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Topological indices are numeric parameters which portray the topology of a subatomic structure. In QSAR/QSPR analysis,
topological descriptors play a vital role to examine the topology of a network. An interconnection network is a structure whose
components are connected physically according to some pattern. In this paper, an interconnection network, ternary hypertree,
which is a structural combination of complete ternary tree and hypertree, is introduced. We have evaluated the topological
descriptors grounded on the distances for the ternary hypertree. 'e analytical expressions for Wiener, different types of Szeged,
and Mostar indices are determined.

1. Introduction

A connected graph having order n and size n − 1 is termed as
a tree that contains no cycle. In computer science, trees are
designed as data structures. Trees are helpful to store data
information in a hierarchical manner and provide insertion
and deletion of data. 'ey are also useful in manipulating
hierarchical data, making it easy to search information and
aid in multistage decision making. One of the basic tree
structures which have many applications in the field of
computer science is the rooted tree [1, 2]. Rooted tree is a
tree that has a root node from where the children arise. 'e
root node is called the parent node [3, 4]. A binary tree is a
rooted tree in which every vertex has at the most two
children and each child of a vertex is assigned as its left child
or right child [5]. A complete binary tree is a rooted tree in
which every node has two children-a right child and a left
child. Ternary tree which has at the most three children
3x − 1, 3x, 3x + 1, where x ∈ Z is a root node, is a rooted
tree. Ternary tree is introduced by Barning, a Dutch

mathematician in Reference [6]. It is a tool for the ternary
search tree which can be used in spell check and as a database
when indexing several nonkey fields. In a complete ternary
tree, every node has exactly three children.

Hypertree of dimension n is a basic skeleton of complete
binary tree, i.e., the vertex x has exactly two children 2x and
2x + 1, where x ∈ 2n− 1 − 1, and the vertices on the same level
are connected by a horizontal edge with a label difference of
2i− 2; 2≤ i≤ n. 'e hypertree is an interconnection network
which has minimum average distance which results in an
efficient multicomputer system [7]. It has an excellent
combination of characteristics of the hypercube and the
binary tree. Recursive hypertrees are modelled as biological
networks such as dendrimers [8–10]. 'e branching of bi-
ological networks is not restricted to two branches. With this
motivation, we introduce the concept of ternary hypertree.
Ternary hypertrees can be modelled as biological networks
for protein interactions and to analyze the spread of diseases.

'e structure of the ternary hypertree is a combination
of a complete ternary tree and hypertree. It is a spanning
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subgraph of the complete ternary tree. We denote ternary
hypertree with dimension n as THT(n).

'e level of root node is 1. 'e root node gives rise to
three children, which is at level 2. We label the root node as 1
and their children as 2, 3, 4. Likewise, if the node is labelled
as x; then, the children are labelled as 3x − 1, 3x, 3x + 1
where x ∈ [3n− 1 − 1/2]. At each level i; 1≤ i≤ n of the ternary
hypertree of dimension n has 3i− 1 nodes. For a ternary
hypertree of dimension n, the network has n levels. 'ere are
horizontal edges in the level i, 2≤ i≤ n connecting the nodes
with a label difference of 3i− 2 along the complete ternary tree
structure. See Figure 1.

Ternary hypertree consists of (3n − 1/2) nodes and (3n −

3) edges.'e vertex connectivity is 4 and edge connectivity is
3. Ternary hypertree of dimension n has a diameter of 2n − 3.
Also, it is not a regular network. THT(n); n≥ 3 is nonplanar,
i.e., it cannot be embedded in a plane and non-Hamiltonian
where every vertex can be visited more than once.

Real-life problems can be converted to graphical rep-
resentations using mathematical modelling, especially in the
field of biology [11–14]. Networks helps in analysing various
health problems by modelling the spread of diseases [15–17].
Topological indices are numeric invariants showing a cor-
relation between the subatomic structure and its physical (as
well as chemical) properties [18, 19]. 'us, it characterises
the topology of a graph [20, 21]. Topological indices analyse
the physical, chemical, and biological characteristics of a
synthetic framework [22, 23]. Topological indices are es-
sential in the field of chemistry and pharmacology, notably
in nanomedicine. It helps in the study of the properties of
networks. 'ese descriptors are used in measuring irregu-
larity, connectivity, centrality, and peripherality in networks
[24]. Topological indices for various networks have been
studied in recent years [25–28].

