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In this study, an adaptive output feedback fault tolerant control (FTC) scheme is proposed for a class of multi-input and
multioutput (MIMO) nonlinear systems with multiple constraints. *e neural network (NN) is adopted to handle the unknown
nonlinearity by means of its superior approximation capability. Based on it, the state observer is designed to estimate the
unmeasured states, and the nonlinear disturbance observer is constructed to tackle the external disturbances. In addition, the
Nussbaum function is utilized to cope with the actuator faults, which are coupled with the unknown control directions.
Combining with the Lyapunov theory, a NN-based output feedback FTC law is developed for the MIMO nonlinear systems, and
the boundedness of all closed-loop system error signals is proved. Simulation results on the unmanned helicopter are performed to
demonstrate the effectiveness of the proposed controller.

1. Introduction

During these years, the control issue of multi-input and
multioutput (MIMO) nonlinear systems has been drawing
great attention due to their generalized and natural de-
scription for many practical applications, such as ocean
vessel system, mobile robot system, and unmanned aerial
vehicle system [1–4]. Since existing linear control methods
do not match with the nonlinear systems, many effective
nonlinear control approaches have been proposed and
considerable results have been received. In [5–9] and the
references therein, the adaptive backstepping control and
sliding mode control schemes were, respectively, developed
for a class of nonlinear systems to achieve acceptable control
performance. Nevertheless, as the system structure becomes
more and more complex, the unknown nonlinearity caused
by nonlinear elements always appears and is worthy of
further study.

Nowadays, in order to handle the unknown nonlinearity
in the nonlinear systems, numerous control strategies have
been presented, such as the neural network (NN) [10–13],
extended state observer [14, 15], and fuzzy logic system

[16–18]. In particular, the NNs are often combined with
other control techniques to deal with the specific nonlinear
systems due to their unique properties. In [10, 11], the
adaptive backstepping-based neural control schemes were
severally proposed to handle the unknown nonlinear
functions for the helicopter and near space vehicle (NSV)
systems. In [12], the NNs were combined with the model
predictive control to overcome the so-called quadratic
programming problem for a class of nonholonomic chained
systems. In [13], a robust NN sliding mode control law was
developed for a two-axis motion control system with un-
known nonlinear terms and external disturbances. However,
plenty of the above-mentioned literature are based on the
available states, which are strict for some practical control
systems. Actually, when the sensors malfunction, the signal
usually cannot be accurately measured, and the state feed-
back approach is unreliable. *erefore, the high-quality
controller needs to be further designed when the MIMO
systems suffer from unmeasurable states.

*e state observer is a common method to estimate the
unmeasurable states in the academic community [19].
Meanwhile, fruitful and significant results can be found in
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the recent literature [20–26]. In [20], an adaptive NN output
feedback optimized controller was designed for the non-
linear systems with unknown dead zones. In [21, 22], the
output feedback control problem for uncertain stochastic
nonlinear systems was investigated by employing the state
observer approach. In [23], an observer-based finite time
controller was developed for a class of second-order non-
linear homogenous systems. Considering the objective ex-
istence of performance constraint, the output feedback
control schemes were separately presented for the single-
input and single-output and MIMO nonlinear systems in
[24, 25]. In [26], a stable fuzzy output feedback controller
was constructed for a class of nonlinear systems by means of
the small-AAIN approach. Nevertheless, it is worth noting
that the control directions are usually unknown, and ac-
tuator faults occur frequently in many practical application
[27, 28]. *erefore, for the purpose of maintaining admis-
sible system performance, more attentions and deeper
considerations should be paid to the issues of unknown
control directions and actuator faults.

At present, Nussbaum gain theory, which was first
proposed by Nussbaum in 1983 [29], has become one of the
most valid methods to cope with the unknown control
directions. Meanwhile, existing achievements show that the
combination of Nussbaum gain control technology with
nonlinear control method attains favorable control perfor-
mance in practice [30–33]. In [30], a distributed consensus
controller for uncertain nonlinear systems with unknown
control directions was designed to complete control task. In
[31], the adaptive protocol was presented for nonlinear
systems when both control directions and parameters were
all unknown. In [32], a predefined performance-based
adaptive controller was proposed for MIMO nonlinear
systems in presence of unknown control directions and
unknown hysteresis nonlinearities. In [33], an adaptive fuzzy
tracking controller was designed to assure the stability of the
stochastic nonlinear systems. However, the actuator faults
are neglected in the above literature, whose occurrence will
worsen the system performance and even lead to instability.
Over the years, a quantity of attentions have been focused on
fault tolerant control (FTC), and some effective control
strategies have been implemented to faulty system. In [34], a
robust adaptive sliding mode FTC scheme was proposed for
coaxial helicopter to deal with actuator faults. In [35], a fuzzy
adaptive nonlinear FTC strategy was presented for hyper-
sonic vehicles with actuator stuck and loss of effectiveness
faults. In [36], an adaptive decentralized FTC algorithm was
developed for NSV attitude dynamics with actuator faults
and control surface damage. Nonetheless, besides the neg-
ative factors mentioned above, the time-varying distur-
bances derived from the outside world also should be further
considered.

*e problem of robust control has a long history, and a
number of disturbance rejection methods have been de-
veloped in past decades [15, 19, 37–40]. Especially, the
nonlinear disturbance observer (NDO) has been extensively
employed in practice since it does not depend on complete
information of the disturbance model. In [15], the NDO-
based composite fuzzy control issue was investigated when

the uncertain nonlinear systems suffered from unknown
dead zone. In [19], a NDO-based output feedback control
scheme was developed for uncertain nonlinear systems with
unknown hysteresis and external disturbance. By combining
the NDO and asymptotic tracking control techniques, a
composed control approach was proposed for the spacecraft
formation flying system under nonzero disturbances in [38].
However, when the unknown nonlinearity, unknown con-
trol directions, unmeasurable states, actuator faults, and
external disturbances appear simultaneously, the control
performance of the MIMO nonlinear system faces severe
challenges, and it is of great significance to design high-
quality control algorithms.

