. )e numerical solutions generated
using fractional Euler’s method have been plotted for different values of α where α ∈ (0, 1] and different step sizes h. Result
discussion will be given, describing the changes that occur due to the step size h.

1. Introduction

Fractional calculus is as historic as integer calculus but not
until 1819, it was properly introduced in the form of defi-
nitions and functions. Many scientists, researchers, and
mathematicians played their role in developing its theory
such as [1–5]. Since fractional calculus was developed the-
oretically at first and had no practical application at the time,
it was not as well known as integer calculus among other
areas of science. However, after the contribution of Professor
Mandelbrot’s fractal theory, fractional calculus theory de-
veloped rapidly and soon became the hot topic among all
researchers around the globe.

)e existing theory of nonlinear science is now seemed
to be only focused on fractional order calculus theory and
the theory of chaos and dissipative structure ([6, 7]).)e fact
that fractional calculus describes the heredity and memory

of any physical phenomenon is fascinating [8, 9]. As a result,
it is now used more than integer calculus in fluid dynamics,
quantum mechanics, mathematical biology applications,
chemistry, control and signal theory, economics, image
processing, etc. Models developed in many areas of science
and engineering are observed to be best explained by
fractional differential equations. )e symmetries can be
found by solving a related set of partial fractional differential
equations. Since integer-order models lack memory and
heredity, they cannot adequately and sufficiently describe
physical phenomena in many cases. )ese applications have
also led to the rapid development of fractional calculus
theory. )e authors of [10–13] have a great deal of literature
on the subject describing applications and types of fractional
derivatives. It is critical to note that every one of those
fractional derivative order definitions has its own advantages
and disadvantages.
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Aside from the mathematical satisfactions of the frac-
tional-order Atangana-Baleanu derivative, the new deriva-
tive is being studied due to the necessity of implementing a
model depicting the behavior of orthodox viscoelastic ma-
terials, thermal medium, and other materials. )e proposed
mechanism can depict material heterogeneities as well as
some structure or media at multiple scales.

)e new kernel’s nonlocality enables the full description
of memory inside of structure and media with multiple
scales, which cannot be represented by classical fractional
derivatives or those of the Caputo-Fabrizio type. Further-
more, we believe that Atangana-Baleanu derivatives can play
an important role in the study of the microstructural be-
havior of some materials, particularly those involving
nonlocal exchanges, which are important in defining the
material’s properties states [14]. Atangana-Baleanu deriva-
tives are thus extremely useful in describing a wide range of
scientific, engineering, and technological problems.

Descemet’s stripping endothelial keratoplasty (DSEK) is
the name given to eye surgery [15–17] in which a damaged
corneal layer is replaced with a healthy corneal layer from a
donor or synthetic cornea. Cornea is a clear layer of the eye
that is very important in the anterior part of the eye; if it is
scratched or damaged, it affects vision. It itself is made up of
five layers, see Figure 1. Keeping this in mind, the authors of
[18, 19] created the DSEK model, which predicts the be-
havior of ocular parameters posttreatment. Because this
procedure has never been studied mathematically as an
ordinary system of differential equations, this work is ex-
tremely important. Since fractional calculus has been said to
be the generalization of integer calculus, the fractional DSEK
model is developed and studied theoretically and numeri-
cally in this paper.

In this paper, the first section gives an overview of the
literature background of fractional calculus and the DSEK
model. )e second section gives the preliminary concepts of
fractional calculus that will be used in this work. Section
three is based on the explanation of the fractional DSEK
model. Section four shows the existence of a solution by the
fixed point theory of the fractional DSEKmodel. Section five
describes the Ulam-Hyers stability analysis of fractional
DSEK. Section 6 describes the computation of fractional
Euler’s method for ABC fractional derivative and the ap-
plication of fractional Euler’s method to fractional DSEK.
)e last section is the discussion of the results obtained and
the conclusion of this paper.

2. Preliminaries of Fractional Calculus

2.1. Atangana-Baleanu Caputo Fractional Derivative

Definition 1. )e authors of [20] introduced a new Caputo
fractional derivative as

D
α
t (g(t)) �

N(α)

1 − α


t

c
g′(y)e

− α/1− α(t− y)dy, (1)

where g ∈ H1(b, c), c> b, α ∈ [0, 1], N(α) is the normaliza-
tion function that follows the condition N(0) � N(1) � 1.

