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Integrating cloud computing with wireless sensor networks creates a sensor cloud (WSN). Some real-time applications, such as
agricultural irrigation control systems, use a sensor cloud.%e sensor battery life in sensor clouds is constrained.%e data center’s
computers consume a lot of energy to offer storage in the cloud. %e emerging sensor cloud technology-enabled virtualization.
Using a virtual environment has many advantages. However, different resource requirements and task execution cause substantial
performance and parameter optimization issues in cloud computing. In this study, we proposed the hybrid electro search with ant
colony optimization (HES-ACO) technique to enhance the behavior of task scheduling, for those considering parameters such as
total execution time, cost of the execution, makespan time, the cloud data center energy consumption like throughput, response
time, resource utilization task rejection ratio, and deadline constraint of the multicloud. Electro search and the ant colony
optimization algorithm are combined in the proposed method. Compared to HESGA, HPSOGA, AC-PSO, and PSO-COGENT
algorithms, the created HES-ACO algorithm was simulated at CloudSim and found to optimize all parameters.

1. Introduction

Food and agriculture are both important sources of income
for many farmers worldwide. Irrigation is one of the most
critical services supplied in agriculture. Most crops require
irrigation in areas with low rainfall, as inadequate irrigation
reduces crop quality and yield. Due to contemporary con-
cerns such as water shortages, droughts, and resource
scarcity, academics have tried to rationalize water usage in
agriculture, one of the world’s most water-intensive in-
dustries [1]. A large amount of water is required by the
conventional irrigation method, resulting in water waste.
%e IIS is desperately needed to reduce water waste. In the

wheat field, IoT sensors capture exact ground and envi-
ronmental data. %e collected data is sent to a cloud-based
server, which analyzes and advises farmers on irrigation.
%is recommendation system has an embedded feedback
mechanism to make it robust and flexible [2]. Sensor-cloud
technology integrates WSNs with cloud computing to re-
duce storage, processing, and scalability issues. Sensor cloud
technology has recently been deployed to several real-world
applications, including agriculture irrigation [3]. Sensor-
cloud technology integrates WSNs with cloud computing to
reduce storage, processing, and scalability issues. Sensor
cloud technology has recently been deployed to several real-
world applications, including agriculture irrigation [4]. A
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sensor cloud is a collection of WSNs that provide sensing as
a service to various applications. Efficiently managing task
requests from many applications is crucial [5]. Combining
WSNs and cloud capabilities will offer good services pro-
vided by sensor cloud infrastructure. In a sensor network,
huge volume of data is transported to the gateway, which is
present in the cloud to offer such services [6].

Figure 1 clearly shows the overall architecture of the
sensor cloud environment. Sensor networks act as a link
between virtual and physical worlds. %ese SNs are made up
of micro-electro-mechanical nodes that can detect their
environment and communicate. A sensor cloud is a group of
WSNs with several sensors. It is a heterogeneous environ-
ment and allows customers to purchase and use cloud
services.

Because of this, large-scale networks benefit greatly from
the cost-effectiveness and affordability of cloud computing.
Similar to cloud computing, SCs allow for the dynamic
deprovisioning of resources in response to demand, enhancing
operational flexibility. Performance and dependability in the
sensor cloud are determined by several factors: scheduling,
which includes resource, job, workflow, task, and deadline
scheduling, among others. Task scheduling maximizes re-
source usage and ensures that activities are completed in the
most efficient manner possible, resulting in a satisfactory final
result for customers. In cloud computing, task scheduling
refers to the process of allocating a task to available virtual
machines in order to perform it as quickly as possible [7].

%is research concentrates on energy-efficient task
scheduling, especially communication between the cloud
and users in a sensor cloud environment for agriculture
irrigation control systems. Here, user requests are treated as
a task for accessing the required on-demand information
from the cloud. Clouds provide users with virtual resources.
Users use virtual resources to perform tasks. Cloud com-
puting’s elasticity supports multiple virtual apps at once.
Multiobjective computers exchange resources. User requests
determine resource allocation. An efficient scheduler
module checks and issues resource status. A good scheduler
is essential for optimal cloud computing real-time perfor-
mance. %e task scheduling algorithm maps virtual ma-
chines with the tasks in the cloud. It uses available resources,
reducing request latency and response time while increasing
resource utilization and system throughput.

%e processing needs and features of tasks in cloud
computing differ. Scheduling tasks for cloud computing is
an unsolved NP-complete issue. Hybrid, heuristic, and
metaheuristic approaches are preferred, which poor the
performance of systems and service providers impacted by
task scheduling. Task scheduling is challenging due to the
task’s nature, the variety of the cloud’s resources, utility, and
deadline restrictions. Among the best task scheduling
methods are FCFS, PSO, MIN-MIN, ACO, GA, and others.
%e greatest remedy for cloud computing task scheduling
problems is metaheuristic algorithms. Although it is not
declared to be optimal, using heuristic techniques offers the
best optimal solution. By combining both methods, the
metaheuristic technique and the heuristic approach create a
hybrid scheduling algorithm solution.

%e survey provides Electro Search (ES) and ACO
techniques for scheduling the Cloudlet in the virtual ma-
chine with balanced cloudlet distribution. %is study offers a
hybrid task scheduling method based on the electro search
(ES) and ACO techniques. %e job scheduling issue was
typically solved using ES and ACO-based algorithms. In
order to offer the cone to the global solution to the best
solution in the search space, the authors apply the ES al-
gorithm for the global search strategy. %e VM is the most
important asset in a cloud environment, and the ACO
technique helps maximize VM use. %e goal of this research
is to lessen the deadline limitations, makespan, execution
cost, overall execution time, energy consumption, and
throughput. %e legislative cloud customers are served
smoothly by the sensor cloud services provider (SCSP), who
also makes the greatest money. Typically, SCSP receives a
variety of tasks as requests. Additionally, these jobs need to
be organized based on the requirements and any limitations.
%e authors presented the HMTS algorithm after they ex-
amined the case.

