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Evapotranspiration represents the water requirement of plants during their growing season, and its accurate measurement at the
farm is essential for agricultural water planners and managers. Field measurements of evapotranspiration have always been
associated with many difficulties that have led researchers to seek a way to remotely measure this component in horticultural and
agricultural areas.)is study aims to investigate an indirect approach for daily rice crop evapotranspiration (ETc) measurement by
machine learning (ML) techniques and the least available climatic variables. For this purpose, daily meteorological variables were
obtained from three ground meteorological stations in rice cultivation regions of northern Iran during 2003–2016. )e ETc rates
were calculated by seven meteorological variables, the FAO-56 Penman-Monteith equation, and the regional calibrated rice crop
coefficient and considered as the reference data. )e MLs, including Multilayer Perceptron (MLP), Radial Basis Function (RBF),
Generalized Regression Neural Network (GRNN), and Group Method of Data Handling (GMDH), were utilized for ETc
modeling. Different input combinations were applied, based on the use of minimum effective variables as input. Results showed
that the models showed the most accurate performances in the input combination of four climatic variables: sunshine duration,
maximum temperature, relative humidity, and wind speed. Investigating the accuracy of models in rice growth phases showed that
the least estimation error belonged to the initial growing stage, which increased during the mid-season and late-season growing
stages. A comparison of the models showed that the GMDH model performed better against the other competitors. For this
model, both the Nash-Sutcliffe (NS) coefficient and R2 were greater than 0.98, and the Root Mean Square Error (RMSE) ranged
between 0.214 and 0.234mm per day in all stations. )e current approach showed promising results in rice evapotranspiration
modeling by only four commonmeteorological variables and can be reliably applied for indirect measurement of this variable over
the rice farms. )e studied approach will have research value for rice and other crops in similar/different climatic conditions.

1. Introduction

Evapotranspiration is one of the key components in the
hydrological cycle. )is variable is defined at the field level,
which indicates the total water output from the soil and
plants and represents the water required by a plant during its
growing season. Evapotranspiration is affected by climato-
logical and meteorological factors in a region, such as solar

radiation, temperature, humidity, and teleconnection pat-
terns. It is also one of the most important variables in
studying dryness stress of the plants and monitoring agri-
cultural drought conditions, which are used in the calcu-
lations of drought indices like the Standardized
Precipitation-Evapotranspiration Index and Palmer
Drought Severity Index [1, 2]. )erefore, its accurate
measurement at the farm level is crucial and necessary for
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farmers and managers, as well as planners of agricultural
water resources. Its value can be measured by a lysimeter
embedded in a field. )e lysimeter is sensitive in terms of
accuracy so a full-time technician specialized in the field is
needed to eliminate the errors and provide accurate mea-
surements of evapotranspiration. It makes working with the
lysimeter extremely difficult, and researchers turned to
numerical models to solve this problem. )ese models can
estimate the reference crop evapotranspiration (ET0), which
refers to the evapotranspiration of grass plants, using me-
teorological variables such as temperature, humidity, and
wind speed. )e evapotranspiration of a particular product
(ETc) is obtained by multiplying ET0 by the plant coefficient
of that plant. Several numerical models such as Hargreaves-
Samani, Blaney-Criddle, )ornthwaite, and FAO-56 Pen-
man-Monteith (FAO-56 PM) have been introduced for this
purpose, among which the World Meteorological Organi-
zation (WMO) model FAO-56 PM can be recommended as
the most suitable and a reliable alternative to lysimeter data
[3]. Outputs of the FAO-56 PM method are now completely
acceptable to be considered as observational ET0 rates in
ET0 modeling and generally ET0 related studies [4–13].

In recent years, machine learning (ML) models have also
been used to estimate and predict evapotranspiration. )ese
models are also known as black-box models that can dis-
cover complex numerical relationships between input-target
variables with high accuracy. In a comparative study in
California, Kumar et al. [14] showed that artificial intelli-
gence models such as the Multilayer Perceptron (MLP) can
estimate true daily ET0 data (lysimeter) even more accu-
rately than the FAO-56 PM model. )e MLP model has also
been compared with FAO-56 PM in estimating the daily
evapotranspiration of barley crops in an agricultural re-
search station at Shiraz University, Iran [15]. )e results
were validated by weighing lysimeter and, due to the ac-
curacy and also adaptability with the limitation of climatic
data, the superiority of MLP’s performance was reported.
Antonopoulos et al. [16] investigated the MLP model in
estimating daily evapotranspiration in Greece. )ey also
used FAO-56 PM outputs as a basis and showed that the
MLP model has a reliable performance in estimating ET0
with minimal variables. In southeastern Australia, Falamarzi
et al. [17] used the FAO-56 PM model as a basis for mea-
surement and they examined the performance of the MLP
model in ET0 estimation. )ey showed that this model is
only able to provide an accurate estimate of ET0 with
temperature and wind speed variables. Artificial intelligence
models such as Support Vector Machine (SVM) were also
used to estimate evapotranspiration.)is model provided an
acceptable estimate of ET0 on a daily scale with the mini-
mum meteorological variables in estimating daily ET0 in
central [18], south [19], and southeast China [20], as well as
in Florida in USA [21] and in Turkey [22]. SVM also
provided good results in monthly ET0 long-term prediction
[23]. Using theMLP, Adaptive Neurofuzzy Inference System
(ANFIS), and Support Vector Regression (SVR) models,
Nourani et al. [24] performed the same work for neighboring
countries in three continents of Europe, Asia, and Africa.
)ey also reported the mentioned models as valid.