Definition 2. If the function does not follow the condition
N(0) � N(1) � 1, then it takes the form as

D
α
t (g(t)) �

αN(α)

1 − α


t

c
(g(t) − g(y))e

− α/1− α(t− y)dy. (2)

)is equation can also take the form of the condition
N(0) � N(∞) � 1

D
ρ
t (g(t)) �

N(ρ)

ρ


t

c
g′(y)e

− (t− y)/ρdy, (3)

where ρ � 1 − α/α ∈ [0,∞), also α � 1/1 + ρ ∈ [0, 1].
)is derivative was defined by [20] to involve an expo-

nential kernel in fractional derivatives to represent the results
of dynamic systemsmemory effects more accurately.With the
passage of time, it occurred that this definition has a flaw in
that it does not give the original function when α � 1. To
overcome this problem, the authors of [21] presented the
accurate kernel and modified this definition accordingly.

Definition 3. Let the new fractional derivative be defined as

ABC
c D

α
t (g(t)) �

N(α)

1 − α


t

c
g′(y)E

α/α− 1(t− y)α

α dy, (4)

where g ∈ H1(b, c), c> b also α ∈ [0, 1] and N(α) has the
same properties defined in [20]. Here, Eα is the generalized
Mittag-Leffler function defined as Eα � Eα(− tα) � 

∞
k�0

(− t)αk/Γ(αk + 1).
For the above definition, the constant function has a

fractional derivative of zero. )e above description would be
helpful when solving real-world issues and will also provide
a great benefit in utilizing the Laplace transform to solve any
initial state physical problem. Nevertheless, if alpha is 0, we
will not recover the initial function except when the function
vanishes at the origin.We suggest the following definition, in
order to avoid this problem.
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Figure 1: Five layers of the cornea.
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Definition 4. Let the new fractional derivative be defined as

ABR
c D

α
t (g(t)) �

N(α)

1 − α
d
dt


t

c
g(y)E

− α/1− α(t− y)α

α dy, (5)

where g ∈ H1(b, c), c> b also α ∈ [0, 1] and N(α) has the
same properties defined in [20]. Here, Eα is the generalized
Mittag-Leffler function defined as Eα � Eα(− tα)

� 
∞
k�0 (− t)αk/Γ(αk + 1).
Both definitions have a nonlocal kernel. For calculations

in this paper, we will use definitions in (4) and (5).

2.2. Properties of Atangana-Baleanu Caputo Fractional
Derivative

(i) Laplace transformation on equation (4)is

L
ABR
0 D

α
t (g(t)) (s) �

N(α)

1 − α
s
α
L g(t) (s)

s
α+α/1 − α

. (6)

(ii) Laplace transformation on equation (5)is

L 0
ABC

D
α
t (g(t)) (s) �

N(α)

1 − α
s
α
L g(t) (s) − s

α− 1
g(0)

s
α+α/1 − α

.

(7)

(iii) Let g ∈ H1(b, c), c> b, α ∈ [0, 1], then the fol-
lowing relation exists [20]:

ABR
0 D

α
t (g(t)) �

ABR
0 D

α
t (g(t)) + H(t). (8)

(iv) If g is a continuous function on some closed interval
[a, b]. )en, the following inequality can be written
on [a, b]

ABR
0 D

α
t (g(t))‖<

N(α)

1 − α
K, ‖h(t)‖ � max

b≤t≤c
‖h(t)‖. (9)

(v) Lipschitz condition Atangana-Baleanu Caputo
fractional derivative satisfies the Lipschitz condition
in Riemann and Caputo sense, and the following
inequality exists:

ABC
0 D

α
t (g(t)) −

ABC
0 D

α
t (f(t))‖≤H‖g(t) − f(t)‖. (10)

Similarly, for (5), the Lipschitz condition exists as
ABR
0 D

α
t (g(t)) −

ABR
0 D

α
t (f(t))‖≤H‖g(t) − f(t)‖. (11)

(vi) AB fractional integral for α ∈ (0, 1] the AB frac-
tional integral for g(t) ∈ H1(0, t) and nonlocal
kernel is given as

AB
b I

α
t (g(t)) �

1 − α
N(α)

g(t)

+
α

N(α)Γ(α)


t

b
(t − y)

α− 1
g(y)dy, T> 0.

(12)

When α � 1, the ordinary integral is obtained, and for
α � 0, the initial function is obtained.

For proof of these, see [20].

Lemma 1. [21] Suggests that the proposed problem for
α ∈ (0, 1] has a solution; that is,

ABC
D

α
t g(t) � η(t)g(0) � g0, (13)

its solution is given by g(t) � g0 + 1 − α/N(α)η(t)

+α/N(α)Γ(α) 
t

0 (t − y)α− 1g(y)dy.