2. Related Works

Task scheduling in the sensor cloud environment, particu-
larly in cloud computing, is a significant difficulty because of
the varied nature of cloud resources. Numerous real-time
approaches have been put out to address the task scheduling
issue in the context of cloud computing. %e scheduling
issue has been solved using a variety of task scheduling
strategies, each of which has its own advantages and dis-
advantages as a result of the many QoS parameters.
Scheduling strategies are generally divided into heuristic,
metaheuristic, and algorithmic categories. Heuristic strate-
gies rely on prediction to arrive at the best answer with
minor complexity and the shortest time. Rather than heu-
ristic procedures, metaheuristic strategies identify the most
efficient solution results. Below are some of the most recent
task scheduling approaches.

A study explored energy-efficient sensor cloud envi-
ronment approaches. An energy-efficient algorithm detects a
change in the environment. Most of the research looked at
did not address QoS, scalability, or network longevity with
energy efficiency. Real-time applications in agriculture,
healthcare, and intelligent homes need maximizing QoS and
energy. %is study will help academics build better tech-
niques that consider QoS measurements and energy [8].

Ojha et al. suggested a dynamic duty scheduling tech-
nique for on-field sensor networks to reduce energy usage.
%e sensor cloud framework helps field WSNs reduce
processing demand. %e authors demonstrated a suitable
time interval selection technique for data uploading to the
cloud in duty time intervals. %e plan proposes improving
energy efficiency while cutting expenses. %e proposed
method outperformed traditional energy efficiency, network
longevity, cost-effectiveness, and utility. Real-time sensor
cloud applications require testing. Consider QoS guarantee
as a parameter [9].

Sivakumar and Al-Anbury proposed a CMSP for IoT-
based sensor cloud systems. %e approach divides a dense
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network into Voronoi structures. Each Voronoi division has
its channel and data collector. %ey wanted to design a
multichannel hybrid cluster protocol. It was made for static
networks. ACMSP outperforms contemporary protocols
such as MC-LMAC, MMSN, and TMCP in energy efficiency
and throughput (Castalia tool). With IEEE 802.15.4, the
proposed CMSP received intra- and intercluster data. %e
proposed CMSP must be tested in real time with real-time
results for showing its effectiveness [10].

Chatterjee et al. optimized the selection algorithm for
choosing suitable bridge nodes to reduce data transmission
energy from sensor networks to sensor clouds. Research is
focused on developing a multihop data transport system
from PSNs to sensor clouds. One alternative was to save
energy. Consider node heterogeneity, mobility, and other
network factors to test real-time apps [11].

SC-iPaaS was proposed by Phan et al. SC-iPaaS has three
layers: cloud, sensor, and edge. Between the layers, it uses
push-pull communication. %is study presents a Pareto
optimal solution in the objective space. It uses evolutionary
multiobjective optimization for its communication opti-
mizer. %e multiobjective analysis is critical in simulations.
%e results show that the proposed method obtains less
bandwidth and energy consumption for more data yield. It is
required to consider the real-time application and not QoS
parameters [7].

Dinh et al. developed an effective sensor cloud inter-
action model to suit end-user QoS needs. We built a
feedback control system to suit QoS requirements between
physical WSN and sensor cloud. Optimize sensor energy
utilization via feedback. %is approach reduces latency
compared to traditional protocols. A real-time application
should be tested. Energy efficiency is a research issue—low
signaling overhead [12].

A hybrid optimization model for effective VM task
allocation was presented by Sreenivasulu and Para-
masivam. %e hybrid algorithm prioritizes workloads
using cloud hierarchy and setting priorities using BAT/
BAR models and VM traits. MOML preemption lowered
VM burden. %e simulation findings suggest that the
suggested hybrid model outperformed existing

algorithms such as BAT and ACO. %e hybrid technique
has proven beneficial in utilizing bandwidth and memory.
%e hybrid algorithm prioritizes workloads using cloud
hierarchy and setting priorities using BAT/BAR models,
and VM traits reduced VM burden. By using a hybrid
strategy, you can get more. %e author ignores energy
usage and must demonstrate the suggested algorithm’s
efficiency with real-time workflows [13].

To set up cloud-based task scheduling and to address the
complex work scheduling issue, the author developed a
hybrid AC-PSO method. %e hybrid strategy that is sug-
gested combines ACO and PSO (PSO). Using the proposed
methods, jobs are successfully distributed to cloud-based
virtual computers. %e metrics Makespan time, cost, and
resource utilization are superior to the proposed method.
%e author disregards time complexity, throughput, and
energy efficiency [14].

Dubey and Sharma created a hybrid CR-PSO tech-
nique to improve PSO restrictions and handle task
scheduling. %e author created a mathematical model of
work scheduling and specified its purpose and fitness
function. Using both CRO and PSO, a hybrid CR-PSO
strategy is created. Experiments show that the suggested
algorithm is faster, cheaper, and shorter. Cost-effective
CR-PSO outputs increase cloud system performance. %e
author scheduled dependent tasks and checked the
proposed approach’s energy usage, load balancing, task
rejection ratio, and turnaround time [15].

Task scheduling played the key role in cloud and
sensor cloud systems, according to Proshikshya
Mukherjee. %e author looked into the various challenges
and difficulties associated with task scheduling issues in
the sensor cloud. %e ability to efficiently manage and
schedule duties is the most critical component of this job.
As a result of this investigation, the researchers will
obtain a lot of knowledge regarding task scheduling.
Designing an efficient hybrid task scheduling mechanism
in this work is required. In the sensor cloud, multicriteria
decision-making is needed [16].

In order to solve the task scheduling problem in cloud
computing, a MOPSO algorithm (multiobjective particle
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Figure 1: Sensor cloud architecture.
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swarm optimization) proposed by Jena. %e proposed so-
lution was suited for the cloud environment since it used
system resources to reduce energy consumption and time to
completion. %e designed MOPSO outperformed both the
BRS and the RSA, according to simulation findings. %is
effort necessitated more bandwidth, load balancing, and
cost, among other things. A more robust algorithm is re-
quired [17].

Swagatika et al. conducted a complete examination of
conventional scheduling algorithms for efficient VM allo-
cation in a cloud context. A modifiedMarkov chain model is
utilized to anticipate resource utilization. An upgraded PSO
algorithm is employed for efficient resource allocation op-
timally in the cloud, with dynamic load balancing based on
the VM allocation mechanism and required to focus on a
more robust algorithm. Work needed to consider the many
characteristics such as makespan time, energy consumption,
and cost [18].