Motivated by above analysis, the radial basis function
neural network (RBFNN), state observer, Nussbaum func-
tion, and NDO are combined with the backstepping tech-
nique to achieve satisfactory tracking control property. *e
main contributions can be summarized as follows:

(1) Different from the traditional state feedback control
[7], an output feedback controller is designed to
tackle the unmeasured states and unknown non-
linearity by means of the RBFNN and state observer;

(2) Compared with some direct adaptive fault estima-
tion method using projection function [11], the
presented Nussbaum-based FTC approach can
overcome the singularity problem in a simpler way
and reduce the complexity of controller design;

(3) *e developed output feedback FTC scheme can
guarantee satisfactory tracking performance for the
MIMO nonlinear systems under multiple negative
effects.

*e rest of this paper is organized as follows. Problem
formulation and preparation knowledge are presented in
Section 2. Section 3 derives the main results. Simulation
studies on unmanned helicopter are carried out in Section 4.
Section 5 draws the conclusion.

2. Problem Formulation and Preparation

Consider a class of MIMO nonlinear systems with actuator
faults and external disturbances as follows:

_Xi � Fi Xi(  + Xi+1 + Di(t), i � 1, 2, . . . , n − 1,

_Xn � Fn Xn(  + Bϑu + Dn(t),

y � X1,

(1)

where Xi ∈ Rn and Xi � [XT
1 , XT

2 , . . . , XT
i ]T ∈ Rin with i �

1, 2, . . . , n being the system state vectors. u ∈ Rn and y ∈ Rn

denote the input vector and output vector, respectively.
Fi(Xi) ∈ Rn defines an unknown smooth nonlinear func-
tion. B � diag B1, B2, . . . , Bn  is the unknown nonzero
constant control gain matrix. ϑ � diag ϑ1, ϑ2, . . . , ϑn , ϑi

refers to the actuator fault factor, which describes the un-
known remaining control efficiency of ith actuator. Di(t)

represents external time-varying disturbance. In this paper,
it is assumed that only the system output y is available for
measurement.
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Remark 1. *e considered MIMO nonlinear systems can be
employed to describe many practical plants, such as ocean
vessel system [2], unmanned helicopter system [4], and NSV
system [11]. Moreover, it is worth mentioning that the
control directions are unknown in many application re-
quirements and usually coupled with actuator faults. Hence,
for reflecting the system dynamics more practically, the
unknown control directions and actuator faults are con-
sidered simultaneously in this work.

*e control objective of this study is to design a robust
adaptive NN output feedback FTC scheme, such that all
error signals of the closed-loop system are convergent, and
the output y can follow the desired trajectory yd. To this end,
the following definition, lemmas, and assumptions are
introduced.

Definition 1 (see [33]). If a continuous function H(·) fulfills
the performances as follows:

lim
s⟶+∞

sup
1
s


s

0
H(τ)dτ � +∞,

lim
s⟶−∞

inf
1
s


s

0
H(τ)dτ � −∞.

(2)

*en H(·) is called a Nussbaum function. At present, the
functions τ2 cos(τ), eτ

2 cos(τ), τ2 sin(τ), and eτ
2 sin(π/2τ)

have been proven to be the Nussbaum-type functions in
[41, 42]. In this paper, H(τ) � τ2 cos(τ) is used.

Lemma 1 (see [33]). Let V(t)≥ 0 and τi(t) be smooth
functions defined on [0, tf), and let H(τi) be smooth
Nussbaum-type function. If the following inequality holds:

_V(t)≤ − b0V(t) + b1 + 
n

i�1
ψiH τi(  + 1  _τi, (3)

where b0, b1 and ψi are suitable positive constants, then, V(t),
τi(t) and 

n
i�1[ψiH(τi) + 1] _τi must be bounded on [0, tf).

Lemma 2 (see [10]). Owing to the powerful nonlinear ap-
proximation capability, RBFNN is frequently employed to
approximate any unknown smooth nonlinear function E(c),
which can be expressed as

E(c) � ΦT
M(c) + σ, (4)

where c ∈ Rn is the input vector, Φ ∈ Rj×n is the weight
matrix, σ is the approximation error, and
M(c) � [M(c), M2(c), . . . , Mj(c)] ∈ Rj is the basis func-
tion vector with Mj(c) being

Mj(c) � exp
− c − ]i( 

T
c − ]i( 

c
2
i

 , i � 1, 2, . . . , j, (5)

where ]i and ci denote the center and width of the basis
function, respectively.

*en, the RBFNN (4) can approach any unknown
smooth function E(c) in the form of

E(c) � Φ∗TM(c) + σ∗, (6)

where Φ∗ is the optimal weight matrix, σ∗ is the approxi-
mation error satisfying ‖σ∗‖≤ σ, and σ is a positive constant.

Assumption 1 (see [7]). For the bounded desired trajectory
yd and its derivatives _yd and €yd, there exists an unknown
positive constant l0 making
Π0: � (yd, _yd, €yd): ‖yd‖2 + ‖ _yd‖2 + ‖ €yd‖2 ≤ l0  holds.

Assumption 2 (see [11]). *e unknown external disturbance
Di, i � 1, 2 . . . , n is supposed to satisfy ‖Di‖≤Di and
‖ _Di‖≤ ζ i, where Di and ζ i are unknown positive constants.

Assumption 3 (see [11, 33]). *e control gain Bi is assumed
to have the unknown but same sign with each other, and it
satisfies Bl ≤ |Bi|≤Bu, where Bl > 0 is the known constant.
Moreover, the fault factor ϑi is assumed to be unknown
constant and satisfies 0< ϑm ≤ ϑi ≤ 1, where ϑm is the known
lower bound.