3. Fractional DSEK Model

Asmentioned in Section 2, the definitions in (4) and (5) have
nonlocal kernels, and therefore, Atangana-Baleanu Caputo
fractional derivative operator’s performance in modeling eye
surgery is better than any other definition. It inspired the
valuable applications of several fractional operators in dy-
namic mathematical models; therefore, we are researching
the dynamics of eye surgery derived in [18] by a system of
nonlinear differential equations by involving ABC fractional
derivative.

ABC
D

α
t p(t) � a

r(t)

s(t)
+ cq(t) + δ,

ABC
D

α
t q(t) � − δ − β

r(t)

s(t)
− cq(t) − s(t)q(t),

ABC
D

α
t r(t) � − β

r(t)

s(t)
− q(t) − s(t)p(t),

ABC
D

α
t s(t) � s(t)p(t) + s(t)q(t) + q(t) ,

(14)

with initial conditions

p(0) � p0 ≥ 0, q(0) � q0 ≥ 0, r(0) � r0 ≥ 0, s(0) � s0 ≥ 0,

(15)

where ABCDα
t is the Atangana-Baleanu Caputo fractional

derivative of order α. DSEK model is based on the same
conditions given by [18]. Also, the defined parameters have
the same description as given by [18]. Such as p(t) is the
refractive index, q(t) is the axial length, r(t) is the corneal
curvature, and s(t) is the central corneal thickness.

3.1. Preliminaries for Fractional DSEKModel. For fractional
analysis of the DSEK model, let us define ξ � (p, q, r, s). To
define the Banach space, let us say we have B � [0, t] where
0≤T≤ t<∞. )en, the field can be written as G � C(B, R4)

under the norm supremum as

‖ξ‖ � sup
T∈B

|ξ(T)|: ξ ∈ G{ }, (16)

where |ξ| � |p| + |q| + |r| + |s|. Also, p, q, r, s, N ∈ C[0, t].

Definition 5. Let B be a Banach space. )en, ψ defined as
B⟶ B will be a Lipschitzian if there exists a constant l> 0
for which the inequality exists such that

ψξ1 − ψξ2
����

����≤ l ξ1 − ξ2
����

����, (17)
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for all ξ1, ξ2 ∈ B. Where l is the Lipschitz constant for ψ. If
l< 1, then ψ is a contraction.

Theorem 1. Let B be a Banach space and ψ: B⟶ B be a
contraction mapping. >en, there must exist a unique fixed
point of ψ.

Theorem 2. A subset of Banach space B is supposed to be N.
Let N be convex, closed, and nonempty. Suppose that F and G

map N into G, and the following relations exist:

(i) Fu + Gv ∈ N∀ξ1, ξ2 ∈ N

(ii) F is continuous and compact
(iii) G is a contraction mapping

>en, there exists ξ ∈ N such that Fξ + Gξ � ξ.

4. Existence of Solutions for Fractional
DSEK Model

By using the fixed-point theory, let us prove the uniqueness
and existence of the DSEK model. To prove its uniqueness
and existence, let us reformulate the DSEK model of (14).

ABC
D

α
t p(t) � G1(t, p, q, r, s),

ABCDα
t q(t) � G2(t, p, q, r, s),

ABCDα
t r(t) � G3(t, p, q, r, s),

ABCDα
t s(t) � G4(t, p, q, r, s),

(18)

where

G1(t, p, q, r, s) � a
r(t)

s(t)
+ cq(t) + δ,

G2(t, p, q, r, s) � − δ − β
r(t)

s(t)
− cq(t) − s(t)q(t),

G3(t, p, q, r, s) � − β
r(t)

s(t)
− q(t) − s(t)p(t),

G4(t, p, q, r, s) � s(t)p(t) + s(t)q(t) + q(t).

(19)

Let us consider system (14) as
ABC

D
α
t p(t)ξ(t) � G(t, ξ(t)), (20)

with an initial condition ξ(0) � ξ0 ≥ 0 where

ξ(t) � (p, q, r, s)
T
,

ξ0 � p0, q0, r0, s0( 
T
,

G(t, ξ(t)) � Gn(t, p, q, r, s)( 
T
, n � 1, 2, 3, 4.

(21)

In (21), the superscript T represents the transpose. By
using Lemma 1 and AB fractional integral, the (20) becomes
the fractional integral equation as

ξ(t) � ξ0 +
1 − α
N(α)

G(t, ξ(t))

+
α

N(α)Γ(α)


t

0
(t − y)

α− 1
G(y, ξ(y))dy.