Nayak et al. proposed a novel approach for deadline-
based work scheduling. Every lease has a current (CT) and
gap time (GT). Previous methods did not include CTand GT
as scheduling criteria. %e proposed scheduling method is
based on the lease acceptance rate.%e proposed mechanism
eliminates the necessity for a decision-maker such as AHP to
resolve lease issues. In MATLAB R2015a, 10 different
workloads are simulated and assessed. %e proposed tech-
nique determined the average task rejection and acceptance
ratios. %e new mechanism outperforms the current
backfilling process. Consider aspects such as VM switching
costs, energy consumption, and makespan time for further
work [19].

%e author proposed using a hybrid cuckoo and particle
swarm optimization technique to schedule jobs with mul-
tiple objectives. %is task scheduling approach can achieve a
close-to-optimal solution in a heterogeneous cloud envi-
ronment because to the qualities of the recommended CPSO
technique, which include being immediately convergent and
simple to apply. When compared to existing algorithms such
as ACO Min-Min, PBACO, and FCFS, the suggested CPSO
approach obtains the lowest rate of deadline violations.
Energy usage and other QoS service elements need to be
taken into account [20].

Huang et al. developed a PSO algorithm with time-
varying inertia weights for cloud work scheduling. %is
paper proposes a PSO-based scheduler with five update
methods (i.e., simulated annealing, linear, chaotic, sigmod
decreasing, and logarithm decreasing). Logarithm PSO
trumps alternative cloud work scheduling methods, exper-
iments show. %e suggested PSO-based scheduler outper-
forms the average GSA, ABC, and DA algorithms. Various
criteria must be considered, such as load balance and energy
usage. In addition, the proposed technique will have to be
used in a variety of contexts and application workflows [21].

%e proposed electro search algorithm adopts a three-
phase scheme using the Bohr model and Rydberg formulae.
%e ES algorithm’s new features enable it to find optimal
global points without initializing tuning parameters. It was
found that the optimal results outperformed selected al-
gorithms such as GA and SA in terms of computation time

and success rate. %e proposed algorithm outperformed the
others. %is method required testing for task scheduling and
considering other performance parameters in cloud [22].

Bansal and Malik introduced a PSO-based multifaceted
scheduling framework (MFOSF). %is work presented a
resource cost timeline model (RCTM) to define task re-
source needs. An updated PBPSO-based model was pro-
posed to maximize performance scheduling and user cost.
%ird, better PBPSO was proposed to prevent PSO from
going local. Pbest and Gbest changed the solution’s quality
based on performance and budget. Enhanced PBPSO is
superior to similar approaches in cost, violation rate, and
resource utilization, confirming its effectiveness. %e pro-
posed algorithm must be tested using specified QoS and
energy usage statistics [23].

According to Khan and Santhosh, task scheduling can
reduce time of waiting and increase service quality in cloud.
%e support vector machine loads first categorize it. PSGWO
is used in the hybrid technique to find the best virtual
machines and resource allocation. Traditional ant colony
and PSGWO are compared to the proposed scheduling
paradigm. In every parameter, the proposed hybrid opti-
mization-based work scheduling outperforms previous ap-
proaches. %is work cannot explore better QoS with VM
allocation [24].

Kumar and Sharma proposed a resource allocation model
employing PSO-COGENTscheduling to maximize execution
cost, makespan time, throughput, task rejection ratio, and
energy consumption based on fitness function while taking
deadline considerations into account. %e proposed PSO-
COGENTmethod outperformed the already employed PSO,
honeybee, and min-min strategies in terms of execution cost,
execution time, and energy consumption. Consideration of
various QoS factors, SLA, and testing for real-time applica-
tions such as agricultural is required for this task [25].

For instance, to enhance task scheduling behavior, a
hybrid electro search with a genetic algorithm (HESGA) was
proposed by Velliangiri et al. %e advantages of genetic and
electro search algorithms were integrated. Globally, electro
search outperforms genetic algorithm. %e proposed
HESGA algorithm is compared to existing approaches.
HESGA approach obtains better results than HEPSOGA,
GA, ES, and ACO. %is work required an enhanced version
that took energy consumption, QoS metrics, and real-time
applications such as agriculture [26].

Gokuldhev and Singaravel proposed the LPMSA algo-
rithm for cloud job scheduling. Moth search and floral
pollination algorithms were combined (FPA). %e proposed
LPMSA picks the best cloud job scheduling solution. %e
suggested LPMSA is evaluated on machines with low and
high heterogeneity. %e suggested LPMSA saves time and
energy over existing methods. %e Wilcoxon test compares
makespan minima and energy usage. %is work’s limitations
are the necessity to test with real-time applications and add
more parameters to the algorithm [27]. %e local pollina-
tion-based gray wolf optimizer (LPGWO) method was used
by Gokuldhev et al. to efficiently schedule jobs. GWO and
FPA are both used in the hybrid algorithm. In the presence
of GWO, data are distributed via local pollination to the
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subsequent potential solution packet. %ese methods are
used to solve early tasks. Work scheduling in low and high
machine heterogeneity was enhanced.