Computing the topological indices helps in anato-
mising the properties of the biological network. In the
next section, we have discussed some terminologies and
two types of topological descriptors (distance-based and
degree-based descriptors) of the ternary hypertree are
derived and are graphically represented. Section 3 con-
cludes the paper with discussion on the possible appli-
cations of ternary hypertree.

2. Topological Indices

'e graph Ω considered in the paper is a simple connected
graph. d(x, y) is used to represent the distance between x and
y and is the length of the shortest path connecting the
vertices, x and y. For 1≤ i≤ n, we represent i � [n]. 'e
cardinality of collection of adjacent vertices of x is termed as
the degree of a vertex x, it is denoted by dx [29, 30].
Neighbourhood of a vertex, x is represented by N(x) and is
defined as follows:

Nx(xy|Ω) � τ ∈ VΩ: d(x, τ)<d(y, τ)􏼈 􏼉, (1)

and

Mx(xy|Ω) � e ∈ E(Ω): d(x, e)<d(y, e)􏼈 􏼉, (2)

We denote the cardinality of Nx(xy|Ω) and Mx(xy|Ω) as
nx(xy|Ω) and mx(xy|Ω), respectively.

Let (wv, sv) be the vertex weight and vertex strength and
let (ew, se) be the edge weight and edge strength. 'e notion
of strength-weighted graph Ωsw � (Ω, Vsw, Esw), where
Vsw � (wv, sv), Esw � (ew, se), was introduced in Reference
[31]. For strength-weighted graph Ωsw � (Ω, (wv, sv), se),
the degree of any vertex v ∈ VΩsw is
dΩsw(x) � 2sv(x) + 􏽐p∈NΩsw(x)se(xp). For xy ∈ EΩsw, we
define

nx e|Ωsw( 􏼁 � 􏽘

p∈nx e|Ωsw( )

wv(p),

mx e|Ωsw( 􏼁 � 􏽘

p∈nx e|Ωsw( )

sv(p) + 􏽘

f∈mx e|Ωsw( )

se(f).
(3)

We refer to References [32–34] for the distance-based
topological indices. 'e formulas of these indices for
strength-weighted graph Ωsw are given in Table 1 and the
degree-based formulas of topological indices of graph Ω are
illustrated in Table 2.

In this paper, we consider wv � ew � se � 1; sv � 0.
If the distance of any two vertices in H, a subgraph of a

graph of Ω, lies in the same subgraph, then the subgraphH

is called convex. For Ω, Djoković-Winkler’s relation Θ on
E(Ω), References [41, 42] can be expressed as follows: if
d(x,w) + d(y, z)≠d(x, z) + d(y,w), then xy ∈ E(Ω) is Θ
related with wz ∈ E(Ω). Θ is an equivalence relation in case
of partial cubes. Θ partitioned E(Ω) into convex cuts. Θ∗ (a
transitive closure) is an equivalence relation. 'e edges
partition into Θ∗ classes and let Fi; 1≤ i≤ k􏼈 􏼉 is the Θ∗
partition set of E(Ω). Using Θ∗ relation, we can find the
topological indices of any graph [31, 40, 43–45]. For any
i ∈ [k], the quotient Ω/Fi graph in which vertex set belongs
to the components of Ω − Fi and x, y ∈ Ω/Fi are adjacent in
Ω/Fi if xy ∈ E(Ω), where x ∈ C1, y ∈ C2 and where C1, C2
are components. A partition X � X1, X2, . . . , Xr􏼈 􏼉 of E(Ω)

is coarser than Y � Y1, Y2, . . . , Ys􏼈 􏼉 if Xi is the union of one
or more sets in Y. To study about the Wiener index, see
References [46–48]. We have used 'eorem 2.1 and the
technique in Reference [48], reduction of original graph Ω
into quotient graphs and further into reduced graphs, to
compute theWiener index of ternary hypertree. To compute
other distance-based topological indices of ternary hyper-
tree, we use 'eorem 1.