(22)

Now, to prove the existence uniqueness, we consider two
hypotheses based on Lipschitzian and some growth con-
dition assumptions.

Hypothesis 1. For two constants ϕE, θE, the inequality exists;
that is,

|G(t, ξ(t))|≤ϕE|ξ| + θE, t ∈ [0, T]. (23)

Hypothesis 2. For a constant ME > 0 such that

G t, ξ1(  − G t, ξ2( 


≤ME ξ1 − ξ2


, (24)

for each ξ ∈ B and T ∈ [0, t].
Let us define two operators ψ1 and ψ2 as

ψ1ξ(t) � ξ0 +
1 − α
N(α)

G(T, ξ(T)),

ψ2ξ(t) �
α

N(α)Γ(α)


T

0
(T − y)

α− 1
G(y, ξ(y))dy,

(25)

where B � ψ1 + ψ2.

Theorem 3. Consider a closed convex set
Fϵ � ξ ∈ B: ‖ξ‖≤ ϵ{ } where ϵ � β2/1 − β1 such that β1 � [1 −

α/N(α) + tα/N(α)Γ(α)]ϕE < 1, β2 � |ξ0| + [1 − α/N(α) +

tα/N(α)Γ(α)]θE and prove that

ψ1ξ1 + ψ2ξ2
����

���� ∈ Fϵ, (26)

for ξ1, ξ2 ∈ Fϵ
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ψ1ξ1 + ψ2ξ2
����

����≤ max
T∈[0,t]

ξ0


 +
1 − α
N(α)

|G(T, ξ(T))| +
α

N(α)Γ(α)


T

0
(T − y)

α− 1
|G(y, ξ(y))|dy 

≤ ξ0


 +
1 − α
N(α)

ϕE‖ξ‖ + θE  +
α

N(α)Γ(α)


T

0
(T − y)

α− 1 ϕE‖ξ‖ + θE dy 

� ξ0


 +
1 − α
N(α)

+
t
α

N(α)Γ(α)
 θE +

1 − α
N(α)

+
t
α

N(α)Γ(α)
 ϕEϵ

� β1 + β2ϵ≤ ϵ.

(27)

>is confirms that ψ1ξ1 + ψ2ξ2 ∈ Fϵ.

Theorem 4. Prove that ψ1 is a contraction.
To prove that ψ1 is a contraction suppose ξ, ξ∗ ∈ Fϵ. >en,

by using Hypothesis 2, we have

ψ1ξ − ψ2ξ
∗����
���� max

T∈[0,t]

1 − α
N(α)

|G(T, ξ(T)) − G T, ξ∗(T)( 

≤
1 − α
N(α)

ME max
T∈[0,t]

ξ(T) − ξ∗(T)




≤
1 − α
N(α)

ME ξ − ξ∗


.

(28)

As we know that 1 − α/N(α)ME < 1,ψ1 is a contraction
mapping.

Theorem 5. Prove that ψ2 is relatively compact.
We can prove that ψ2 is relatively compact by showing

that ψ2 is continuous, uniformly bounded, and also
equicontinuous.

As we know that ξ(T) is continuous, then ψ2ξ(T) is also
continuous.

Let us assume that ξ ∈ Fϵ, then

ψ2ξ
����

����≤ max
T∈[0,t]

α
N(α)Γ(α)


T

0
(T − y)

α− 1
|G(y, ξ(y))|dy

≤
α

N(α)Γ(α)


T

0

(T − y)
α− 1 ϕE max

T∈[0,t]
|ξ| + θE dy

≤
α

N(α)Γ(α)


T

0
(T − y)

α− 1 ϕE‖ξ‖ + θE dy

≤
t
α

N(α)Γ(α)
ϕEϵ + θE dy.

(29)

Hence, proved that ψ2 is uniformly bounded on Fϵ. Now,
we have to show that ψ2 is equicontinuous. Assume ξ ∈ Fϵ
and T1, T2 ∈ [0, t] where T1 <T2. >en, we have

ψ2ξ T2(  − ψ2ξ T1( 
����

����≤
α

N(α)Γ(α)


T2

T1

T2 − y( 
α− 1

|G(y, ξ(y))|dy

+
α

N(α)Γ(α)


T1

0
T1 − y( 

α− 1
− T2 − y( 

α− 1
|G(y, ξ(y))|dy

≤
ϕEϵ + θE 

N(α)Γ(α)
T2 − T1( 

α
+ T

α
1 − T

α
2(  + T2 − T1( 

α
 

�
2 ϕEϵ + θE 

N(α)Γ(α)
T2 − T1( 

α
� lim

T1⟶ T2

2 ϕEϵ + θE 

N(α)Γ(α)
T2 − T1( 

α⟶ 0.