Remark 2. For a practical system, the tracking mission
should be realizable, and there should exist a feasible con-
troller to achieve it, which means that assumption 1 is
reasonable. In addition, assumption 2 is provided to illus-
trate that if the external disturbance is unbounded, it may
result in that the system cannot provide enough energy to
accomplish the specified object. Similarly, if the actuator
loses too much effectiveness, the whole system may lose the
FTC capacity. *erefore, it is reasonable for assumptions
1–3, and they have been extensively used in existing liter-
ature such as [4, 5, 7, 16–18, 40–42].

3. Control Design and Stability Analysis

In this section, a backstepping-based robust adaptive output
feedback FTC control scheme will be developed for the
MIMO nonlinear systems to deal with the unknown non-
linearity, unavailable states, unknown control directions,
actuator faults, and external disturbances. *e block dia-
gram of the design thread is given in Figure 1.

3.1. Model Transformation and State Observer Design.
Since the control gain Bi and fault factor ϑi of the ith actuator
are all unknown and coupled with the corresponding control
input, it is difficult to design the controller directly.
According to the properties of Bi and ϑi, it can be obtained
that 0<Blϑm ≤ |Biϑi|≤Bu. By defining Z � Bϑ, it is known
that Z is an invertible matrix. In order to promote the control
design, we introduce the new state variable xi � Z− 1Xi, the
new smooth function fi(xi) � Z− 1Fi(Xi), and the new
disturbance di(t) � Z− 1Di(t). *en, the MIMO nonlinear
system (1) can be transformed into the following system:

_xi � fi xi(  + xi+1 + di(t), i � 1, 2, . . . , n − 1,

_xn � fn xn(  + u + dn(t),

y1 � x1,

(7)
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where xi � [xT
1 , xT

2 , . . . , xT
i ]T ∈ Rin and y1 ∈ Rn are the new

system state vector and output vector.

Remark 3. Considering assumption 2 and assumption 3, we
obtain that the new disturbance di(t) and its first derivative
are also bounded. *at is, there exist unknown positive
constants di and ϱi such that ‖di‖≤ di and ‖ _di‖≤ ϱi.
Moreover, we should note that the state variable xi and the
output vector y1 of the new MIMO nonlinear system (7) are
all unavailable.

Here, the following RBFNN is adopted to approximate
the unknown nonlinear term Lifi(xi):

Lifi xi(  � Φ∗i
T
Mi xi(  + σ∗i xi( , i � 1, 2, . . . , n, (8)

where Li � LT
i > 0 is the designed constant matrix, Mi(xi) is

the basis function, and Φ∗i is the weight matrix.
Due to the unavailability of the system states xi, the

above function approximations (8) are invalid. Hence, we
use the following approximation to design the state observer:

Li
fi

xi  � ΦT

i Mi
xi , i � 1, 2, . . . , n, (9)

where xi � [xT
1 , xT

2 , . . . , xT
i ]T is the estimation of xi, and Φi

is the estimation of Φ∗i .
It is obvious that the approximation Li

fi(
xi) depends on

the available Φi and xi. In order to cope with the unknown
system states in the MIMO nonlinear systems (7), the fol-
lowing state observer is designed [19]:

_xi � xi+1 + fi
xi  − kix1 + χiy + di, i � 1, . . . , n − 1,

_xn � u + fn
xn  − knx1 + χny + dn,

(10)

where ki � diag ki1, ki2, . . . , kin  with kij > 0,
χi � diag χi1, χi2, . . . , χin  with χij > 0(j � 1, 2, . . . n), di is the
estimation of di. *e corresponding updating laws with
respect to di and Φi will be given gradually along with the
controller design process in the next subsection.

Define zi � xi − xi, λi � L−1
i σ∗i (xi), and Φi � Φ∗i − Φi.

Considering (7–10) and differentiating zi yield

_zi � xi+1 + L
−1
i Φ
∗
i

T
Mi xi(  + σ∗i xi(   + di − xi+1

− L
−1
i

ΦT

i Mi
xi  + kix1 − χiy − di,

� −kiz1 + zi+1 + kix1 + λi − χiy + L
−1
i

ΦT

i Mi
xi 

+ L
−1
i Φ
∗
i

T
Mi xi(  − Mi

xi   − εizi + Δi,

(11)

_zn � −knz1 + knx1 + λn − χny + L
−1
n

ΦT

n Mn
xn 

+ L
−1
n Φ
∗
n

T
Mn xn(  − Mn

xn   − εnzn + Δn,
(12)

where εi � εT
i > 0 is the designed diagonal matrix, and Δi is

the estimation error of the auxiliary variableΔi, which will be
given in the following.

*en, the observation error dynamics (11) and (12) can
be rewritten as

_Z � NZ + Kx1 + L
− 1Φ∗TΥ(x, x) + λ

+ Δ + L
− 1 ΦT

M(x) − hy.
(13)

whereN �

−k1 − ε1 I1 . . . . . .