Theorem 1 References [49, 50]. “For a connected strength-
weighted graphGsw � (G, (wv, sv), se), letE � E1, E2, . . . ,

Ekbe a partition ofE(G)coarser thanF. LetX � W,

Szv, Sze, Szev, Mo, Moe, Mot, PI. =en,

X Gsw( 􏼁 � 􏽘
k

i�1
X

G

Ei

, w
i
v, s

i
v􏼐 􏼑, s

i
e􏼠 􏼡, (4)

where

wi
v: V(G/Ei)⟶ R+is defined bywi

v(C)

� 􏽐x∈Cwv(x), ∀C ∈ G/Ei,
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si
v: E(G/Ei)⟶ R+is defined bysi

v(C) � 􏽐xy∈Cse(xy)

+􏽐x∈Csv(x), ∀C ∈ G/Ei,
si

e: E(G/Ei)⟶ R+is defined as the number of edges
inEisuch that one end inCand the other end inD, for any
two connected componentsCandDof(G/Ei).

Theorem 2. If n≥ 2 , then

(1) W(THT(n)) � 32n/4 + 5 × 3n(n − 2)/4 − (32n −

3n+2)/8 + (9 − 3n)/4 + (32+n − 32n)/8 + (3n − 3)/2 +

3(− 1 + 3n− 1)2/4
(2) Sz(THT(n)) � (33n− 2 − 19 × 32n + 30 × 3nn − 5 ×

3n + 6 × 32nn + 39/8)

(3) Sze(THT(n)) � 33n/18 − 11 × 32n + 18 × 3nn + 9 ×

3n + 32n+1n − 33/2

(4) Szev(THT(n)) � 33n/36 − 41 × 32n/8 + 33 × 3nn/4 +

7 × 3n/8 + 32n+1n/2 + 15/2
(5) PI(THT(n)) � 5 × 32n/12 − 3 × 3n + 21/4
(6) Mo(THT(n)) � 32n/4 − 3n+1n + 11 × 3n/2 − 63/4
(7) Moe(THT(n)) � 32n/2 − 6 × 3nn + 12 × 3n − 81/2
(8) Mot(THT(n)) � 3 × 32n/4 − 9 × 3nn + 35 × 3n/2 −

225/4

Proof. For a ternary hypertree of dimension n, there are
(3n− 1 − 1/2 + 1)Θ∗ classes. 'e Θ classes are as follows:

(1) For 2≤ i≤ n − 1, j � [3− 1+i], k � [3], let S
j

i be the
Θ∗− classes containing the edges (3i− 1 − 1/2
+􏼆j/3􏼇 + (k − 1)3i− 2, 3i − 1/2 + j + (k − 1)3i− 1).

(2) Let S � S1⋃ S2 be the Θ∗− classes, which consist of
the horizontal edges and the edges connecting the
first and second level. It comprises of S1 � (1, 2),{

(1, 4), ((3i− 1 − 1/2) + j, (j + 3i− 1 − 1/2) + 3− 2+i),

((3i− 1/2) + j, (j + 3i− 1 − 1/2) + 2 × 3− 2+i), ((j + 3i− 1

− 1/2) + 3− 2+i, j + 3i− 1 − 1/2 + 2 × 3− 2+i): i � [n − 1],

j � 1, 3{ }} and S2 � ((3{ i − 1 − 1/2) + j, (3i− 1−

1/2) + j + 3i− 2), ((3i− 1/2) +j, (j + 3i− 1 − 1/2) +3i− 2 ×

2), ((3 i − 1 − 1/2) + j + 3 i − 2, (j + 3i− 1 − 1/2) +

3− 2+i × 2): i � [n − 1], j � 2}.

Let Fi, i � [n − 1] be the partition which is coarser than
theΘ∗ classes. Define F1 � S and Fi, 2≤ i≤ n − 1 be the edges
joining the levels i and i + 1, i.e., Fi � ∪ jS

j

i .

1

2 3 4

5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 2524 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 1: Ternary hypertree of dimension 4.

Table 1: Distance-based topological indices.

Topological indices Mathematical expressions
Wiener [31] W(Ω) � 􏽐 x,y{ }⊆VΩwv(x)wv(y)d(x, y)

Szeged [31] Sz(Ω) � 􏽐xy∈E(Ω)se(e)nx(e|Ωsw)ny(e|Ωsw)

Edge Szeged [31] Sz(Ω) � 􏽐xy∈E(Ω)se(e)mx(e|Ωsw)my(e|Ωsw)

Edge vertex Szeged [31] Szev(Ω) � 1
2 􏽐xy∈E(Ω)se(e)[nx(e|Ωsw)my(e|Ωsw) + nx(e|Ωsw)my(e|Ωsw)]