(30)

Now, the Arzelá-Ascoli theorem suggests that ψ2 is rel-
atively compact, and hence, it is completely continuous.

Theorem 6. If Hypothesis 1 and Hypothesis 2 hold, then the
fractional integral equation that is equation (20) which is the
solution of equation (12) has at least one solution only if 1 −

α/N(α)ME where β1 is

β1 �
1 − α
N(α)

+
t
α

N(α)Γ(α)
 ϕE < 1. (31)

By using >eorems 2–5, it is proved that the integral
equation given in (22) has at least one solution, and conse-
quently, the DSEK model (14) under consideration also has at
least one solution.
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Theorem 7. Prove that integral equation (20) has a unique
solution if β3 � (1 − α/N(α) + tα/N(α)Γ(α))ME < 1 under
Hypothesis 2.

As we have ψ: B⟶ B defined as

ψξ(t) � ξ0 +
1 − α
N(α)

G(T, ξ(T))

+
α

N(α)Γ(α)


T

0
(T − y)

α− 1
G(y, ξ(y))dy.

(32)

Let ξ, ξ∗ ∈ B and T ∈ [0, t]. >en, we have

ψξ(t) − ψξ∗
����

����≤ max
T∈[0,T]

1 − α
N(α)

G(T, ξ(T)) − G T, ξ∗(T)( 




+ max
T∈[0,T]]

α
N(α)Γ(α)


T

0
(T − y)

α− 1
G(y, ξ(y)) − G y, ξ∗(y)( 


dy

≤
1 − α
N(α)

+
t
α

N(α)Γ(α)
 ME ξ − ξ∗

����
����.

(33)

Hence, β3 suggests ψ is a contraction. Hence, (22) has a
unique solution which suggests that (14) also has a unique
solution.

5. Ulam-Hyers Stability for DSEK Model

Stability analysis of nonlinear dynamical models is a must.
So, in this work, we use Ulam-Hyers stability for DSEK
model12 with some nonlinear functional analysis concepts.
Ulam-Hyers stability was introduced in 1940 by [22, 23] as a
stability study for functional equations. )is acted as a
motivator for various researchers, and then, this stability was
discussed in many forms. Using the fixed-point technique,
the authors in [24] investigated the Hyers-Ulam-Rassias and
Hyers-Ulam stability of the fractional Volterra integral-
differential equation. In a Banach space, some results on
generalized Hyers-Ulam stability of the linear differential
equation were introduced in [25]. In [26], the authors in-
vestigated the Hyers-Ulam stability of first-order linear
differential equations and extended previous results using
the integral factor approach. In [27], the Hyers-Ulam-
Rassias stability of a certain fractional differential equation
was discussed, as well as the Hyers-Ulam stability of a certain
fractional differential equation. For a particular family of
fractional integrodifferential equations, the stability of
Ulam-Hyers, Ulam-Hyers-Rassias, and semi-Ulam-Hyers-
Rassias on some intervals was studied in [28]. )e Ulam-
Hyers and generalized Ulam-Hyers-Rassias stabilities for the
solution of a fractional-order pseudoparabolic partial dif-
ferential equation were investigated using the Gronwall
inequality [29].)e existence and uniqueness of solutions, as
well as Ulam-Hyers-Rassias stability, of an impulsive certain
fractional differential equation were investigated in [30].
Sometimes, it is the stability analysis of differential equation

ordinary or partial, integral equations, functional equations,
etc. Various types have been formed of Ulam-Hyers stability
theory, namely, Ulam-Hyers-Rassias, semi-Ulam-Hyers-
Rassias [28, 31], and Ulam stability [32].

Definition 6. For some λ> 0, ξ ∈ B if
ABC

D
α
t
ξ(T) − G(T, ξ(T))



≤ λ, (34)

there must exist ξ ∈ B that satisfies the DSEK model (14)
having an initial condition

ξ(0) � ξ(0), (35)

where ‖ξ − ξ‖≤ ϵλ such that

ξ(t) � (p, q, r,s)
T
,

ξ0 � p0, q0, r0, s0( 
T
,

G(t, ξ(t)) � Gn(t, p, q, r,s)( 
T
, n � 1, 2, 3, 4,

λ � m λ1, λ2, λ3, λ4( 
T
,

ϵ � m ϵ1, ϵ2, ϵ3, ϵ4( 
T
,

(36)

with this property, if there exists an ϵ> 0, then it is said that
the DSEK model (12) is UlamHyers stable.