−k2 −ε2 I2 ⋮
⋮ ⋮ ⋱ In−1

−kn . . . . . . −εn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Z � [zT

1 , zT
2 , . . . , zT

n ]T,

λ � [λT
1 , λT

2 , . . . , λT
n ]T, K � [kT

1 , kT
2 , . . . , kT

n ]T,
L− 1 � diag L−1

1 , L−1
2 , . . . , L−1

n , Φ∗ � diag Φ∗1 ,Φ∗2 , . . . ,Φ∗n ,
Φ � diag Φ1, Φ2, . . . , Φn , Δ � [ΔT

1 , ΔT

2 , . . . , ΔT

n ]T,
h � [χT

1 , χT
2 , . . . , χT

n ]T, M(x) � [MT
1 (x1), MT

2 (x2), . . . ,

MT
n (xn)]T, Ii ∈ Rn×n is the unit matrix,
Υ(x, x) � M(x) − M(x), M(x) � [MT

1 (x1), MT
2 (x2), . . . ,

MT
n (xn)]T.
Here, proper parameters ki should be selected to ensure

that N is Hurwitz. In other words, for a given matrix
P � PT > 0, there exists positive definite matrix Λ � ΛT > 0
such that

N
T
P + PN≤ − Λ. (14)

MIMO nonlinear
system

Output feedback
FTC controller

Virtual control
controller

yd xid u (t)

H (τ)

y (t)

D (t)B

State observer

Nussbaum-type
function

RBFNN Disturbance
observer

Multiple
constraints

ϑ

Figure 1: Block diagram of the proposed control scheme.
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Due to the unknown disturbance di, the following
auxiliary variable Δi is introduced:

Δi � di + εixi, i � 1, 2, . . . , n. (15)

In light of (15), the NDOs are designed as

di � Δi − εixi, i � 1, 2, . . . , n − 1,

_Δi � εi
fi

xi) + xi+1 − εixi + Δi),

⎧⎪⎨

⎪⎩
(16)

dn � Δn − εnxn,

_Δn � εn
fn

xn) + u − εnxn + Δn).

⎧⎪⎨

⎪⎩
(17)

Define Δi � Δi − Δi and di � di − di. *en, we have

Δi � di + εixi − di − εixi � di + εizi. (18)

On the one hand, by invoking (15) and (16), we obtain

_Δi � _di + εi _xi −
_Δi

� _di + εi L
−1
i Φ
∗
i

TΥi xi,
xi 

+ L
−1
i

ΦT

i Mi
xi  + λi + zi+1 − Δi − εizi,

i � 1, 2, . . . , n − 1.

(19)

On the other hand, by invoking (15) and (17), we obtain
_Δn � _dn + εn _xn −

_Δn

� _dn + εn L
−1
n Φ
∗
n

TΥn xn, xn 

+ L
−1
n

ΦT

n Mn
xn  + λn − Δn − εnzn.

(20)

Consider the following Lyapunov function candidate:

V0 � Z
T
PZ +

1
2



n

i�1

ΔT

i
Δi. (21)

Invoking (13), (14), (19) and (20), one obtains

_V0 ≤ − Z
TΛZ + 2Z

T
PKx1 + 2Z

T
Pλ + 2Z

T
PΔ

+ 2Z
T
PL

− 1Φ∗TΥ(x, x) + 2Z
T
PL

− 1 ΦT
M(x)

− 2Z
T
Phy + 

n

i�1

ΔT

i
_di + 

n

i�1

ΔT

i εiL
−1
i Φ
∗
i

TΥi xi,
xi 

+ 
n

i�1

ΔT

i εiL
−1
i

Φi
T
Mi

xi  + 
n

i�1

ΔT

i εiλi

− 
n

i�1

ΔT

i εi
Δi − 

n

i�1

ΔT

i ε
2
i zi + 

n−1

i�1

ΔT

i εizi+1.

(22)

Based on Young’s inequality, the following inequalities
can be obtained:

2Z
T
PKx1 ≤ ZmZ

T
PKK

T
P

T
Z + e1

����
����
2

+ ς20,

2Z
T
Pλ≤Z

T
PP

T
Z + 

n

i�1
λ
2
i

2Z
T
PL

− 1Φ∗TΥ(x, x)

≤Z
T
PP

T
Z + 

n

i�1
β2i L

−1
i

����
����
2
Φ∗i

����
����
2

2Z
T
PL

− 1 ΦT
M(x)

≤ r1Z
T
PP

T
Z +

1
r1



n

i�1
δ2i L

−1
i

����
����
2 Φi

����
����
2

2Z
T
PΔ≤Z

T
PP

T
Z + 

n

i�1

ΔT

i
Δi

− 2Z
T

Phy≤Z
T
Phh

T
P

T
Z + e1

����
����
2

+ ς20



n

i�1

ΔT

i
_di ≤

1
2



n

i�1

ΔT

i
Δi +

1
2



n

i�1
〉2i



n

i�1

ΔT

i εiL
−1
i Φ
∗
i

TΥi xi,
xi 

≤
1
2



n

i�1

ΔT

i
Δi +

1
2



n

i�1
ε2 L

−1
i

����
����
2
β2i Φ
∗
i

����
����
2



n

i�1

ΔT

i εiL
−1
i

Φi
T
Mi

xi 

≤
r2

2


n

i�1

ΔT

i
Δi +

1
2r2



n

i�1
ε2 L

−1
i

����
����
2
δ2i Φi

����
����
2
,



n

i�1

ΔT

i εiλi ≤
1
2



n

i�1

ΔT

i
Δi +

1
2



n

i�1
ε2λ

2
i ,

− 
n

i�1

ΔT

i ε
2
i zi ≤

1
2



n

i�1

ΔT

i
Δi +

ε4

2
Z

T
Z,



n−1

i�1

ΔT

i εizi+1 ≤
1
2



n

i�1

ΔT

i
Δi +

ε2

2
Z

T
Z,

(23)

where r1 and r2 are the designed positive constants,
‖yd‖≤ ς0, Zm � 1/B2

l ϑ
2
m, ε � max(‖εi‖), ‖λi‖≤ λi,

‖Υi(xi,
xi)‖≤ βi, ‖Mi(

xi)‖≤ δi, e1 is the tracking error, which
will be given subsequently.