ET0 estimation by MLs has also been welcomed in Iran.
)e commonly utilized models in this way were SVM, SVR,
Multivariate Adaptive Regression Splines (MARS), and
Gene Expression Programming (GEP). Mehdizedeh [25]
used MARS and GEP for this purpose in the semiarid, arid,
and hyperarid climates of Iran. Mehdizedeh showed that the
mentioned models in these climates have acceptable per-
formances in estimating ET0. In similar areas (in terms of
climate) with previous research in Iran, Mohammadi and
Mehdizadeh [26] also used ML models such as SVR. )ey
calculated the ET0 by the FAO-56 PMmodel and considered
it as a measurement basis. )e results revealed that this
model could also estimate ET0 with very high accuracy with
minimum inputs (including mean temperature, minimum
temperature, solar radiation, and wind velocity). Ahmadi
et al. [27] also estimated monthly ET0 in arid areas of Iran.
)ey also found ML models to be appropriate in estimating
monthly ET0 using minimum inputs. Generalized Regres-
sion Neural Network (GRNN) and Radial Basis Function
(RBF) neural network are two other MLs that are success-
fully used for ET0 estimation in different areas around the
world. GRNN was developed for Turkey [28, 29], China
[30, 31], United States [32, 33], and Algeria [34]. RBF has
also been utilized in United States [33, 35, 36], Italy [37],
Algeria [34], Turkey [28], India [38], and Serbia [39]. But
both have rarely been used in ET0 estimation of Iranian
climates; GRNN has not been used and RBF was only re-
ported in a study by Hashemi and Sepaskhah [15]. Some of
the previously studied cases in evapotranspiration estima-
tion are illustrated in Table 1.

As shown in Table 1, evapotranspiration has been
modeled by artificial intelligence models in different parts of
the world. )e similarity of these studies is that they used
meteorological variables as estimator input, and all of them
evaluated these models as efficient in this regard. Also, in
most such studies, the models were able to estimate the ET0
variable and have not focused on a special crop’s evapo-
transpiration. In the literature, there were only two
evapotranspiration estimation studies of the crops barley
[15] and potato [46], which were examined in Iran and Italy,
respectively. In this case, the models MLP, RBF, and GRNN
were the most commonly used cases.

Group Method of Data Handling (GMDH) neural
network is a polynomial-based ML model, which can solve
complex nonlinear function approximation problems. In
hydrometeorological studies, GMDH has been well used to
estimate and predict the variables such as radiation [47],
drought indices [48–52], river flow [53, 54], and snow
[55, 56], but it has very rarely been used in evapotranspi-
ration estimation studies.)e current study aims to examine
the performance of the GMDH model for the first time in a
special crop’s evapotranspiration estimation case and
compare it with the commonly used models such as MLP,
RBF, and GRNN. Investigations indicate that ET0 estima-
tion in Iran is mostly done in arid, semiarid, and hyperarid
areas. )e northern part of Iran alongside the Caspian Sea
has a humid climate, which is very important in terms of the
cultivation of high-quality rice. So, the present study is an
attempt to evaluate the mentioned ML types in estimating
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the daily evapotranspiration rates of this region. As another
novelty, this study focuses on the evapotranspiration of the
rice crop, which is a plant with high water requirement and
also the main crop with a high cultivation area in the
mentioned region. In fact, this study tries to find a numerical
approach, for the indirect measurement of the evapo-
transpiration variable, on the arable lands under rice
cultivation.

2. Materials and Methods

2.1. StudyAreaandData. )is study focuses on the southern
areas of the Caspian Sea. Based on the extended De Mar-
tonne classification [57], these areas are in the moderate
temperature class and the perhumid, humid, semihumid,
andMediterranean rainfall classes.)is area in Iran includes
three provinces of Gilan, Mazandaran, and Golestan, where
most of the agricultural lands are under extensive cultivation
of different rice cultivars. To calculate the reference
evapotranspiration and then the rice evapotranspiration in
these areas, three cities that are capitals of these three
provinces were studied. Figure 1 shows the location of this
area and the cities studied in it.

)e data studied in this study on a daily scale during
2003–2018 were received from the Iranian Meteorological
Organization (IRIMO). )ese data include 10 variables:
minimum air temperature (Tmin), maximum air temperature
(Tmax), mean air temperature (T), minimum relative humidity
(RHmin), maximum relative humidity (RHmax), mean rela-
tive humidity (RH), sunshine duration (SSD), precipitation (P),
wind speed at a height of 2meters (U2), and pan evaporation
(Epan).)e ET0 value on a daily scale was calculated using the
FAO-56 PM equation and the variables of Tmin, Tmax,

RHmin, RHmax, SSD, U2, and P. Evapotranspiration package
in R software was used for this calculation. )en, the growing
period of rice in this area, from May to August, was separated
from thewhole period. Evapotranspiration rates of rice (ETc) at
different stages of its growth were calculated according to the
rice crop coefficients. For this, the FAO recommended rice
crop coefficients and also locally calibrated coefficients exist,
which are shown in Figure 2.