Finally, comparing simulation results revealed the
slowest convergence of makespan and energy consumption.
%is work required testing with real-time applications and
adding more parameters to the method are needed [28].
Compare the various scheduling algorithms in this work.
%e HEFT algorithm ranks tasks and assigns them to pro-
cessors. Give the heterogeneous processor tasks to reduce
makespan time. %e proposed algorithm outperforms load
balancing and task makespan time with HEFT and CPOP.
However, the algorithm can be improved by considering
various deadlines, QoS parameters, and application tests
[29].%is research proposed a SACOmethod with slave ants
for cloud computing task scheduling. To avoid long routes
with pheromones erroneously accumulated by leading ants,
we use slave ants to diversify and reinforce—no pre-
processing overhead for slave ants and beats existing ACO-
based cloud work scheduling algorithms. SACO solves the
NP-hard issue efficiently while maximizing cloud server
utilization. Heterogeneous clusters cannot be considered
because computing instances decide costs [30]. An ICM-
PACO approach is proposed in this work for solving
complicated large-scale optimization issues. %e algorithms
ACO and IACO perform better than ICMPACO when
dealing with gate assignment and travelling salesman issues.
%e gate assignment problem and typical TSP cases are both
successfully solved by ICMPACO. A total of 132 flights can
be efficiently routed to 20 gates (83.5%). ICMPACO out-
performs ACO and IACO in terms of optimization and
stability. %e ICMPACO algorithm requires more research
because it takes longer to solve difficult optimization issues
[31]. Q-ACOA is suggested for work scheduling and re-
source allocation in cloud computing based on current
problems. For the first time, critical performance for task
scheduling is established. Utilize Q-ACOA to efficiently
execute processes, move data, and delight consumers. %e
work scheduling and resource allocation in cloud computing
are optimized by Q-ACOA. Despite these successes, there
are still problems with research. For some reason, there is no
correlation between the tasks. To aid in resource allocation
and scheduling in cloud computing, the research’s limita-
tions should concentrate on task correlation [32]. %is study
presents a FACO algorithm for cloud computing virtual
machine load balancing. Ragmani et al. proposed a FACO
cloud virtual machine scheduling algorithm. Due to scal-
ability, ant colony optimization was used. CloudSim opti-
mizes ACO settings. FACO uses evaporation to avoid
nonoptimal early convergence. %e proposed approach can
cut response time by 80%, processing time by 90%, and total
cost by 9%. We want to define pheromones beyond FACO.
FACO has not been tested in a multicloud scenario [33].

When we think of implementing a new framework, we
may have few merits and demerits. For example, smart
bluetooth is one of the emerging wireless technologies used
for data transfer between short distances. It is also cheaper
than other technologies having advantage of being available
on almost every smart phone [34]. %e practice of current

traditional centralized security measures may lead us with
limitations because of single point of failure, traceability,
verifiability, as well as scalability [35]. When we chose
multiclass model, development should be done with the
consideration of the relative status of the factors taken [36].

Abualigah and Diabat offer a hybrid antlion optimization
method with elite-based differential evolution to solve multi-
objective task scheduling challenges in cloud computing. %e
MALO solution must maximize resource efficiency while
minimizing makespan time [37]. Two experimental series on
artificial and real trace data sets were runwithCloudSim.MALO
outperformed other well-known optimization methods.

%is paper suggests a more efficient task scheduling
method and an approach to optimal power minimization to
help with dynamic resource allocation. Using a prediction
mechanism and a dynamic resource table update approach
can increase the effectiveness of resource allocation in terms
of job completion and reaction time [38]. %is architecture is
successful in lowering total power consumption because it
decreases data center power consumption. %e proposed
approach can be used to update the resource table. In order to
achieve an effective resource deployment, improved job
scheduling and a mechanism that uses less power are
implemented. %e simulation produces results that are 8%
more accurate when compared to other approaches. To solve
those problems, a hybrid machine learning (RATS-HM)
technique is created. Finally, by simulating the suggested
RATSHM technique with a new simulation setup and
comparing the outcomes with those of other existing tech-
niques, its utility is shown [39].With regard to resource usage,
energy consumption, response time, and other factors, the
proposed method performs better than the existing one.

%e task scheduling issue for tasks in the sensor cloud
computing architecture has been addressed in the literature
using a variety of metaheuristic- and heuristic-based algo-
rithms, including PSO, GA, ES, ACO, and CRO. %e ma-
jority of these algorithms are not effective enough for
scheduling jobs in amulticloud setting, according to a review
of pertinent studies. %e algorithm used in related works
lacks both global and local optimum solutions. %e pa-
rameters necessary to improve task scheduling performance
are not taken into account by many algorithms. Based on
these conclusions, we developed the hybrid electro search-
ant colony optimization technique (HES-ACO) to enhance
task scheduling behavior by optimizing parameters such as
makespan time, execution cost, total execution time, energy
consumption, throughput, response time, resource utiliza-
tion, and deadline constraints of the sensor cloud. Table 1
describes about the literature review of metaheuristic hybrid
task scheduling algorithms with limitations

3. System Model and Problem Statement
Formation of Problem Statement

Cloud computing has seized control of the computing
market in the recent decade, offering users a wide range of
services. %e popularity of cloud computing is causing a
significant increase in cloud users. As the number of users
grows, the system encounters several challenges. Mapping
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Table 1: iterature review of metaheuristic hybrid task scheduling algorithms with limitations.

S.
no. Author and year Methodology Parameters Limitations Tool

1
Sreenivasulu and
Paramasivam
(2021) [13]

Hybrid optimization
algorithm (BAT and BAR),
hierarchy process model,
and MOML preemption

policy

Turnaround time, response time,
memory utilization, bandwidth

utilization, and resource
utilization

(i) %e author does not consider
energy consumption and is
required to prove the efficiency of
the proposed algorithmwith real-
time workflows

CloudSim

2 Dubey and
Sharma 2021) [14]

Hybrid AC-PSO algorithm
and task scheduling

Makespan rate, cost, and
resource utilization rate

(i) %e author does not define the
fitness function for energy

CloudSim

(ii) %e work does not consider
the parameters of energy
consumption, throughput, and
schedule length
(iii) Need to improve the time
complexity

3
Dubey and

Sharma (2021)
[15]

Hybrid CR-PSO algorithm Makespan rate, cost, execution
time, and energy consumption

(i) Author required plan
scheduling for dependent tasks
and needed to verify the
effectiveness of proposed work
on parameters such as energy
consumption, load balancing,
task rejection ratio, and
turnaround time

CloudSim

4
Prem Jacob and
Pradeep (2019)

[20]
CPSO Deadline, makespan time, and

cost

(i) Required to consider various
other QoS service parameters and
energy consumption

CloudSim

5
Khan and

Santhosh (2021)
[24]

PSGWO

Makespan time and execution
time (i) Required to apply this

technique for various
applications

NetBeansWaiting time, energy efficiency,
and resource utilization

6
Kumar and

Sharma (2018)
[25]

PSO-COGENT

Execution time, execution cost,
makespan time, energy

consumption, throughput, and
task rejection ratio

(i) Required to consider various
SLA and QoS parameters for
verifying the algorithm’s
effectiveness CloudSim