Remark 1. Let f be a small perturbation such that
f ∈ C[0, t] where f(0) � 0 has the properties given as
follows:

(i) |f(T)≤ λ|, where T ∈ [0, t] and λ1 > 0
(ii) For T ∈ [0, t] the model becomes

ABC
D

α
t
ξ(T) � G(T, ξ(T)) + f(T), (37)

where f(T) � (f1(T), f2(T), f3(T), f4(T))T the super-
script T represents the transpose.

Lemma 2. Perturbed system (35)
ABC

D
α
t
ξ(T) � G(T, ξ(T)) + f(T),

ξ(0) � ξ0,
(38)

has a solution that satisfies the inequality
ξf(T) − ξ(T)



≤ lλ, (39)

ξf(T) represents the solution of the system (37),

l �
Γ(α)(1 − α) + t

α

N(αΓ(α))
 . (40)

By using Remark 1 and Lemma 2, the solution of system
(37) is given as

6 Complexity



ξf(T) � ξ0 +
1 − α
N(α)

G(T, ξ(T))

+
α

N(α)Γ(α)


T

0
(T − y)

α− 1
G(y, ξ(y))dy+

1 − α
N(α)

f(T) +
α

N(α)Γ(α)


T

0

(T − y)
α− 1

G(y)dy.

(41)

Also, we know that

ξ(T) � ξ0 +
1 − α
N(α)

G(T, ξ(T))

+
α

N(α)Γ(α)


T

0
(T − y)

α− 1
G(y, ξ(y))dy.

(42)

Now, Remark 1 suggests that

ξf(T) − ξ(T)


≤
1 − α
N(α)

|f(T)|

+
α

N(α)Γ(α)


T

0
(T − y)

α− 1
|f(y)|d

≤
Γ(α)(1 − α) + t

α

N(αΓ(α))
 λ � lλ.

(43)

Theorem 8. By using >eorem 4, it is proven that the DSEK
system (35) is Ulam-Hyers stable in B. Let the DSEK system
(12) with initial conditions

ξ(0) � ξ(0), (44)

has a unique solution as ξ ∈ B and ξ ∈ B is the solution of
inequality (34), and then,

ξ(T) � ξ0 +
1 − α
N(α)

G(T, ξ(T))

+
α

N(α)Γ(α)


T

0
(T − y)

α− 1
G(y, ξ(y))dy.

(45)

Since ξ0 � ξ0 as suggested by an initial condition, hence,
(45) becomes

ξ(T) � ξ0 +
1 − α
N(α)

G(T, ξ(T))

+
α

N(α)Γ(α)


T

0
(T − y)

α− 1
G(y, ξ(y))dy.

(46)

>en, by Lemma 2 and the hypothesis above, we have

|ξ(T) − ξ(T)| ≤ ξ(T) − ξf(T)


 + ξf(T) − ξ(T)




≤ lλ +
1 − α
N(α)

|G(T, ξ(T)) − G(T, ξ(T))|

+
α

N(α)Γ(α)


T

0
(t − y)

α− 1
|G(T, ξ(T))

− G(T, ξ(T))|dy + lλ

≤ 2lλ +
1 − α
N(α)

+
t
α

N(α)Γ(α)
 ME‖ξ − ξ‖,

(47)

which implies that

‖ξ − ξ‖≤
2lλ

1 − β3
. (48)

Since β3 < 1 hence from ϵ � 2l/1 − β3, we obtain
‖ξ − ξ‖≤ ϵλ. Hence, proved that the DSEK system (35) is
Ulam-Hyers stable.

6. Numerical Approximation of Fractional
DSEK Model

In this section, the fractional DSEK model will be solved
numerically by using fractional Euler’s method. )ere are
several numerical techniques to compute the numerical
results of a fractional system of differential equations, but in
this case, even Euler’s method can analyze its solution. In
order to do that, we first derive the fractional Euler’s method
for Atangana-Baleanu Caputo fractional derivative.