Substituting the above inequalities into (22) produces
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_V0 ≤ − Z
T Λ − Λ1 −

ε2 + ε4

2
I1 Z + 2 e1

����
����
2

− 
n

i�1

ΔT

i εi −
7 + r2
2

I1 Δi + R0

+ 
n

i�1

1
r1

+
ε2

2r2
  L

−1
i

����
����
2
δ2i Φi

����
����
2
,

(24)

where Λ1 � P(ZmKKT + hhT + (r1 + 3)I1)P
T, R0 � 

n
i�1

(1 + 1/2ε2) β2i ‖L−1
i ‖2‖Φ∗i ‖2 + 2ς20 + 

n
i�1(1 + 1/2ε2) λ

2
i + 1/2


n
i�1 ϱ2i .

3.2. Robust Adaptive Neural Output Feedback Control Design

Step 1. Define the following tracking errors:

e1 � y − yd,

ei � xi − xid, i � 2, . . . , n,
(25)

where xid is the designed virtual control law.
Considering (7) and taking the time derivative of e1 yield

_e1 � _X1 − _yd � Z _x1 − _yd

� F1(y) + Z x2d + e2 + z2 + d1(  − _yd.
(26)

Because of the unknown smooth function F1(y), the
following RBFNN is used to approximate it:

F1(y) � Q
−1
F Φ
∗
F

T
MF(y) + σ∗F(y) , (27)

where QF � QT
F > 0 is the designed matrix, MF(y) is

Gaussian function, and Φ∗F is the weight matrix.
Substituting (27) into (26) follows

_e1 � Q
−1
F Φ
∗
F

T
MF(y) + Q

−1
F σ∗F(y) + Zx2d + Ze2

+ Zz2 + Zd1 − _yd

(28)

Consider the Lyapunov function candidate as

V1 � V0 +
1
2
e

T
1 e1 +

1
2

tr ΦT

1Θ
−1
1

Φ1  +
1
2

tr ΦT

FΩ
−1
F

ΦF ,

(29)

where Θ1 � ΘT
1 > 0 and ΩF � ΩT

F > 0 are the designed ma-
trixes, ΦF � Φ∗F − ΦF.

Invoking (24) and (28), we obtain

_V1 ≤ − Z
T Λ − Λ1 −

ε2 + ε4

2
I1 Z + 2 e1

����
����
2

+ R0

+ e
T
1 Q

−1
F Φ
∗
F

T
MF(y) − 

n

i�1

ΔT

i εi −
7 + r2
2

I1 Δi

+ 
n

i�1

1
r1

+
ε2

2r2
  L

−1
i

����
����
2
δ2i Φi

����
����
2

+ e
T
1 Q

−1
F σ∗F(y)

+ e
T
1 Zx2d + e

T
1 Ze2 + e

T
1 Zz2 + e

T
1 Zd1 − e

T
1 _yd

− tr ΦT

1Θ
−1
1

_Φ1  − tr ΦT

FΩ
−1
F

_ΦF 

≤ − Z
T Λ − Λ1 −

ε2 + ε4

2
I1 − C Z + e

T
1 Zx2d

+ e
T
1 Q

−1
F Φ
∗
F

T
MF(y) − 

n

i�1

ΔT

i εi −
7 + r2

2
I1 Δi

+ 
n

i�1

1
r1

+
ε2

2r2
  L

−1
i

����
����
2
δ2i Φi

����
����
2

+
5 + 3B

2
u

2
 e

T
1 e1

+
1
2
σ2F Q

−1
F

����
����
2

+
1
2
e

T
2 e2 +

1
2
d
2
1 − tr ΦT

1Θ
−1
1

_Φ1 

− tr ΦT

FΩ
−1
F

_ΦF  − e
T
1 _yd + R0,

(30)

where C � diag 0n×n, 1/2I1, . . . , 0n×n , ‖σ∗F‖≤ σF.
Design the virtual control function x2d and parameter

adaptive laws as

x2d � H(τ)μ, (31)

_τi � e1iμi, i � 1, 2, . . . , n, (32)

μ � q1e1 − _yd + Q
−1
F

ΦT

FMF(y) − d1, (33)

_Φ1 � Θ1 M1
x1 e

T
1 L

−1
1 − ϖ1 Φ1 , (34)

_ΦF � ΩF MF(y)e
T
1 Q

−1
F − ϖF

ΦF , (35)

where τ � [τ1, τ2, . . . , τn]T, μ � [μ1, μ2, . . . , μn]T, e1i is the ith

element of e1, H(τ) � diag H(τ1), H(τ2), . . . , H(τn) ,
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H(τi) is Nussbaum-type function, which is chosen as
H(τi) � τ2i cos(τi), q1 � diag q11, q12, . . . , q1n , q1i, ϖ1 and
ϖF are designed positive constants.

Considering (31)–(35), the following facts can be
obtained:

e
T
1 Zx2d � 

n

i�1
ZiH τi(  _τi � 

n

i�1
ZiH τi(  + 1  _τi − e

T
1 μ, (36)

e
T
1 Q

−1
F

ΦT

FMF(y) − tr ΦT

FΩ
−1
F

_ΦF  � tr ΦT

FϖF
ΦF 

≤ −
1
2
ϖF

ΦF

����
����
2

+
1
2
ϖF Φ

∗
F

����
����
2
,

(37)

−tr ΦT

1Θ
−1
1

_Φ1  � −tr ΦT

1 M1
x1 e

T
1 L

−1
1 − ΦT

1ϖ1 Φ1 

≤ e
T
1 e1 −

1
2
ϖ1 −

δ21
4

L
−1
1

����
����  Φ1

����
����
2

+
1
2
ϖ1 Φ
∗
1

����
����
2
,

(38)

where Z � diag Z1, Z2, . . . , Zn  with Zi being the diagonal
element.