)e local coefficients of rice are extracted from previ-
ously studied cases in southern Caspian Sea regions [58–60].
)is figure illustrates that the FAO recommended rice crop
coefficient in the initial stage of the growth period (May) is
within the range of local calibrated coefficients and can be
acceptable for this stage. But, for both other stages, the mid-
season stage (June-July) and late-season stage (August), the
FAO coefficients are far from the local coefficients and
significantly smaller, especially for late-season stage.
)erefore, using the average value of local calibrated rice
crop coefficients to calculate ETc in this region, which is
equal to 1.024, 1.390, and 1.094 for initial, mid-season, and
late-season stages, respectively, was decided. For modeling,
the input-target samples were divided into training and test
sections, which include the initial 75% (rice growth periods
during 2003–2014) and the final 25% (rice growth periods
during 2015–2018) of the study period, respectively. Table 2
presents the statistical characteristics of all data used.

2.2. Machine Learning Models

2.2.1. Multilayer Perceptron (MLP). )is model is the most
widely used model of artificial intelligence in the area of
numerical modeling in all sciences. )ese networks

Table 1: Previously studied research on evapotranspiration estimation subject.

Row Study Region Model(s)∗ Input variables∗∗ Output
variable∗∗∗

1 Feng et al. [31] China GRNN, ELM Tmax, Tmin ET0
2 Sanikhani et al. [28] Turkey MLP, GRNN, RBF, ANFIS Tmin, Tmax, ER ET0
3 Zhang et al. [30] China GRNN, CatBoost Tmin, Tmax, SSD, RH, WS ET0

4 Ruiming and Song
Shijie [40] China GRNN T, SSD, WS, RH ET0

5 Alizamir et al. [41] Turkey MLP, ANFIS T, SR, RH, WS ET0

6 Seifi and Riahi [42] Iran MLP, SVM, ANFIS Tmin, Tmax, Tdew, RHmin, RHmax, RH,
WS, SR, SSD ET0

7 Wu et al. [20] China MLP, RF, GBDT, XGBoost,
MARS, SVM SSD, Tmax, Tmin, RH, WS ET0

8 Chia et al. [43] Malaysia MLP, SVM, ANFIS Tmin, Tmax, T, RH, WS, SR ET0
9 Gocić et al. [44] Serbia MLP, GEP, SVM Tmin, Tmax, VP, SSD, WS ET0
10 Majhi and Naidu [45] India MLP, RBF Tmin, Tmax, RHmin, RHmax, WS, SSD ET0

11 Hashemi and Sepaskhah
[15] Iran MLP, RBF T, SSD, WS, RH ETbarley

12 Yamaç and Todorovic
[46] Italy MLP, KNN, AdaBoost T, SR, RH, WS ETpotato

∗MLP: Multilayer Perceptron, RBF: Radial Basis Function neural network, GRNN: Generalized Regression Neural Network, ANFIS: Adaptive Neurofuzzy
Inference System, SVM: Support Vector Machine, ELM: extreme learning machine, RF: random forest, GBDT: gradient boosting decision tree, XGBoost:
extreme gradient boosting, MARS: Multivariate Adaptive Regression Spline, GEP: Gene Expression Programming, KNN: k-nearest neighbor, AdaBoost:
adaptive boosting. ∗∗Tmin: minimum air temperature, Tmax: maximum air temperature, T: mean air temperature, Tdew: dew point temperature, RHmin:
minimum relative humidity, RHmax: maximum relative humidity, RH: mean relative humidity, VP: vapor pressure,WS: wind speed, SSD: sunshine duration,
SR: solar radiation, ER: extraterrestrial radiation. ∗∗∗ET0: reference crop evapotranspiration, ETbarley: barley crop evapotranspiration, ETpotato: potato crop
evapotranspiration.

Complexity 3



typically include a set of sensory units (basic neurons)
consisting of an input layer, one to several hidden layers,
and an output layer. �is method creates a nonlinear
mapping between the input-target samples. Input signals
from the input layer to the output layer are spread in a
forward direction [61]. Along this direction, the desired
transfer function is applied to the input variables, and
weight (w) and bias (b) are multiplied by it in each layer.
Finally, after optimizing the objective function, the output
variables are extracted from the last layer with a linear
transfer function. Figure 3 shows a schematic structure of
the steps of this model.

To implement this model, di�erent transfer functions
such as hyperbolic tangent sigmoid (tansig), logarithm
sigmoid (logsig), saturating linear (satlin), and linear
(purelin) were examined and tested. �e Levenberg-Mar-
quardt (LM) algorithm was also used to train this model. See
[62] for more information on the details and mathematical
equations of this method.

2.2.2. Radial Basis Function (RBF). �e RBF model, like the
MLP, has input, hidden, and output layers. �e input layer
receives and collects the data and then formulates the input
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Figure 1: �e study area and the location of synoptic stations on the country.