(ii) need to test for various
workflows in the cloud

7 Velliangiri et al.
(2021) [26] HESGA Makespan time, cost, and

response time

(i) Required to apply this
approach with other applications
such as agriculture and so on

CloudSim(ii) Need to consider various
parameters such as energy
consumption, load balancing,
QoS, and so on

8
Gokuldhev and
Singaravel (2020)

[27]
LPMSA Makespan time and energy

consumption

(i) %e proposed technique is
required to test with real-time
application and needs to consider
various parameters and is still
required to enhance the
algorithm

CloudSim
with Java

9
Gokuldhev and
Singaravel (2020)

[28]
LPGWO Makespan time and energy

consumption

(i) %is work needs scheduling in
low and high machine
heterogeneity was enhanced and
consider various QoS metrics is
required

CloudSim
with Java

10 Dubey et al. (2018)
[29] HEFT Makespan time and load

balancing

(i) %e proposed method is
required to consider various QoS
parameters and need test its
effectiveness

CloudSim
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desired tasks to virtual machines and determining the best
schedule sequence is a complex problem in the cloud. %e
most delicate virtual machine in the cloud must be used to
process the user’s task request. Under deadline limitations,
this efficient strategy can reduce energy consumption, costs,
resource utilization, execution time, makespan, throughput,
and response time parameters. %is study attempts to
provide an efficient solution for processing applications
depending on user demand and priority (time, energy, cost,
and deadline) while concurrently improving the QoS level.

Consider the k number of tasks and the p number of
computational resources that can be used to handle the task
requests in the cloud data center’s virtual machines. Based
on their demands, service providers choose the best re-
sources for end customers. %e following are the definitions
for the task set, resource set, and virtual machine set:

T � T1, T2, T3 . . . . . . TK􏼈 􏼉, (1)

R � R1, R2, R3, R4 . . . . . . Rm􏼈 􏼉, (2)

Vm � Vm1, Vm2, Vm3, Vm4 . . . Vmq􏽮 􏽯. (3)

Every task Ta is defined as follows:

Ta � Tid, TLi, Di􏼈 􏼉, (4)

where the task identification number is denoted as Tid, MIPS
length of the task is denoted as TLi, and Di is represented as
deadline constraints associated with each task.

Similarly, each Vmq is also characterized as follows:

Vmq � Vmtype, VmMIPS, Vmspeed, Vmstorage, Vmid􏽮 􏽯, (5)

where MIPS signifies the virtual machine computational
power. %e cloud type is denoted by Vmtype to which the Vm
belongs and is expressed in integer ranges. Virtual machine
identification number is represented as Vmid. Vmspeed is the
virtual machine’s processing speed, while Vmstorage is each
virtual machine’s storage capacity in the cloud data center [14].

When an application is scheduled at resources (Rm), it
has the option of getting the resource right away or waiting
until the current application at Rm is defined in the following
equation:

FTE � 􏽘

l

m�0
Rm + TExTkVmq

. (6)

FTE of task Ti at resource Rm should be less than the
deadline of the task request (δ(Di)).

FTE≤ δ(Di). (7)

3.1. Objective Function. %e fundamental objective of the
suggested approach is to enhance QoS metrics such energy
consumption, makespan time, computation cost, execution
time, resource utilization, throughput, task rejection ratio,
and response time. Users of the cloud also need services that
are as inexpensive as possible. As a result, we create a fitness
function with the deadline taken into account as a QoS
parameter, whose objective is to minimize time, execution
cost, and energy usage. %e following functions are de-
scribed by the authors.

3.1.1. Execution Time. A task’s execution time is the length
of time it takes the system to finish it.

TExTkVmq
� EExTkVmj

+ TTimeTkVmj
,

EExTkVmj
�

TLenTk

VmMIPS

,

TTimeTkVmj
�

TLenTk

BwVmj

,

(8)

where TExTkVmq
is the total time for processing the Tk task

on the Vmq virtual machines, and it is the total expected
time EExTkVmq

of the task Tk on the virtual machine Vmq

and the task transfer time TTimeTkVmq
.

3.1.2. Makespan Time. When all tasks have been processed
or the entire amount of time has passed between the start
and conclusion of the tasks, this is referred to as the
“makespan time” of a task schedule.

Table 1: Continued.

S.
no. Author and year Methodology Parameters Limitations Tool

11 Ragmani et al.
(2020) [33]

FACO (ACO and fuzzy
logic)

Total processing time, response
time, cost, and load balancing

index

%e proposed approach needs to
be evaluated within a real and

multicloud computing
architecture and required

considering various parameters
such as energy consumption

CloudSim

12 Bhasker and
Murali (2022)

%e proposed method
(HES-ACO)

Total execution time, execution
cost, makespan time, energy

consumption, throughput, task
rejection ratio, resource
utilization, and deadline

constraint

%e proposed approach extends
this work further to consider

security issues while users access
the cloud’s information

CloudSim
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Mspantime � max 􏽘

q

j�1
EExTkVmj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (9)

3.1.3. Execution Cost. %e second objevtive functions goal is
to reduce the overall execution cost represented as TExecost.
While considering the dealine constraints, the Task repre-
sented as Tk on a per-hour basis for virtual machines Vmj
and cloud resources [25]. %e execution cost is defined as
follows:

TExecost � ExeCTkVmj
∗CostVmj

, (10)

where ExeCTkVmj
is the cost for executing the Tk task on

the virtual machine Vmj and CostVmj
is the resource cost of

Vmj in the cloud.

3.1.4. Energy Consumption (EC). Both dynamic and static
energy were consumed by each physical machine. We only
evaluate active energy consumption in this study since we
believe that static energy consumption has a minor impact
and can be ignored. %e proposed algorithm’s third
scheduling goal is to reduce carbon emissions by maxi-
mizing resource use. %e number of Vm instances available
determines the quantity of dynamic energy consumed.
Equation below shows how much energy a virtual machine
uses [15].

Vmj �
φi if Vmi is in active state

ωj if Vmj is in idle state
⎧⎨

⎩ . (11)

%e following equation computes the energy con-
sumption of all the VMs (active and idle):

EcVmj
� FTTj ∗φ + Mspantime − FTTj􏼐 􏼑∗ω, (12)

where Ecactualconsumption is actual energy consumption is
computed by using the following equation:

Min Ecactualconsumption � Ecmax − Ecmin( 􏼁∗Resut + Ecmin,

(13)

where Ecmax indicates resource usage Rm, while Ecmin de-
notes the ideal or minimum resource usage condition.