Mostar [40] Mo(Ω) � 􏽐xy∈E(Ω)se(e)|nx(e|Ωsw) − ny(e|Ωsw)|

Edge Mostar [40] Mo(Ω) � 􏽐xy∈E(Ω)se(e)|mx(e|Ωsw) − my(e|Ωsw)|

Total Mostar [40] Mo(Ω) � 􏽐xy∈E(Ω)se(e)|tx(e|Ωsw) − ty(e|Ωsw)|

Padmakar Ivan [31] PI(Ω) � 􏽐xy∈E(Ω)se(e)[nx(e|Ωsw) + ny(e|Ωsw)]

Table 2: Degree-based topological indices.

Topological indices Mathematical expressions
First Zagreb [35] 􏽐xy∈E(Ω)(dx + dy)

Second Zagreb [35] 􏽐xy∈E(Ω)dxdy

Randic [36] 􏽐xy∈E(Ω)1/
����
dxdy

􏽱

Atom bond connectivity [37] 􏽐xy∈E(Ω)

��������������
dx + dy − 2/dxdy

􏽱

Sum connectivity [38] 􏽐xy∈E(Ω)1/
������
dx + dy

􏽱

Geometric arithmetic [39] 􏽐xy∈E(Ω)2
����
dxdy

􏽱
/dx + dy
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[(3n-i-1)/2, 3n-i-3]

[(3n-i(3i-1)/2,3n-i-1(3i+1-6)][3(3i-1)/2,3i+1-6][3(3i-1)/2,3i+1-6]

[(3n-i-1)/2, 3n-i-3]

3n-i-1

3 3 33

(a)

[1,0]

(3n-1-1)/2 (3n-1-1)/2

(3n-1-1)/2

1
1

1

[(3n-1-1)/2,(3n-1-3)/2] [(3n-1-1)/2,(3n-1-3)/2] [(3n-1-1)/2,(3n-1-3)/2]

(b)

Figure 2: General case of quotient graph and reduced graph. (a) THT(n)/Fi, 1≤ i≤ n − 2,. (b) THT(n)/Fn− 1.

(a)

[13,15]

[3,3] [3,3] [3,3]

3
3

3

(b)

[13,15]

[9,9]

9

(c)

Figure 3: (a) THT(4)/F1. (b) Quotient graph THT(4)/F1. (c) Reduced graph.

(a)

[4,6]

[12,15] [12,15] [12,15]

3 3 3

(b)

[36,45]

[4,6]

9

(c)

Figure 4: (a) THT(4)/F2. (b) Quotient graph THT(4)/F2. (c) Reduced graph.

(a)

[1,0]

[13,12] [13,12]
[13,12]

(b)

Figure 5: (a) THT(4)/F3. (b) Quotient graph THT(4)/F3.
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In general, THT(n)/Fi is isomorphic to
K1,3− (i+1)+n , i ∈ 1, 2, . . . , n − 2{ }. In K1,3− (i+1)+n , i ∈ 1, 2, . . .{

, n − 2}, one vertex is of weight (3n− i − 1/2) and edge weight
3n− i − 3 and other 3n− i− 1 vertices with vertex and edge
weight (3(3i − 1)/2) and 3i+1 − 6, respectively. We can see
that GHT(n)/Fn− 1 and K4 are isomorphic, with vertex and

edge weights 1 and 0 for one vertex and (3n− 1 − 1/2) and
(3n− 1 − 1/2) for the remaining adjacent vertices as shown in
Figure 2. Figures 3, 4, and 5 give an example for the quotient
graph.

Now, W(THT(n)) is calculated as follows:

􏽘
− 2+n

i�1
W

THT(n)

Fi

􏼠 􏼡 �
32n

4
+
3n

× 5(− 2 + n)

4
+

32n
− 3n+2

􏼐 􏼑

8
+

9 − 3n
( 􏼁

4
+
32n 32− n

− 1􏼐 􏼑

8
,

W
THT(n)

Fn− 1
􏼠 􏼡 �

3n
− 3( 􏼁

2
+
3 − 1 + 3n− 1
􏼐 􏼑

2

4
,

W(THT(n)) �
32n

4
+
3n

× 5(− 2 + n)

4
−

32n
− 3n+2

􏼐 􏼑

8
+
3n 32− n

− 1􏼐 􏼑

4
+
32n 32− n

− 1􏼐 􏼑

8
+
3 3n− 1

− 1􏼐 􏼑

2
+
3 3n− 1

− 1􏼐 􏼑
2

4
,

(5)