Substituting (36)–(38) into (30) gives

_V1 ≤ − Z
T
AZ − e

T
1 ϵ1e1 −

1
2
ϖ1 −

δ21
4

L
−1
1

����
����
2

  Φ1
����

����
2

−
1
2
ϖF

ΦF

����
����
2

− 
n

i�2

ΔT

i εi −
7 + r2

2
I1 Δi +

1
2
e

T
2 e2

− ΔT

1 ε1 −
8 + r2

2
I1 Δ1 + 

n

i�1
ZiH τi(  + 1  _τi

+ 
n

i�1

1
r1

+
ε2

2r2
  L

−1
i

����
����
2
δ2i Φi

����
����
2

+ R1,

(39)

where A � Λ − Λ1 − ε2 + ε4/2I1 − C − C1, C1 � diag 1/2I1,

0n×n, . . . , 0n×n}, ϵ1 � q1 − 9 + 3B2
u + ε2/2I1, R1 � R0 +

1/2ϖF‖Φ∗F‖2 + 1/2σ2F‖Q−1
F ‖2 + 1/2ϖ1‖Φ∗1 ‖2 + d

2
1.

Step 2. Considering (10) and differentiating e2 give

_e2 � x3 + f2
x2  − k2x1 + χ2y + d2 − _x2d

� x3d + e3 + L
−1
2

ΦT

2 M2
x2  − k2x1 + χ2y

+ d2 − _x2d.

(40)

In particular, the dynamic surface control technique is
employed to avoid the repeated computation of _x2d and
achieve its available derivative. Let x2d pass the first-order
filter η2 [7].

h2 _η2 + η2 � x2d, η2(0) � x2d(0), (41)

where h2 � diag h21, h22, . . . , h2n > 0 is the time constant
matrix of the filter.

By defining ω2 � η2 − x2d, we have

_ω2 � _η2 − _x2d

� −h
−1
2 ω2 + −

zx2d

zτ
_τ −

zx2d

ze1
_e1 −

zx2d

zyd

_yd

−
zx2d

z ΦF

_ΦF −
zx2d

zy
_y −

zx2d

zd1

_d1,

� −h
−1
2 ω2 + l2 e1, e2, z2, y, _yd, €yd, ΦF, d1 ,

(42)

where l2(•) is smooth function vector in regard to Π2(•).
Since the set Π2(•) is compact, the smooth function l2(•)

has a maximum l2 on set Π2(•) for the given initial
conditions.

Considering (41), the virtual control law x3d is designed
as

x3d � −q2e2 + _η2 + k2x1 − χ2y

− d2 − L
−1
2

ΦT

2 M2
x2 ,

(43)

where q2 � diag q21, q22, . . . , q2n , q2i is the designed positive
constant.

*e parameter adaptive law is proposed as
_Φ2 � Θ2 M2

x2 e
T
2 L

−1
2 − ϖ2 Φ2 , (44)

where Θ2 � ΘT
2 > 0 is the designed matrix, and ϖ2 > 0 is the

designed constant.
Invoking (43), we obtain

_e2 � −q2e2 + e3 − h
−1
2 ω2 + l2(•). (45)

Choose the following Lyapunov function candidate as

V2 � V1 +
1
2
e

T
2 e2 +

1
2

tr ΦT

2Θ
−1
2

Φ2  +
1
2
ωT
2ω2. (46)

*e time derivative of V2 is

_V2 � _V1 + e
T
2 _e2 − tr ΦT

2Θ
−1
2

_Φ2  + ωT
2 _ω2. (47)
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Considering (44), we obtain

−tr ΦT

2Θ
−1
2

_Φ2  � −tr ΦT

2 M2
x2 e

T
2 L

−1
2 − ΦT

2ϖ2 Φ2 

≤ e
T
2 e2 −

1
2
ϖ2 −

δ22
4

L
−1
2

����
����
2

  Φ2
����

����
2

+
1
2
ϖ2 Φ
∗
2

����
����
2
.

(48)

Substituting (39), (45) and (48) into (47), we have

_V2 ≤ − Z
T
AZ − 

2

i�1
e

T
i ϵiei − 

2

i�1

1
2
ϖi −

δ2i
4

L
−1
i

����
����
2

  Φi

����
����
2

−
1
2
ϖF

ΦF

����
����
2

− 
n

i�2

ΔT

i εi −
7 + r2
2

I1 Δi + e
T
2 e3

− ΔT

1 ε1 −
8 + r2

2
I1 Δ1 + 

n

i�1
ZiH τi(  + 1  _τi + R2

+ 
n

i�1

1
r1

+
ε2

2r2
  L

−1
i

����
����
2
δ2i Φi

����
����
2

− ωT
2 h

−1
2 − I ω2,

(49)

where R2 � R1 + 1/2ϖ2‖Φ∗2 ‖2 + l
2
2, ϵ2 � q2 − 2I − 1/2‖h−1

2 ‖2I.

Step 3. (3≤ i≤ n − 1): Considering (10) and differentiating ei

give

_ei � x(i+1)d + ei+1 + L
−1
i

ΦT

i Mi
xi  − kix1

+ χiy + di − _xid.
(50)

Similar to Step 2, let xid pass the following first-order
filter ηi [7]:

hi _ηi + ηi � xid, ηi(0) � xid(0), (51)

where hi � diag hi1, hi2, . . . , hin > 0 is the time constant of
the filter.

Define ωi � ηi − xid. Differentiating ωi yields

_ωi � −h
−1
i ωi + −

zxid

zei−1
_ei−1 −

zxid

zei−2
_ei−2 −

zxid

zxi−1

_xi−1 −
zxid

z Φi−1

_Φi−1 −
zxid

zy
_y −

zxid

zdi−1

_di−1 

� −h
−1
i ωi + li ei, ei−1, y, xi−1,

Φi−1,
di−1 ,

(52)

where li(•) is a smooth function vector in regard to Πi(•).
Since the setΠi(•) is compact, the smooth function li(•) has
a maximum li on set Πi(•) for the given initial conditions.