%e total energy consumption of the data center is de-
fined as follows:

Ec � 􏽘

q

j�1
EcVmj

+ Min Ecactualconsumption. (14)

3.1.5. ;roughput. %e throughput (ϑ) is evaluated by using
the following equation:

Throughput(ϑ) �
Total number of succesfully completed tasks

total processing time
.

(15)

3.1.6. Task Rejection Ratio (TRi). If the task is not completed
within the deadline constraint, it is computed using the
following equation:

Task Rejection Ratio TRi( 􏼁 �
Number of tasks rejected
Total number of tasks

∗ 100.

(16)

3.1.7. Deadline Constraint. If the total time exceeds the
deadline, it is defined as follows:

δ(Di) �
(number of tasks violating the deadline constraint∗ 100)

total number of tasks
.

(17)

3.1.8. Fitness Function ft (Rm). All cloudlets should be
handled prior to the deadline in order to meet our objective
of reducing the amount of energy required by the specified
operation or cloudlet (makespan, cost, time, throughput,
and task rejection percentage). %e fitness function of the
problem of work scheduling with various objectives is de-
fined by the following equation:

ft(Rm) � α∗Mspantime + β∗TExecost + c∗Ec. (18)

Subject to

􏽘

q

j�1
zij � 1,∀i ∈ Ti∀j ∈ Vmj. (19)

Equation (17) shows that each application has only one
resource assigned to it.

fti,j � fti−1,j∀i ∈ Ti∀j ∈ Vmj. (20)

Some assumptions and constraints are needed to con-
sider for the tasks submitted in the cloud. α, β, and c are the
weight metrics of makespan Mspantime, cost TExecost, and
Energy consumption Ec, respectively [15].

4. Hybrid ES-ACO Task Scheduling Algorithm

%e dynamic nature of task scheduling makes it difficult to
identify the best resource. By taking into account a number
of variables, we examine the issue of energy consumption
and makespan, which must be reduced, and system per-
formance, which must be optimized, because it directly
affects the revenue and scalability of sensor cloud resource
suppliers. %is section covers the hybrid ES-ACO strategies
for finding the ideal task scheduling solution in the sensor
cloud environment as well as the sensor cloud model for the
task scheduling algorithm. %e recommended approach
produced a hybrid ES-ACO task scheduling framework by
fusing the advantages of ESO and ACO. %e suggested
hybrid ES-ACO architecture is depicted in Figure 2. %e
suggested architecture includes several WSNs, and it makes
obvious how work scheduling was carried out in the cloud
environment.
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4.1. Traditional Electro SearchOptimizationAlgorithm (ESO).
%e electro search algorithm’s domain of potential solutions
is comparable to the molecular space in which various atoms
are arranged. %e electrons of every atom are arranged
around its nucleus. To reach the highest energy level of
molecular states, the orbits of the electrons that surround the
nucleus of each atom gradually alter. It is equivalent to the
maximum of the objective function [22].

4.1.1. Overview of the Standard Electro Search Procedure.
%e electro search algorithm can be divided into the fol-
lowing three phases:

(1) Atom spreading
(2) Orbital transition
(3) Nucleus relocation

4.1.2. Atom Spreading Phase. %e possible solutions are
distributed at random in this step. Each potential candidate
is an atom. %ey have a nucleus, which the electrons orbit
around. %e electrons are limited to precise orbits around
the nucleus, and when they move between them, a certain
amount of energy is either absorbed or released.

4.1.3. Orbital Transition Phase. %e electrons around each
nucleus expand their orbits during this phase in an effort to
reach orbits with greater energies. %e idea of quantized
energy levels in a hydrogen atom served as inspiration for
this orbital transition.

4.1.4. Nucleus Relocation Phase. %e energy of a photon that
is emitted during this phase, which is determined by the
energy level difference between the two atoms, is used to
determine the position of the new nucleus.

4.1.5. Traditional Ant Colony Optimization (ACO).
Traditional ACO is a metaheuristic technique created by
Italian researchers based on the foraging behavior of ant
colonies [14]. When ants seek for food away from their nests
and colonies, they leave a trail of pheromones in their wake.
%e likelihood of discovering the quickest route from the
food source to the ant colonies was influenced by the density
of pheromones. Once the food source is located, each ant
travels in that direction using the quickest route and highest
pheromone concentration. %e shortest path is discovered
using the ACO techniques in the subsequent steps.

Step 1: Set the number of ant colonies and iterations
Step 2: Set the beginning point at random
Step 3: Each node chooses a direction based on
pheromone concentrations
Step 4: %en add the traverse path to the list
Step 5: Update the pheromones after each iteration
Step 6: Reiterate till the halting criteria are not reached

4.2. Hybrid ES-ACO Algorithm. Both evolutionary com-
putational techniques and metaheuristic approaches are
based on nucleus instincts and quickly produce an ideal

Cloud Users

Submitted
Tasks/Requests Tasks/Cloudlets Cloud Brokers Task Manager

Hybrid ES-ACO
Task Scheduler

{T1, T2, T3,T4…….Tk}

Energy
Consumption  

Makespan Time 

Execution cost 

Total Execution
time  

Throughput 

Task Rejection
Ratio  

Multi Objective 

Cloud Environment

Vm Vm VmVm VmVm Vm Vm Vm

Resource manager Resource Manager Resource Manager

{ Vm1, Vm2, Vm3, Vm4…Vmq }

Virtual Resources

WSN 1 WSN 2 WSN N

Physical Resouces

{ SN1, SN2, ....SNq }

Sensor Nodes

Cloud
Data

Center

Figure 2: Proposed infrastructure model for task scheduling in sensor cloud environment.
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solution. ACO and ES are two terms that are used
interchangeably.

%e HES-PSO work scheduling method combines
electro search with ant colony optimization. %e hybrid ES-
ACO strategy reduces makespan time, minimizes energy
consumption, reduces computing cost, increases resource
utilization, reduces execution time, reduces task rejection
ratio, reduces throughput, and improves reaction time. Both
approaches were used to quickly find an optimal solution
with reduced time complexity.