Sz(THT(n)) is calculated as follows:

Sz
THT(n)

Fi

􏼠 􏼡 �
3n+1

− 3(n− i+1) 2 + 3n
− 3i

× 3􏼐 􏼑􏼐

4
,

􏽘

n− 2

i�1
Sz

THT(n)

Fi

􏼠 􏼡 �
15 × 3n

n

4
−
32n+2

4
−
3n+1

2
+
32n+1

n

4
+
27
4

,

Sz
THT(n)

Fn− 1
􏼠 􏼡 �

3n− 1
− 1􏼐 􏼑

2

4
+ 1⎛⎝ ⎞⎠

3n
− 3
2

􏼠 􏼡,

Sz(THT(n)) �
33n− 2

− 19 × 32n
+ 30 × 3n

n − 5 × 3n
+ 6 × 32n

n + 39
8

.

(6)

'e edge-Szeged index of ternary hypertree of dimen-
sion n is as follows:

Sze

THT(n)

Fi

􏼠 􏼡 � 3n− i 3i+1
− 6􏼐 􏼑 3n

− 3i+1
􏼐 􏼑,

􏽘

n− 2

i�1
Sze

THT(n)

Fi

􏼠 􏼡 � 3n 18n + 3n+1
n −

21 × 3n

2
+
9
2

􏼠 􏼡,

Sze

THT(n)

Fn− 1
􏼠 􏼡 � − 15 + 3n+1

+
3n

− 3( 􏼁

2
× 3n− 1

− 1􏼐 􏼑
2
,

Sze(THT(n)) �
33n

18
− 11 × 32n

+ 18 × 3n
n + 9 × 3n

+ 32n+1
n −

33
2

.

(7)

'e edge-vertex Szeged index is as follows:
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Szev

THT(n)

Fi

􏼠 􏼡 � 3n− i 33 × 3i
− 18 × 32i

4
−
9 × 3n

4
+
3 × 3i

× 3n

2
− 3􏼠 􏼡,

􏽘

n− 2

i�1
Szev

THT(n)

Fi

􏼠 􏼡 �
66 × 3n

n − 39 × 32n
− 9 × 3n

+ 12 × 32n
n + 108

8
,

Szev

THT(n)

Fn− 1
􏼠 􏼡 �

15 × 3n− 1
− 21 + 3 × 3n/3( 􏼁( 􏼁 − 3( 􏼁 3n− 1

− 1􏼐 􏼑
2

4
,

Szev(THT(n)) �
33n

36
−
41 × 32n

8
+
33 × 3n

n

4
+
7 × 3n

8
+
32n+1

n

2
+
15
2

.

(8)

'e Padmakar Ivan index is as follows:

PI
THT(n)

Fi

􏼠 􏼡 �
3n− i 3n

− 1( 􏼁

2
,

􏽘

n− 2

i�1
PI

THT(n)

Fi

􏼠 􏼡 �
3n

− 1( 􏼁 3n
− 9( 􏼁

4
,

PI
THT(n)

Fn− 1
􏼠 􏼡 �

32n
− 3n+1

+ 18
6

,

PI(THT(n)) �
5 × 32n

12
− 3 × 3n

+
21
4

.

(9)

'e Mostar index of ternary hypertree is as follows:

Mo
THT(n)

Fi

􏼠 􏼡 �
3n− i

− 1
2

+
3i

− 1􏼐 􏼑

2

× 3n− i
− 3􏼐 􏼑−

3i
− 1􏼐 􏼑

2
× 3⎞⎠ × 3n− i

,

􏽘
n− 2

i�1
Mo

THT(n)

Fi

􏼠 􏼡 �
32n

4
− 3n+1

n + 5 × 3n
−
45
4

,

Mo
THT(n)

Fn− 1
􏼠 􏼡 �

3n
− 9
2

,

Mo(THT(n)) �
32n

4
− 3n+1

n +
11 × 3n

2
−
63
4

,

Moe

THT(n)

Fi

􏼠 􏼡 � 3n− i 3n
− 6 × 3i

+ 6􏼐 􏼑,

􏽘
n− 2

i�1
Moe

THT(n)

Fi

􏼠 􏼡 �
32n

2
− 6 × 3n

n +
21 × 3n

2
− 27,

Moe

THT(n)

Fn− 1
􏼠 􏼡 �

3n+1
− 27
2

,

Moe(THT(n)) �
32n

2
− 6 × 3n

n + 12 × 3n
−
81
2

.