6.1. Fractional Euler’s Method for Atangana-Baleanu Caputo
Fractional Derivative. )e authors of [33] proved that the
generalized Taylor’s formula of Atangana-Baleanu Caputo
fractional derivative is given as

f(t) � 
n

m�0

ABC
D

α
t 

n+1


n+1

k�0

x
αk

(n + 1)!αk
(1 − α)

− k+n+1

k!(− k + n + 1)!B(α)
n+1Γ(kα + 1)

+⎛⎝

ABC
D

α
t 

m

m

k�0

x
αk

m!αk
(1 − α)

m− k

k!(m − k)!B(α)
mΓ(kα + 1)

⎞⎠(t − α)f(a)

.

(49)

Suppose that we have an initial value problem
ABC

D
α
t f(t) � G(t, f(t)), f(0) � f0 0< α≤ 1, t> 0. (50)

Let [0, a) be the interval on which we need to obtain the
solution of our problem. For generalization instead of [0, a),
we consider (ti, f(ti)) and use this for our approximation.
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Let the k subintervals of equal width be h � a/k by using
nodes ti � ih for i � 0, 1, . . . , k. Consider that
f(t), ABCDα

t f(t), etc. are continuous on (ti, f(ti)), then, by
using (50), we expand f(t) about t � t0 as

f t1(  � f t0(  +
ABC

D
α
t f t0( 

α t1 − a( 
α

Γ(α + 1)B(α)
+ · · · . (51)

Upon neglecting higher-order terms because step size h

is considered as a smallest positive number and taking
h � t1,

ABCDα
t f(t0) � G(t0, f(t0)), (51) becomes

f t1(  � f t0(  + G t0, f t0( ( 
α(h − a)

α

Γ(α + 1)B(α)
. (52)

Equation (52) becomes the iterative equation for re-
peatedly calculating the points of t that approximates the
solution of f(t). Hence, the general form of fractional

Euler’s method for solving initial value problems with
Atangana-Baleanu Caputo fractional derivative is

ti+1 � ti + h. (53)

f ti+1(  � f ti(  + G ti, f ti( ( 
α(h − a)

α

Γ(α + 1)B(α)
. (54)

It can be observed easily that for α � 1, this becomes the
classical Euler method.

Now, to solve the fractional DSEK model numerically,
we use the parameter values and initial conditions given in
[18]. According to that table, a � 100, β � 50, c � 3.32mm,
δ � 0.015mm, p(0) � 7.50mm, q(0) � 24.39mm, r(0) �

5.63mm, and s(0) � 0.52mm. Now, the fractional DSEK
system in (14) with the iterative formula (54) becomes

p ti+1(  � p0 +
α(h − a)

α

Γ(α + 1)B(α)
3.32q ti(  +

100r ti( 

s ti( 
+ 0.015 ,

q ti+1(  � q0 +
α(h − a)

α

Γ(α + 1)B(α)
q ti(  − s ti( (  − 3.32q ti(  −

50r ti( 

s ti( 
− 0.015 ,

r ti+1(  � r0 +
α(h − a)

α

Γ(α + 1)B(α)
− p ti( s ti(  − q ti(  −

50r ti( 

s ti( 
 ,

s ti+1(  � s0 +
α(h − a)

α

Γ(α + 1)B(α)
p ti( s ti(  + q ti( s ti(  + q ti( ( .

(55)

By solving (55) with the help of software, we obtain the
numerical solution for different values of α in the form of
Figures 2–5 and 6. Figure 2(a) represents the fractional
solution of refractive index p(t) for different values of α

between 0< α≤ 1 and h � 0.01, whereas Figure 2(b) is ob-
tained for the step size h � 0.001.

)e only difference among the solutions presented in
Figures 2(a) and 2(b) is the different values of h. If we
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Figure 2: Numerical simulation of refractive index for different values of α and h implementing the fractional behavior. (a)h � 0.01, 0< α≤ 1
and t ∈ (1, 10). (b)h � 0.0001, 0< α≤ 1 and t ∈ (1, 10).
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observe as h⟶ 0, the fractional behavior is clearer to
understand and gives us the accurate approximation for
α � 1, then h⟶ 1.

Figures 3(a) and3(b) represent the numerical solution of
axial length for different values of α where 0< α≤ 1 and
h � 0.01, h � 0.0001, respectively. By observing closely, the
solutions depicted in Figure 3(a) show that q(t)⟶ 0 as
t⟶∞. Since this model represents a real-life case of eye
surgery, hence, this result is unacceptable. As for h⟶ 0,
the graphical results in Figure 3(b) are more accurate be-
cause it suggests the q(t) ≈ 24.0 or lies closer to 24.0 as
t⟶∞.