To develop a metaheuristic method, the electro search
(ES) algorithm with ant colony optimization (ACO) is
employed. %e three stages of the optimization of the
electro-search method are spreading atom phase, orbital
transition phase, and nucleus relocation phase.

%is modification of the conventional electro search
(ESO) is a first by incorporating the ACO to raise the
standard of the ideal answer [26]. %e recommended ap-
proach is broken down into the following four steps:

(1) Initialization
(2) Spreading of atoms
(3) Transition of orbital
(4) Relocation of nucleus

Tasks (T1, T2, T3, T4,. . ., Tk) and resources (Vm1, Vm2,
Vm3, Vm4,. . ., Vmq) are dispersed throughout the cloud
datacenter in the first phase.%e second phase designates the
atoms as the tasks, that is, the cloud permits the release of the
nucleus agent, which stores the locations and details of the
virtual machines.

%e state diagrams of atom spreading, orbital alteration,
and nucleus relocation are shown in Figures 3–5. Similar to
atoms, these agents are dispersed throughout the search
space. %is stage involves randomly dispersing the com-
petitor configurations throughout the research area. Each
user interacts with an iota, which is made up of an orbiting
core and electrons. According to Velliangiri et al. [26], the
electrons are confined to particular rings that encircle the
core and can only move between them while emitting or
maintaining particular levels of liveliness. %e atoms scour
the search space in quest of the best answer. %e current and
previous resource information will be stored in the third
space, and each agent will follow atom around the resource
pool, or virtual machine, to choose the best one. Following
the best virtual machines, the atoms choose the optimal
solution in the last step using the data stored in the agent.
%e jobs are consequently delegated to virtual machines.

%is study introduces the ES-ACO algorithm, a multi-
objective task scheduling system that combines the benefits
of both traditional electro search and the ant colony opti-
mization method. Schedule the work to a virtual machine in
an inefficient manner, which reduces makespan time,
minimizes energy consumption, decreases computation
cost, increases resource use, decreases execution time, de-
creases task rejection ratio, increases throughput, and im-
proves reaction time. When comparing HES-ACO methods
to ES methods, PSO methods, GA methods, ACO methods,
HESGA methods, and AC-PSO methods, the HES-ACO

methods record a significantly higher space utilization.
Algorithm 1 describes about hybrid ES-ACO task scheduling
approach.

Figure 6 shows the flow diagram of proposed hybrid ES-
ACO technique for task scheduling in sensor cloud
environment.

4.2.1. Selection of Parameters

(1) Number of Particles (h). %e number of particles in the
underlying population, such as the needed calculation

Figure 3: State diagram of atom spreading.

Figure 4: State diagram of orbital transition.

Figure 5: State diagram of nucleus relocation.
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emphasis, work assessment, accomplishment rate, and so on,
typically raises the thoroughness of the chase space in-
spection in an arbitrary hunt approach. Meanwhile, as we
will see in the following section, increasing the number of
molecules decreases the number of calculation cycles needed
to fulfill the goal, hence boosting the achievement rate.
Regardless of how significant the aforementioned criterion
may be, the quantity of capacity assessments is viewed as the
fundamental execution regulation for applications. Fewer
molecules in a population result in a lower success rate and
more cycles. A huge population, on the other hand, increases
the achievement rate and requires an excessive number of
capacity evaluations.

(2) ;e span of Orbital (a). Electrons in each core might be
able to move to larger rings.%e orbital distance is the size of
the greatest possible circle. Because of the electrons that orbit
each nucleus, it is now feasible to shift the emphasis to any
location. %e migration removes (and consequently the
orbital range of every core) change during the course of the
cycles as the particle travels closer to the ideal place. As the
orbital sweep is dynamically compressed, the transition
region for electrons shrinks. %is decrease permits the
computation to merge toward the target by constraining

electron movement in the vicinity of the hypothetical global
ideal point.

(3) Number of Electrons (e). Electro Search’s electrons
around each core represent the randomness of scientific
exploration into the cosmos. An increase in the merging rate
is seen when arbitrary electrons in each focus are far off from
one another. %is method avoids hastily joining imperfect
focal points together. Even when the underlying molecules
are less than ideal, this method makes space exploration
more efficient. It improves the inquiry space investigation,
especially when the underlying molecules are far from ideal.
Furthermore, the iterative procedure's modest compression
of orbital sweep bounds the territory is taken into account
orbital movement, preventing additional arbitrary electrons
from being placed far from the core

(4) Convergence Criteria. Population mixing owing to em-
phasis is taken into account using stopping criteria in
transformative calculations. When the total number of
people living in the applicant setups reaches a “stale”
number, the analysis is done. Different end criteria were
utilized in the development writing, such as reaching the
maximum number of cycles, arriving at a desirable

Input 1: Set of subtasks, that is, T1, T2, T3, T4,. . ., Tk. 2. Set of virtual machines, that is, Vm1, Vm2, Vm3, Vm4,. . ., Vmq
Output: Mapping of the tasks to set the Vms (optimal schedule)
Step 1: Initialize the set of ant colonies
Step 2: Set the parameters of ACO
Step 3: Initialize the set of subtasks, that is, T1, T2, T3, T4,. . ., Tk
Step 4: Initialize the set of virtual machines, that is, Vm1, Vm2, Vm3, Vm4,. . ., Vmq
Step 5: Compute pheromone value ρi,j (0) � (c/TExTkVmq

)

Step 6: Submit the Vm list, which was created successfully in the data center, and set of tasks to the cloud broker
Step 7: For 1 to Q do( )
Step 8: Generate nucleus Q[i]
Step 9: Initialize nucleus agent randomly
Step 10: End for
Step 12: Rm� 0
Step 13: Define the fitness function ft (Rm)
Step 14: ft(Rm) � α∗Mspantime + β∗TExecost + c∗Ec

Step 15: Compute Gbest and Pbest
Step 16: While (Max iterations X) // ∀i ∈ Ti &∀ j ∈ Vmj

Step 17: Update the pheromone, that is, monitor the status of resources using the following equation

Step 18: zi,j(t + 1) � (1 − θ)∗ zi,j(t) + 􏽐
σ
b�1 zσi,j(t)

Step 19: zσi,j(t) �
(ε/Ln)σth passes on the each nucleus
0, else the growth of aunt 0􏼨

Step 20: i� 0
Step 21: Compute the fitness value for each nucleus of Q[i]
Step 22: Gbest � best nucleus of Q[i]
Step 23: i++
Step 24: for a� 1 to Q
Step 25: Pbest [a]�Q[i]
Step 26: End for
Step 27: End while
Step 28: Return the global best solution of atom

ALGORITHM 1: Hybrid ES-ACO task scheduling algorithm.
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arrangement, and so on. For the purpose of the electro
search calculation, the highest number of cycles served as the
ending rule [26].