4 Complexity



vector X. �e hidden layer consists of L number of nodes
that apply nonlinear transformations to the input vector and
the output layer receives the �nal response. �e output of
RBF network is formed by a linear combination of hidden
layer responses, de�ned as the following equation [63]:

yj x
p( ) �∑

k

j�1
wji∅j x

p − ci( ), i � 1, 2, . . . S, (1)

where ‖-‖ is Euclidean distance norm, k is the maximum
hidden layer neuron, ∅j is the response of neuron j in the
hidden layer, wji is the output weight, xp is the input vector,
yj is the output of the output neuron j, ci is the center and S is
the number of output neurons. Figure 4 shows the schematic
structure of this model.

In this network, in the hidden layer, Gaussian radius
transfer functions have been used, which are an example of
the most widely used radial functions in engineering
problems. Also, in the output layer, the linear transfer
function has been used. �e Gaussian radial transfer
function is de�ned as [64]

∅j x
p − ci( ) � exp −

xp − ci( )
2

2σi
 , i � 1, 2, . . . k. (2)

In this equation, σi is the width i of neuron in the hidden
layer, which is the same as the spread parameter. �is pa-
rameter is de�ned as follows [65]:

σi � 2 ×∑
p

i�1

ci−1 − ci
∣∣∣∣

∣∣∣∣
p

. (3)

In the above equation, ci and ci−1 are the centers of radial
functions and p is the number of centers of RBF. �e pa-
rameters of the RBF model include spread and maximum
hidden layer neurons, which are optimized by the trial-and-
error method in the current study.

2.2.3. Generalized Regression Neural Network (GRNN).
GRNN model was introduced by Specht [66] as a tool for
numerical modeling and approximation of functions. �e
structure of this model is based on the theory of core re-
gression. From this point of view, this network is equivalent to
a nonlinear regression relation and does not require repeated
training. GRNN is similar to the RBF neural network in other
respects, except for its training process in the second layer.
Figure 5 shows the general structure of this model.

In short, GRNN has 4 layers: input layer, pattern layer,
summation layer, and output layer. �e input layer consists
of input vectors that have m dimensions. �e pattern layer
has n dimensions and performs calculations related to the
Gaussian transfer function. �e summation layer is the sum
of n dimensions of the pattern layer, and �nally the output
layer yields the model outputs [67].

�e GRNNmodel output is obtained using the following
equation:

y(x) �
∑ni�1 yiexp −D2

i /2σ
2( )

∑ni�1 exp −D2
i /2σ

2( )
. (4)

In the above equation, y is the output of the model and σ
is the spread parameter. Di is also a scalar function obtained
from the following equation:

Di � x − xi( )T x − xi( ), (5)

where x is the input corresponding to y and xi is the input
corresponding to yi.�e only parameter of the GRNNmodel
is the spread parameter, which is optimized by trial-and-
error method in the present study.

2.2.4. GroupMethod of Data Handling (GMDH). In general,
Volterra-Kolmogorov-Gabor (VKG) polynomial can be
used to model complex systems that include a set of several
input variables and one target variable:
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Figure 2: Rice crop coe�cient during its growing phases; comparing the FAO recommended and local calibrated coe�cient ([58–60])
[Babaee et al.’s study [58] has extracted the crop coe�cients for the rice growth period in three consecutive years of 2015, 2016, and 2017, in
which the su�xes “a,” “b,” and “c” indicate these three years, respectively].
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y � a0 +∑
n

i�1
aixi +∑

n

i�1
∑
n

j�1
aijxixj +∑

n

i�1
∑
n

j�1
∑
n

k�1
aijkxixjxk + . . . , (6)

where x � (x1 . . . xn) represents the input vectors, y
represents the output vectors of the model, and ai are
polynomial coe�cients. VKG polynomials are approxi-
mated using quadratic polynomials. �ese quadratic
polynomials are based on binary combinations of network
inputs [68]. �e GMDH algorithm was also introduced
using this idea as a learning method to approximate
complex [69]. �e GMDH neural network has a multilayer
structure and feedforward and consists of a set of neurons
that are created by linking di�erent input pairs by a
quadratic polynomial. Figure 6 shows the three-layer
structure of this model.

In this network, each layer consists of one or more
processor units, each of which has two inputs and one

output. �ese units practically play the role of the com-
ponents of the model and are assumed as a quadratic
polynomial:

ŷn � a0 + a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2. (7)

�e unknown parameters of the GMDH algorithm are
the polynomial coe�cients of the above equation. To cal-
culate the output value ŷi for each input vector
x � (xi1 . . .xin), the sum of squares of the error should be
minimized.

e �∑
n

i�1
ŷi − yi( )2. (8)

To �nd the minimum error, the partial derivative of the
above equation is used. By placing equation (7) in this partial
derivative, a matrix equation (Aa� y) is obtained. In this
equation, a � a0, a1, a2, a3, a4, a5{ }, and Y � y1 . . .yM{ }T
and matrix A is as follows:

A �

1 x1p x1q

1 x2p x2q

x1px1q x
2
1p x21q

x2px2q x
2
2p x22q

.

.

.