Considering (51), the virtual control law is developed as

x(i+1)d � −qiei − ei−1 + _ηi + kix1 − χiy

− di − L
−1
i

ΦT

i Mi
xi ,

(53)

where qi � diag qi1, qi2, . . . , qin , qij, j � 1, 2, . . . , n is the
designed positive constant.

*e parameter adaptive law is designed as
_Φi � Θi Mi

xi e
T
i L

−1
i − ϖi

Φi , (54)

where Θi � ΘT
i > 0 is the designed matrix, and ϖi > 0 is the

designed constant.
Invoking (53), we obtain

_ei � −qiei − ei−1 + ei+1 − h
−1
i ωi + li(•). (55)

Select the Lyapunov function candidate as

Vi � Vi−1 +
1
2
e

T
i ei +

1
2

tr ΦT

i Θ
−1
i

Φi  +
1
2
ωT

i ωi, (56)

By invoking (54), it outputs

−tr ΦT

i Θ
−1
i

_Φi  � −tr ΦT

i Mi
xi e

T
i L

−1
i − ΦT

i ϖi
Φi 

≤ e
T
i ei −

1
2
ϖi −

δ2i
4

L
−1
i

����
����
2

  Φi

����
����
2

+
1
2
ϖi Φ
∗
i

����
����
2
.

(57)

Differentiating (56), we obtain

_Vi ≤ − Z
T
AZ − 

n−1

i�1
e

T
i ϵiei − 

n−1

i�1

1
2
ϖi −

δ2i
4

L
−1
i

����
����
2

  Φi

����
����
2

−
1
2
ϖF

ΦF

����
����
2

− 
n

i�2

ΔT

i εi −
7 + r2

2
I1 Δi + e

T
i ei+1

− ΔT

1 ε1 −
8 + r2
2

I1 Δ1 + 
n

i�1
ZiH τi(  + 1  _τi

+ 
n

i�1

1
r1

+
ε2

2r2
  L

−1
i

����
����
2
δ2i Φi

����
����
2

+ Ri

− 
n−1

i�2
ωT

i h
−1
i − I1 ωi,

(58)
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where Ri � Ri−1 + 1/2ϖi‖Φ∗i ‖2 + l
2
i , ϵi � qi − 3/2I1 −

1/2‖h−1
i ‖2I1.

Step 4. Taking the derivative of en yields

_en � u + L
−1
n

ΦT

n Mn
xn  − knx1 + χny + dn − _xnd. (59)

Similarly, let xnd pass the following filter ηn [7]:

hn _ηn + ηn � xnd, ηn(0) � xnd(0). (60)

where hn � diag hn1, hn2, . . . , hnn > 0 is the time constant of
the filter.

Define ωn � ηn − xnd. Taking the derivative of ωn yields

_ωn � −h
−1
n ωn −

zxnd

zen−1
_en−1 −

zxnd

zen−2
_en−2 −

zxnd

zxn−1

_xn−1

−
zxnd

z Φn−1

_Φn−1 −
zxnd

zy
_y −

zxnd

zdn−1

_dn−1

� −h
−1
n ωn + ln en, en−1, y, xn−1,

Φn−1,
dn−1 ,

(61)

where ln(•) is smooth function vector in regard to Πn(•).
Since the set Πn(•) is compact, the smooth function ln(•)

has a maximum ln on set Πn(•) for the given initial
conditions.

Design the actual control input and parameter adaptive
law as

u � −qnen − en−1 + _ηn + knx1 − χny

− dn − L
−1
n

ΦT

n Mn
xn ,

(62)

_Φn � Θn Mn
xn e

T
n L

−1
n − ϖn

Φn , (63)

where qn � diag qn1, qn2, . . . , qnn  with qnj(j � 1, 2, . . . , n)

being positive constant, Θn � ΘT
n > 0 is the designed matrix,

and ϖn > 0 is the designed constant.
Define the Lyapunov function candidate as

Vn � Vn−1 +
1
2
e

T
n en +

1
2

tr ΦT

nΘ
−1
n

Φn  +
1
2
ωT

nωn. (64)

Differentiating Vn outputs

_Vn � _Vn−1 + e
T
n _en − tr ΦT

nΘ
−1
n

_Φn  + ωT
n _ωn. (65)

Considering (60)–(63), we obtain

_en � −qnen − en−1 − h
−1
n ωn + ln(•), (66)

−tr ΦT

nΘ
−1
n

_Φn ≤ e
T
n en +

1
2
ϖn Φ
∗
n

����
����
2

−
1
2
ϖn −

δ2n
4

L
−1
n

����
����
2

  Φn

����
����
2
,

(67)

where ρn is the designed constant.
Substituting (66) and (67) into (65), we have

_Vn ≤ − Z
T
AZ − 

n

i�1
e

T
i ϵiei − 

n

i�1

1
2
ϖi −

δ2i
4

L
−1
i

����
����
2

  Φi

����
����
2



−
1
2
ϖF

ΦF

����
����
2

− 
n

i�2

ΔT

i εi −
7 + r2

2
I1 Δi + Rn

− ΔT

1 ε1 −
8 + r2

2
I1 Δ1 + 

n

i�1
ZiH τi(  + 1  _τi

+ 
n

i�1

1
r1

+
ε2

2r2
  L

−1
i

����
����
2
δ2i Φi

����
����
2

− 
n

i�2
ωT

i h
−1
i − I1 ωi

≤ − Z
T
AZ − 

n

i�1
ϵie

T
i ei − ΔT

1 ε1 −
8 + r2

2
I1 Δ1

−
1
2
ϖF

ΦF

����
����
2

− 
n

i�2

ΔT

i εi −
7 + r2
2

I1 Δi + Rn

− 
n

i�1

1
2
ϖi −

1
4

+
1
r1

+
ε2

2r2
 δ2i L

−1
i

����
����
2

  Φi

����
����
2

− 
n

i�2
ωT

i h
−1
i − I1 ωi + 

n

i�1
ZiH τi(  + 1  _τi,

(68)

where Rn � Rn−1 + 1/2ϖn‖Φ∗n ‖2 + l
2
n, ϵn � qn − 3/2I1−

1/2‖h−1
n ‖2I1.