(10)

Mot

THT(n)

Fi

􏼠 􏼡 � 3n− i 3n+1

2
− 9 × 3i

+
17
2

􏼠 􏼡,

􏽘

n− 2

i�1
Mot

THT(n)

Fi

􏼠 􏼡 �
3 × 32n

4
− 9 × 3n

n +
31 × 3n

2
−
153
4

,

Mot

THT(n)

Fn− 1
􏼠 􏼡 � 6 × 3n− 1

− 18,

Mot(THT(n)) �
3 × 32n

4
− 9 × 3n

n +
35 × 3n

2
−
225
4

.

(11)

W (THT(n))
Sz (THT(n))

Sze (THT(n)) 
Szev (THT(n))

indicesMo (THT(n))
Moe (THT(n))

Mot (THT(n))
PI (THT(n))

2
3n 4

5
6

7
8

×1010

0.5

1

1.5

2

0

Figure 6: Graphical comparison of numerical values of distance-
based indices of THT(n).

Table 3: Partition of edges of ternary hypertree of dimension n

grounded on the degree vertices.

(dx, dy); xy ∈ E(Ω) No: Of edges

(3, 3) 3n− 1

(6, 3) 3n− 1 + 3
(6, 6) 3n− 1 − 6

M1 (THT(n))
M2 (THT(n))

R (THT(n))
IndicesABC (THT(n))

SC (THT(n))
GA (THT(n))

2
3

n 4
5

6
7

8

×104

14

12

10

8

6

4

2

0

Figure 7: Graphical representation of numerical values of degree-
based indices.
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'e graphical comparison of numerical values of dis-
tance-based indices of THT(n) is given in Figure 6. □

Theorem 3. For n≥ 2,

(1) M1(THT(n)) � 3n+2 − 45
(2) M2(THT(n)) � 7 × 3n+1 − 162
(3) R(THT(n)) � 0.2357(3n− 1 + 3) + 2 × 3n− 2 − 2
(4) ABC(THT(n)) � 0.6236(3n− 1 + 3) + 0.6667 ×

3n− 1 + 0.5270 × (3n− 1 − 6)

(5) SC(THT(n)) � 1 + 3n− 2 + 0.4082 × 3n− 1 +

0.2887(3n− 1 − 6)

(6) GA(THT(n)) � 2.828 + 2 × 3n− 1 − 6

Proof. Ternary hypertree has (3n − 3) edges. We divide the
edges according to its degrees on either vertex, which is
given in Table 1. We denote Fmn as the set of edges xy such
that dx � m and dy � n.

M1(THT(n)) is calculated as follows:

M1(THT(n)) � 􏽘
xy∈F33

(3 + 3) + 􏽘
xy∈F63

(6 + 3)

+ 􏽘
xy∈F66

(6 + 6) � 3n− 1
× 6 + 3n− 1

+ 3􏼐 􏼑

× 9 + 3n− 1
− 6􏼐 􏼑 × 12 � 9 × 3n

− 45,

(12)

M2(THT(n)) is calculated as follows:
M2(THT(n)) � 􏽘

xy∈F33

3 × 3 + 􏽘
xy∈F63

6 × 3

+ 􏽘
xy∈F66

6 × 6 � 3n+1
+ 3n− 1

+ 3􏼐 􏼑

× 18 + 2 × 3n+1
− 6􏼐 􏼑 × 36 � 21 × 3n

− 162.

(13)

Randic index of THT(n) is calculated as follows:

R(THT(n)) � 􏽘
xy∈F33

1
3

+ 􏽘
xy∈F63

1
��
18

√ + 􏽘
xy∈F66

1
6

�
3n

9
×
1
3

+ 3n− 1
+ 3􏼐 􏼑 ×

1
��
18

√ + 3n− 1
− 6􏼐 􏼑 ×

1
6

� 0.2357 × 3n− 1
+ 3􏼐 􏼑 + 2 × 3n− 2

− 2,

(14)

ABC(THT(n)) is calculated as follows:

ABC(THT(n)) � 􏽘
xy∈F33

1
6

+ 􏽘
xy∈F63

1
9

+ 􏽘
xy∈F66

1
12

�
3n− 1

+ 3
9

+
3n− 1

6
+
3n− 1

− 6
12

� 0.1111 3n− 1
+ 3􏼐 􏼑 + 0.1667 × 3n− 1

+ 0.0833 3n− 1
− 6􏼐 􏼑,

(15)

SC(THT(n)) is calculated as follows:

SC(THT(n)) � 􏽘
xy∈F33

1
�
6

√ + 􏽘
xy∈F63

1
�
9

√ + 􏽘
xy∈F66

1
��
12

√

�
3n− 1

�
6

√ +
3n− 1

+ 3
�
9

√ + − 6 + 3n− 1
􏼐 􏼑 ×

1
��
12

√

� 1 + 3n− 2
+ 0.4082 × 3n− 1

+ 0.2887 3n− 1
− 6􏼐 􏼑.

(16)

'e geometric arithmetic index of THT(n) is as follows:

GA(THT(n)) � 􏽘
xy∈F33

�
9

√

6
+ 􏽘

xy∈F63

��
18

√

9
+ 􏽘

xy∈F66

��
36

√

12

� 3n− 1
×

�
9

√

6
+ 3n− 1

+ 3􏼐 􏼑 ×

��
18

√

9
+ 3n− 1

− 6􏼐 􏼑

×

��
36

√

12

� 2.828 1 + 3n− 2
􏼐 􏼑 + 2 × 3n− 1

− 6.

(17)

'e graphical comparison of numerical comparison of
degree-based indices is given in Figure 7. □

3. Conclusion

Hypertree has many chemical applications such as in re-
cursive molecular networks, for example, dendrimers [51].
Also, the topological indices for hypertree are used in the
prognosis of physical (as well as chemical) properties of the
complex network of molecular and material systems when
there are substantial atoms [10, 52–54]. In this article, we
have introduced a ternary hypertree, an interconnection
network, and evaluated some distance-based and degree-
based topological indices of the ternary hypertree. 'e to-
pological indices of the ternary hypertree may help in de-
termining the chemical properties of complex molecular
networks. It can be used to obtain irregularity measures,
connectivity measures, centrality measures, and peripher-
ality measures of the ternary hypertree. 'e degree-based
topological indices can help in the study of bioactivity of the
ternary hypertree. In future, we can model networks by
considering the spread of different viruses and can study
their properties. We can also determine the entropy of
ternary hypertree in order to analyse data complexity and
transmission of information. Also, eccentricity-based to-
pological indices, which help in analysing the toxicological
properties, and various topological indices based on dif-
ferent constraints can also be computed. [55].
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[49] M. Arockiaraj, S. Klavžar, J. Clement, S. Mushtaq, and
K. Balasubramanian, “Edge distance-based topological indices
of strength-weighted graphs and their application to coronoid
systems, carbon nanocones and SiO2 nanostructures,” Mo-
lecular Informatics, vol. 38, no. 11-12, 205 pages, Article ID
1900039, 2019.

[50] J. B. Liu, M. Arockiaraj, M. Arulperumjothi, and S. Prabhu,
“Distance based and bond additive topological indices of
certain repurposed antiviral drug compounds tested for
treating COVID-19,” International Journal of Quantum
Chemistry, vol. 121, no. 10, pp. e26617–18, Article ID e26617,
2021.

[51] K. Balasubramanian, “Nested wreath groups and their ap-
plications to phylogeny in biology and Cayley trees in
chemistry and physics,” Journal of Mathematical Chemistry,
vol. 55, no. 1, pp. 195–222, 2017.

[52] K. Balasubramanian, “Ten low-lying electronic states of Pd3,”
=e Journal of Chemical Physics, vol. 91, no. 1, pp. 307–313,
1989.

[53] K. Balasubramanian and P. Y. Feng, “Potential energy surfaces
for Pt2 + H and Pt + H interactions,”=e Journal of Chemical
Physics, vol. 92, no. 1, pp. 541–550, 1990.

[54] W. C. Ermler, Relativistic Effects in Chemistry Part A: =eory
and Techniques by Krishnan Balasubramanian (Arizona State
University), p. 145, Wiley-Interscience, New York, 1998.

[55] J. B. Liu, J. Zhao, H. He, and Z. Shao, “Valency-based to-
pological descriptors and structural property of the gener-
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