1 xMp xMq xMpxMq x
2
Mp x2Mq





. (9)

One method to solve this matrix equation (Aa� y) is to
use the Singular Value Decomposition (SVD) method. If the
SVD method is used, a will be calculated using the following
equation:

a � ATA( )
−1
ATy. (10)

In this equation,AT is transposed intomatrix A. Using this
solution method, unknown a can be computed under any
circumstances. If matrix (ATA) is not invertible, the Tikhonov
method will be used to solve the equation. Its main reference
[69] is suggested for complete information on the details of this
model. �e adjusting screws of this model include the number
of layers and the number of neurons in the layers, which were
optimized by trial-and-error method in this study.

b1 b2

b3

w3

w2

w1

Inputs

Input layer Hidden layer 1 Hidden layer 2 Output layer

Output

Figure 3: A schematic diagram for an MLP network with 2 hidden layers.
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Figure 4: �e general topology of the RBF neural network.
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Figure 5: GRNN model’s schematic structure.
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2.3. Measuring the Accuracy of Estimates. Performance
evaluation criteria are used to evaluate the accuracy of the
estimates provided by the models. �ese criteria require
observational data and simulated data for calculation. �e
evaluation criteria used in this study include Root Mean
Square Error (RMSE), Nash-Sutcli�e (NS), coe�cient of
determination (R2), Normalized Root Mean Square Error
(NRMSE), and Mean Absolute Error (MAE), and the
equations of these criteria are described as follows:

RMSE �

�������������
1
n
∑
n

i�1
Oi − Ei( )2

√√

,

NS � 1 −
∑ni�1 Oi − Ei( )2

∑ni�1 Oi − O( )2
,

R2 � ∑ni�1 Oi − O( ) Ei − E( )�������������
∑ni�1 Oi − O( )2
√

∗
������������
∑ni�1 Ei − E( )2
√



2

,

NRMSE �

���������������
1/n∑ni�1 Oi − Ei( )2
√

Omax − Omin
,

MAE �
1
n
∑
n

i�1
Oi − Ei
∣∣∣∣

∣∣∣∣.

(11)

In the above equations, Oi is the observed value on day i;
Ei is the estimated value on day i; O is the mean of observed
values; E is the mean of estimated values, Omax and Omin are
maximum and minimum observational data, respectively,
and n is the number of days under study. �e closer the
values of RMSE, NRMSE, and MAE are to zero and the
closer the values of NS and R2 are to one, the more accurate
the model estimates are. �e NRMSE also has qualitative
classes of model accuracy. According to it, if the NRMSE
value is greater than 0.3, the performance of the model is
considered poor; if its value is between 0.2 and 0.3, the

performance of themodel is consideredmoderate; if its value
is between 0.1 and 0.2, the performance of the model is
considered good, and if its value is less than 0.1, the per-
formance of the model is considered excellent [53, 70].

In this study, coding in MATLAB software was used to
implement machine learning models. Minitab and Excel
software were used to evaluate models and draw graphs.
Figure 7 provides a general ªowchart of evapotranspiration
estimation processes and evaluation of current models.

3. Results

3.1. Modeling and Evaluation. In this section, after calcu-
lating the evapotranspiration of rice crop (ETc) in the
growing period (May to August), the model inputs should be
determined �rst for estimation. For this purpose, a corre-
lation matrix between ETc and 10 meteorological variables
was used, the results of which are presented in Figure 8.

To investigate the relations between the variables (Fig-
ure 8), the Spearman correlation test was used. �e results of
this test show that there is a signi�cant correlation between ET0
and all meteorological variables at the level of 0.01 in all three
stations. However, the use of all variables can be incorrect in
two ways: (1) �ere is similarity to the FAO-56 PM model. (2)
Some inputs (like Tmin or U2) have poor correlation despite
the signi�cant correlation, which ultimately leads to reduced
model accuracy. �erefore, in this section, we decided to re-
duce the number of input variables. �e FAO-56 PM model
used 7 variables (Tmin, Tmax, RHmin, RHmax, SSD, P, and
U2) to calculate ET0. �erefore, a maximum of four variables
are reasonable to be considered as input combinations to
evaluate theMLmodels under the condition of limited climatic
data availability. �e highest correlation belongs to the SSD
variable, which is selected as a �xed input. Among the tem-
perature variables and among the relative humidity variables,
the Tmax variable and the RH variable had the highest cor-
relation with ETc in all three stations. �erefore, these two
variables are considered as �xed input along with SSD and
form the input scenario of S1.�e three variables of P, U2, and
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Figure 6: Schematic diagram of a �ve-layered GMDH’s structure.
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Epan are also added separately to S1 and form the other 4
scenarios. �ese scenarios are shown in Table 3.

�e identi�ed input scenarios (Table 3) for eachmodel in
each station were tested during the growing period of rice. In
each scenario from each station, the parameters of the
models were optimized by trial-and-error method and the
best arrangement of each model was selected by RMSE and
NS criteria. �e optimal parameters of the models as well as
the evaluation results of the estimates are shown in Table 4.