Figures 4(a) and4(b) are the graphical illustration of
corneal curvature for different values of 0< α≤ 1 and step

sizes as h � 0.01 and h � 0.0001, respectively. Similar to the
refractive index and axial length, the corneal curvature also
depicts more realistic behavior when h⟶ 0.

Figures 5(a) and 5(b) represent the numerical solution of
corneal thickness for different values of αwhere 0< α≤ 1 and
h � 0.01, h � 0.0001, respectively. By observing closely, the
solutions depicted in Figure 5(a) show that q(t)⟶ 0 as
t⟶∞. Since this model represents the real-life case of eye
surgery, hence, this result is unacceptable.

As for h⟶ 0, the graphical results in Figure 5(b) are
more accurate because it suggests the s(t) ≈ 0.52mm or lies
closer to 0.52mm as. t⟶∞

Figures 6(a) and 6(b) show the numerical solution of
fractional DSEK by fractional Euler’s method. In Figure 6(a),
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Figure 3: Numerical solution by fractional Euler’s method of axial length at different values of α and h implementing the fractional behavior.
(a)h � 0.01, 0< α≤ 1 and t ∈ (1, 10). (b)h � 0.0001, 0< α≤ 1 and t ∈ (1, 10).
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Figure 4: Numerical solution by fractional Euler’s method of corneal curvature at different values of α and h implementing the fractional
behavior. (a)h � 0.01, 0< α≤ 1 and t ∈ (1, 10). (b)h � 0.0001, 0< α≤ 1 and t ∈ (1, 10).
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results have been presented for h � 0.0001 and different
values of α between (0, 1].

Graphical results are shown in Figures 2–5 and 6 de-
scribed that as h⟶ 0, the more accurate results we obtain.
)is is why the variables remain inR4

+ for h � 0.0001 instead
of h � 0.001.

Also, the fractional DSEK results have the hysteresis
phenomenon, which means this system is influenced by the
previous derivatives and values as well as the current con-
ditions. )e noninteger derivative given by different values
of α introduces the memory effect in the fractional DSEK
model. As we explained in definitions (4) and (5), the ex-
ponential kernel when applied to the fractional DSEKmodel
calculates the memory effect. )is is why we can see the

smoothness in Figures 2–5 and 6 as compared to graphical
results in [18]. Results of refractive index, axial length,
corneal curvature, and central corneal thickness are shown
graphically of the ordinary system of differential equation in
[18] showed huge oscillation whereas, in real life after
surgery, the effect on vision is not that blurry or oscillated.
)e fractional DSEK model shows more realistic results of
ocular parameters after Descemet’s stripping endothelial
keratoplasty. It gives the same normal values but due to its
fractal phenomenon, the oscillation among results is re-
moved, and graphs are smoother giving the same normal
values as the DSEK model in [18]. For more background
about the numerical solutions of fractional-order differential
equations, see [34–37].
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Figure 5: Numerical solution by fractional Euler’s method of corneal thickness at different values of α and h implementing the fractional
behavior. (a)h � 0.01, 0< α≤ 1 and t ∈ (1, 10). (b)h � 0.0001, 0< α≤ 1 and t ∈ (1, 10).
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Figure 6: Numerical solution by fractional Euler’s method of fractional DSEK system at different values of α and h implementing the
fractional behavior. (a)h � 0.0001, 0< α≤ 1 and t ∈ (1, 10). (b)h � 0.01, 0< α≤ 1 and t ∈ (1, 10).
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7. Conclusion

In this paper, we investigated the fractional DSEK model
presented by fractional derivatives of the Atangana-Baleanu
Caputo type. We proved the uniqueness and existence of its
solutions by using fixed point theory. For this, we defined a
hypothesis based on Lipschitzian and two operators
ψi, i � 1, 2. )en, we proved that ψ1 and ψ2 are contraction
and relatively compact and hence proven the uniqueness and
existence of those defined hypotheses. Furthermore, for the
fractional DSEKmodel, proving its stability was a must so by
UlamHyers stability in Banach space, we proved that frac-
tional DSEK is Ulam-Hyers stable. Moreover, we have
discussed the advantages of using the ABC fractional de-
rivative instead of any other. In this paper, we presented and
investigated the fractional behavior of the DSEK model and
performed the numerical investigation using mathematical
software. )e numerical method “Euler” which is used to
solve fractional DSEK is derived for initial value problems
with ABC fractional derivatives, in this paper. Since eye
surgery is a crucial process and with the passage of time, the
results of surgery can be observed but with the help of the
fractional DSEK model, a clearer picture of this surgery will
be given.
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