5. Experimental Result and Discussion

%e developed hybrid electro search with ant colony opti-
mization (HES-ACO) task scheduling algorithm was com-
pared to the HESGA, HPSOGA, AC-PSO, PSO-COGENT,
and the proposed algorithm in a comparative analysis (HES-
ACO). Energy consumption, execution cost, total execution

time, throughput, makespan time, task rejection ratio, re-
sponse time, and resource usage are all used to evaluate the
proposed model HES-ACO performance.

5.1. Simulation and Results Analysis. Task scheduling ex-
periments are described here so that their results can be
analyzed. To ensure that the suggested scheduling paradigm
works well in a cloud setting, we use the CloudSim simulator
to replicate the environment. When it comes to simulating
the infrastructure as a service (IaaS) cloud, the CloudSim
simulator is a useful framework. In order to carry out the

Start

Submitted the set of tasks to cloud
from various cloud users 

Form Cloudlets of tasks

Obtain the information about
tasks and virtual machines 

Set the ACO metrics

Initialize the pheromone

for providing services choose
suitable Vm 

Update the pheromone

Initialize ES metrics Generation of nucleus

Compute the Fitness
function 

Calculate Pbestand Gbest

Update Each nucleus
Positions 

Qnew< Qbest

Set local best fitness (Qbest)
=current fitness (Qnew)

Keep Previous
(Qbest) 

Stopping criteria met?

Stop

YES NO

Figure 6: %e flow chart of the proposed hybrid ES-ACO.
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scientific workflow sustainably, new algorithms are imple-
mented (including task scheduling, VM deployment, energy
model, etc.). %e efficacy of the HES-ACO algorithm is
measured in an empirical fashion.

5.1.1. Simulation Parameters

(i) Two distinct hosts are used, the HP ProLiant ML110
G5 and the HP ProLiant ML110 G4 [37], which use
135W/s and 117W/s of power, respectively.

(ii) 2.3W Energy consumption rate is consider to
transfer 1GB data.

(iii) Four VMs with different CPU (in MIPS) and RAM
(in MB) capacities are installed. On an average VM
start-up time is 96.9 s. Around 2,500 MIPS with
870MB RAM, 52,000 MIPS with 1740MB, 1,000
MIPS with 1740MB RAM, and 500 MIPS with
613MB RAM run the scientific procedure. Based on
the workflow requirements, the VMs are deployed/
undeployed dynamically.

(iv) Amazon Web Services offers 20 MBPS as average
VM bandwidth.

5.2. Performance Metric and Simulation Parameters

Energy consumption: Total energy consumed by the
servers to execute scientific workflows is computed
using equation (13).
Makespan or total execution time: It is the total time to
execute the workflow from entry tasks to the exit task.
Equation (11) is used to calculate the makespan.
Execution time (ETT): Average execution time per task
is calculated by equations (8)–(10).

%roughput: It is evaluated by division of number tasks
successfully executed and total number of tasks. It is
calculated by using equation (17).
Execution cost: It is calculated by using equation (12).
pAverage RU: It is the ratio of allocated computing
resources (such as CPU in MIPS) to execute the sci-
entific workflow tasks and total computing resources of
the server.
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Figure 7 clearly shows that proposed mechanism HES-
ACO method outperformed existing methods such as AC-
PSO, HPSOGA, and HESGA for energy consumption versus
number of tasks workflow.

Figure 8 clearly show that proposed mechanism HES-
ACO method outperformed existing methods such as AC-
PSO, HPSOGA, and HESGA for makespan time versus
number of tasks workflow.

Figure 9 clearly shows that proposed mechanism HES-
ACO method outperformed existing methods such as AC-
PSO, HPSOGA, and HESGA for execution time versus
number of tasks workflow.

Figure 10 clearly shows that proposed mechanism HES-
ACO method outperformed existing methods such as AC-
PSO, HPSOGA, and HESGA for throughput versus number
of tasks workflow.

Figure 11 clearly shows that proposed mechanism HES-
ACO method outperformed existing methods such as AC-
PSO, HPSOGA, and HESGA for resource utilization versus
number of tasks workflow.

Figure 12 clearly shows that proposed mechanism HES-
ACO method outperformed than existing methods such as
AC-PSO, HPSOGA, and HESGA for execution cost versus
number of tasks workflow.

6. Conclusion

%ere are not many task scheduling techniques for sensor
clouds; hence, in this work, we mainly focus on user and
cloud interaction. %is study took into account a number of
factors at once, including execution time, execution cost,
throughput, energy use, makespan time, resource utilization,
and deadline constraint parameters. In this essay, we have
spoken about how customers’ high processing needs are
causing a daily increase in the number of cloud servers.
Nevertheless, these servers use a lot of electricity. Both

sensor and cloud settings have significant issues with energy
consumption. As a result, energy-efficient job scheduling is
crucial for reducing energy use and improving the other
variables. A hybrid electro search with ant colony optimi-
zation (HES-ACO) strategy is suggested in this research.
Tasks are inefficiently scheduled using the proposed HES-
ACO approach at virtual machine resources (Vm). It utilizes
a fitness function to optimize the parameters (execution
time, execution cost, throughput, reaction time, and energy
consumption) while taking the task deadline into account as
a quality-of-service parameter. %e proposed method effi-
ciently increases resource usage while minimizing energy
consumption, cost, make-span time, execution time,
throughput, and task rejection ratio when compared to
HESGA, HPSOGA, AC-PSO, and PSO-COGENT algo-
rithms. %e created algorithm can be applied in the future to
various SLA, QoS, and security criteria that are also taken
into consideration for further research.
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