Since the validity of a model is determined in the test
section, this section also deals with the testing phase. Table 4
shows that the NS value in the models is above 0.84, indicating
that the accuracy of the models used in estimating rice
evapotranspiration is very high. �e most accurate perfor-
mance at the Rasht station belongs to scenario S3 and the
GMDH model, which achieved RMSE� 0.220 mm/day and
NS� 0.986 by arranging 5 layers and 6, 15, 50, 50, and 1 neuron
in layers 1 to 5.�e poorest performance of this station belongs
to the GRNN model in scenario S1, which reached
RMSE� 0.602 mm/day and NS� 0.894 with spread� 2.95. In
Gorgan and Sari stations, the weakest and most accurate
models were similar to those in the Rasht station (GRNN and
GMDH, respectively).

�e evaluation criteria for these two cities are as follows.
For Sari station, the strongest performance was
RMSE� 0.214mm/day and NS� 0.986 (GMDH, S3) and the
poorest performance was RMSE� 0.641 mm/day and
NS� 0.878 (GRNN, S4). For Gorgan station, the strongest
performance was RMSE� 0.234 mm/day and NS� 0.990
(GMDH, S3) and the poorest performance was
RMSE� 0.898 mm/day and NS� 0.847 (GRNN, S1).

Among the scenarios used, in most cases, scenario S3
provided the best performance, and scenario S1 provided the
poorest performance. Radar charts were used to examine
this issue graphically (Figure 9).

In Figure 9, the overestimated and underestimated days for
eachmodel were separated in each of the 16 input scenarios (in
accordance with Table 3). �en, the MAE value was calculated
separately for them and this was done for all three stations. In
general, it is clear that the estimates provided by the models
were more in the underestimation state than in the overesti-
mation state. Also, the lowest estimation errors occurred in all
four models for scenario S3, which includes SSD, RH, Tmax,
andU2 inputs. Another important point is that, in this scenario
(S3), the underestimation and overestimation of themodels are
at the same size. For example, in examining the di�erent

GMDH

MLP

RBF GRNN

Evaporation (from the land) + Transpiration (from the plant)

Rice evapotranspiration (ETc)

RMSE

NS

NRMSE

R2

MAE

Selecting the most
accurate model

Inputs Modeling step Estimation step

Validation step

Meteorological variables

Result

Rhmin (%) 

Rhmax (%)

Rh (%)

Tmin (°C)

Tmax (°C)

T (°C)

SSD (hr.day–1)

P (mm)

U2 (m.s–1)

Epan (mm.day–1)

Figure 7: General ªowchart of the modeling and estimation processes.
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scenarios of theMLPmodel for theGorgan station, theMAE in
the MLP2 (S2) scenario overestimation is equal to 0.422
mm/day and in the underestimation state it is 0.613 mm/day.
In the same station, in the MLP3 (S3) scenario, the overesti-
mation is equal to MAE� 0.197 mm/day and the underesti-
mation is equal to MAE� 0.173 mm/day. �is issue is clearly
seen for scenario S3 in all three stations and all themodels used,
indicating that the models are more balanced with this input
combination (SSD, RH, Tmax, and U2) and are better com-
patible with it.

3.2.Comparing theModels. Scatter plots are used to examine
the correlation between ETc estimates and observations
(Figure 10). In this chart, the output of the best scenario
from each model (scenario S3) at each station was selected
and graphically plotted against the observed ETc values.

As the values of R2 indicate (R2> 95%), all models had a
very good performance in ETc estimation. In other words,
models tested recently in this area (GRNN, RBF, and
GMDH) are also considered suitable for this purpose. A very
small slope between the 1 :1 line and the �tted estimates-
observation regression line also con�rms this issue. Com-
parison between models shows that, in all stations, the
GMDH model, with a slight advantage over MLP, is rec-
ognized as the best estimator of rice evapotranspiration. �e
R2 value for the GMDH model in Rasht, Sari, and Gorgan
stations is 98.76%, 98.83%, and 99.04%, respectively. Among
the utilized models, the poorest correlation belongs to
GRNN outputs, as it has the lowest value of R2 in all three
stations (98.06% for Rasht, 95.02% for Sari, and 97.56% for
Gorgan). Also, the scatter of the points around the �tted
regression line is relatively weak in the GRNN model. For
example, in the Sari station, the points on the GRNN’s graph
are more scattered around their regression line, but they are
much more concentrated in the MLP and GMDH models.

3.3. Investigating the Accuracy of Models during Di�erent
Phases of Rice Growth. In this section, the vegetative phases
of the rice plant were separated from each other in the test
period, and then the value of NRMSE was calculated be-
tween the observed ETc of each station and the estimates of
the models in each phase separately. Figure 11 presents the
results as area charts.

As shown in area charts, the NRMSE is less than 0.1 in
states, indicating that the quality of performance of the models
is excellent. Examination of the trend of errors during the
growing period of rice shows that the least number of errors
occurs in the initial phase, and the accuracy of estimates is
somewhat reduced in mid-season phase and late-season phase,
respectively. In all rice vegetative phases, GRNN and RBF
models are relatively weaker and this is con�rmed in all three
stations. In the initial phase, especially in Rasht and Sari sta-
tions, the GMDH model has the lowest normalized error
(0.023 for Rasht and 0.017 for Sari) and is in a better condition
compared to MLP (0.030 for Rasht and 0.024 for Sari).

In addition, the superiority of the GMDHmodel over the
others is con�rmed with a slight di�erence in themid-season
stage and late-season stage. To obtain a better understanding
of the accuracy of the models during the growing period, one
of the rice growing periods in 2018 as a sample is examined
graphically (Figure 12). In this section, the most accurate
(GMDH) and least accurate (GRNN) outputs of the model,
along with their observational values, are shown on time
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Figure 8: Results of Spearman correlation test between meteo-
rological variables and rice evapotranspiration.

Table 3: Combinations of the meteorological variables as the
models’ input scenarios.

Scenario Input variables
Scenario under the models

GRNN RBF GMDH MLP
S1 SSD, RH, Tmax GRNN1 RBF1 GMDH1 MLP1
S2 SSD, RH, Tmax, P GRNN2 RBF2 GMDH2 MLP2
S3 SSD, RH, Tmax, U2 GRNN3 RBF3 GMDH3 MLP3

S4 SSD, RH, Tmax,
Epan GRNN4 RBF4 GMDH4 MLP4
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Table 4: Evaluating the models’ performances under different input scenarios.

Station Model Input scenario Parameters
Training phase Testing phase

RMSE (mm/day) NS RMSE (mm/day) NS

Rasht

GRNN

S1 2.95 0.528 0.913 0.602 0.894
S2 3.10∗ 0.423 0.944 0.541 0.915
S3 2.85 0.314 0.969 0.338 0.967
S4 3.35 0.442 0.939 0.525 0.919

RBF

S1 30–50∗∗ 0.326 0.967 0.401 0.953
S2 40–60 0.326 0.967 0.398 0.954
S3 40–50 0.186 0.989 0.238 0.983
S4 25–45 0.346 0.963 0.392 0.955

GMDH

S1 3-3-3-3-1∗∗∗ 0.342 0.964 0.350 0.964
S2 6-15-50-50-1 0.336 0.965 0.344 0.966

S3∗∗∗∗∗ 6-15-50-50-1 0.221 0.985 0.220 0.986
S4 6-15-40-40-1 0.329 0.966 0.335 0.967

MLP

S1 16-8-1-satlin∗∗∗∗ 0.322 0.968 0.377 0.958
S2 12-8-1-satlin 0.326 0.967 0.372 0.960
S3 10-8-1-satlin 0.185 0.989 0.223 0.985
S4 12-6--1satlin 0.312 0.970 0.363 0.962

Sari

GRNN

S1 2.60 0.543 0.902 0.619 0.886
S2 2.35 0.512 0.913 0.611 0.889
S3 2.85 0.369 0.955 0.411 0.950
S4 2.90 0.500 0.917 0.641 0.878

RBF

S1 35–50 0.342 0.961 0.466 0.935
S2 45–60 0.344 0.961 0.471 0.934
S3 35–55 0.178 0.990 0.299 0.973
S4 35–65 0.330 0.964 0.500 0.926

GMDH

S1 3-3-3-3-1 0.372 0.954 0.407 0.951
S2 6-15-35-35-1 0.371 0.955 0.394 0.954
S3 6-15-45-45-1 0.215 0.985 0.214 0.986
S4 6-15-40-40-1 0.361 0.957 0.409 0.950

MLP

S1 16-10-satlin 0.332 0.964 0.426 0.946
S2 12-10-satlin 0.337 0.962 0.436 0.943
S3 12-6-satlin 0.168 0.991 0.222 0.985
S4 10-6-satlin 0.333 0.963 0.456 0.938

Gorgan

GRNN

S1 3.40 0.793 0.874 0.898 0.847
S2 3.10 0.803 0.871 0.856 0.861
S3 3.25 0.361 0.974 0.487 0.955
S4 3.15 0.772 0.880 0.891 0.849

RBF

S1 45–50 0.647 0.916 0.773 0.887
S2 45–55 0.650 0.915 0.739 0.896
S3 35–70 0.196 0.992 0.273 0.986
S4 50–75 0.638 0.919 0.758 0.891

GMDH

S1 3-3-3-3-1 0.674 0.909 0.669 0.915
S2 6-15-25-25-1 0.685 0.906 0.676 0.913
S3 6-15-30-30-1 0.230 0.989 0.234 0.990
S4 6-15-25-25-1 0.668 0.911 0.660 0.917

MLP

S1 12-10-satlin 0.650 0.915 0.707 0.905
S2 12-8-satlin 0.644 0.917 0.719 0.902
S3 10-8-satlin 0.191 0.993 0.232 0.990
S4 12-8-satlin 0.640 0.918 0.728 0.900

∗GRNN’s parameter: spread. ∗∗RBF’s parameters: Spread and maximum number of neurons. For example, 30–50 means the spread is 30 and maximum
number of neurons is 50. ∗∗∗GMDH’s parameters: 6-15-50-50-1 means that there is a 5-layered GMDHmodel with 6, 15, 50, 50, and 1 neuron in layers 1 to 5,
respectively. ∗∗∗∗MLP’s parameters: 16-8-1-satlin means there is an MLP model with two hidden layers with 16 neurons in the 1st hidden-layer, 8 neurons in
the 2nd hidden-layer, and 1 neuron in the output layer, and the transfer function is saturating linear transfer function (satlin). ∗∗∗∗∗)e bold rows specify the
best performance of each station.
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Figure 9: Radar charts based on Mean Absolute Error (MAE) (mm/day) to investigate the under/overestimation of the models and
scenarios.
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series plots. In this chart, the intensity and weakness of the
estimates-observation overlap are clear and the perfor-
mances of the two models are comparable.

4. Discussion

Several studies have investigated the accuracy of machine
learning models in evapotranspiration modeling
[16, 17, 25–27, 71]. All of these studies have found MLs

suitable for ET0 modeling with minimum input variables, so
their results are consistent with those of this study.
Mohammadi and Mehdizadeh [26] used the SVR AI model
in combination with the Whale Optimization Algorithm
(WOA) and reached an average RMSE� 0.265 mm/day at
their best input scenario. However, in this study, the GMDH
model, which is a nonhybrid model, could reach an average
accuracy of RMSE� 0.222 mm/ day. In investigating MLP in
Greece, Antonopoulos and Antonopoulos [16] reached a
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Figure 12: Time series plots of the estimated ETc rates beside their observed values during the rice growth period of 2018.
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maximum accuracy of RMSE� 0.574 mm/ day. Also, in
investigating MLP hybrid model in Australia, Falamarzi
et al. [17] reached the maximum accuracy of RMSE� 1.03
mm/ day. Comparing these two studies [16, 17] with this
study suggests that the results of MLP in the present study
are evaluated with much greater accuracy
(0.222<RMSE< 0.232 mm/ day). )e RBF model was used
in combination with Particle Swarm Optimization (PSO) in
a study conducted by Petković et al. [71] in Serbia in which
R2 � 97.13% was reached. However, in this study, the non-
hybrid RBF model showed better performance
(R2 � 98.62%). Its reason can be attributed to the study plant.
In all of the above studies, the study was based on ET0, which
refers to the evapotranspiration from the grass surface.
However, this study has focused on the evapotranspiration
of rice. Moreover, the reason for this difference can be at-
tributed to climatic differences of Iran with regions such as
Greece, Serbia, and Australia. Even in the study conducted
by Mohammadi and Mehdizadeh [26] in Iran, the study
areas had semiarid, arid, and hyperarid climates of western
and southwestern Iran, while this study was done on humid
areas of northern Iran.

)e reason for the difference between the studied models
in terms of accuracy can also be attributed to the number of
their parameters. For example, in the GMDH model, the
parameters of the number of layers and the number of
neurons in each layer can create multiple arrangements for
this network. In MLP, in addition to these parameters, the
transfer function parameter is also involved. Such models
will have higher maneuverability in optimization and can
discover complex relationships between input-target sam-
ples over a wider space. However, the GRNNmodel has only
one parameter, and the RBF has two parameters for opti-
mization, so the structural space is more limited for them,
which can cause these models to achieve less accurate es-
timates of this variable.

In estimation cases of specific crops’ evapotranspiration
by ML models, rice has not been studied comprehensively,
but there are two studies on potato and barley that will be
discussed in continuation. Yamaç and Todorovic [46] in
Italy and Hashemi and Sepaskhah [15] in Iran have used
MLP and RBF neural networks in evapotranspiration esti-
mation of potato and barley crops, respectively. Similar to
this study, they used climatic variables as the models’ input.
)e mentioned models in the study by Hashemi and
Sepaskhah [15] reached 0.26<RMSE< 0.31 mm/ day and
0.91<R2< 0.93, and in the study by Yamaç and Todorovic
[46] they reached RMSE� 0.24 mm/ day and R2 � 0.98.
Comparison of these studies with this study shows that these
models are capable for all three crops, and they can be
reliably used for indirect measurement of the crops’
evapotranspiration. However, there is a slight difference in
accuracy among them, which can be due to the water needs
of the crop during the growing season or may be influenced
by the geographical and climatic conditions of the areas
under study.

5. Conclusion

Performance evaluation of the GMDH model, which was
used for the first time in evapotranspiration estimation
studies, shows the excellent accuracy of this model. Models
such as the GRNN and RBFwere also new for this region and
had acceptable performance, but they could not compete
with the powerful and conventional model of MLP. How-
ever, comparing MLP with GMDH showed that GMDHwas
slightly superior to MLP in all three stations studied.
)erefore, this study proposes GMDH to estimate evapo-
transpiration by least climatic inputs. On the other hand, this
study’s approach was estimating evapotranspiration of rice
crop, which yielded very promising results. )us, estimating
the daily evapotranspiration of this plant in rice cultivated
areas and also other agricultural products in their unique
areas has research value. Also, the use of optimization al-
gorithms (e.g., genetic algorithm, firefly, and particle swarm)
in combination with models such as GMDH can signifi-
cantly increase the accuracy of these models, which is
recommended to future researchers in the area of evapo-
transpiration modeling. However, using lysimeter data in
rice fields is recommended to validate the estimates provided
to gain amore reliable understanding of artificial intelligence
models’ accuracy. )e current approach is also valuable for
remote measurement of rice (or other crops), without the
need for field measurements at the farm level, from the
meteorological factors that are easily measurable.
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