3.3. Stability Analysis. Hereto, the following theorem is
proposed to reveal the main results of this work.

Theorem 1. Consider a class of MIMO nonlinear systems (1)
satisfying assumption 1–3. Ke state observer is designed as
(10), and the NDOs are developed as (16-17), and the virtual
control laws are proposed as (31), (43), and (53). Under the
presented output feedback FTC scheme (62), all tracking error
signals of the closed-loop system are uniformly ultimately
bounded.

Proof. From (68), it is observed that

_Vn ≤ − sVn + Γ + 
n

i�1
ZiH τi(  + 1  _τi, (69)

where s and Γ are given by
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s � min

λmin(A)

λmax(P)
, 2λmin ϵi( , λmin 2ε1 − 8 + r2( I1( ,

ϖF

λmax Ω
−1
F 

,

λmin 2ε1 − 7 + r2( I1( , 2λmin h
−1
i − I1 ,

ϖi − 1/2 + 2/r1 + ε2/r2 δ2i L
−1
i

����
����
2

λmax Θ
−1
i 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

Γ � 
n

i�1
1 +

1
2
ε2 β2i L

−1
i

����
����
2
Φ∗i

����
����
2

+ 
n

i�1
1 +

1
2
ε2 λ

2
i

+
1
2
ϖF Φ

∗
F

����
����
2

+
1
2
σ2F Q

−1
F

����
����
2

+ d
2
1 + 2ς20

+ 
n

i�1

1
2
ϖi Φ
∗
i

����
����
2

+ 
n

i�2
l
2
i +

1
2



n

i�1
ϱ2i .

(70)

According to Lemma 1, it can be obtained that Vn and


n
i�1[ZiH(τi) + 1] _τi are bounded over [0, tf]. By defining
Γ1 � maxt∈[0,tf] 

n
i�1[ZiH(τi) + 1] _τi, we obtain

_Vn ≤ − sVn + Γ, (71)

where Γ � Γ + Γ1.
Integrating (71) over [0, t] yields

Vn ≤
Γ
s

+ Vn(0) −
Γ
s

 e
− st

. (72)

From (72) and the definition of Vn, we obtain that Vn is
exponentially convergent, i.e., lim

t⟶∞
Vn � Γ/s. Hence, all the

error signals of the closed-loop remain bounded. *is
concludes the proof. □

Remark 4. In this paper, the actuator faults, which are
coupled with the unknown control gains, are considered,
and the Nussbaum function is utilized to eliminate their
adverse effect. Compared with some direct adaptive method
[11], the developed control algorithm can effectively avoid
the problem of singularity and simplify the proof process.
Compared with some existing observer-based output
feedback control methods [18, 20, 43], the proposed robust
FTC scheme can guarantee the closed-loop stability for the
MIMO nonlinear system with multiple negative effects si-
multaneously, including unmeasured states, unknown
nonlinearity, unknown control directions, actuator faults,
and external disturbances.

Remark 5. In the control design, different design parameters
will result in different system performance. Choosing larger
ϵi will increase the control gains and is beneficial for tracking
results within bounds. However, excessive control gains
require more control energy andmay cause input saturation.
Consequently, in order to achieve applicable control

performance, the selection of corresponding design pa-
rameters should satisfy the following conditions and reach a
compromise:

A> 0, ϵi > 0, 2ε1 − 8 + r2( I1 > 0, h
−1
i − I1 > 0,

ϖF > 0,ϖi −
1
2

+
2
r1

+
ε2

r2
 δ2i L

−1
i

����
����
2
> 0.

(73)

4. Simulation Examples

In this section, simulations studies on the unmanned he-
licopter position movement are given to illustrate the fea-
sibility of the obtained results. *e position dynamic model
of unmanned helicopter with actuator faults and external
disturbances can be described as [44]

_P � V,

m _V � BϑFR + mgξ + D(t),

y � P,

(74)

where g is the gravitational acceleration, ξ � [0, 0, 1]T, and
m defines the gross mass of the unmanned helicopter. P �

[X, Y, Z]T and V � [u, v, w]T denote the position and ve-
locity vectors, respectively. B � diag B1, B2, B3  is the un-
known constant control gain matrix, ϑ � diag ϑ1, ϑ2, ϑ3 , ϑi

is the remaining control efficiency, D(t) is external time-
varying unknown disturbance, FR � FR, F � [Fx, Fy, Fz]T is
the control input, and R refers to the rotation matrix whose
definition can be found in [44].

In the simulation, we suppose that the unmanned he-
licopter is operated in constant attitude angles. Furthermore,
the initial positions are assumed as [X0, Y0, Z0]

T � [1, 1, 0]T

m. Here, the unmanned helicopter is required to track the
following desired trajectories
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Xd � 10 cos
π
10

t m,

Yd � 10 sin
π
10

t m,

Zd � −10 1 − e
− 3t

 m,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(75)

*e external time-varying disturbances are given by
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Figure 2: Tracking errors e1i without robust FTC.
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D �

10 sin(0.2t)

1.2 sin(0.1t)

15 sin(0.5t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (76)

In view of the analysis process in Section 3, the control
object is to design control input vector F to make the output
y track the desired trajectory yd as closely as possible. *e
basic parameters of the unmanned helicopter are selected as
m � 800 kg, g � 9.8, ϕ � 10°, θ � 15° and ψ � 20°. *e
control gains and actuator faults are assumed as
B � diag 1.1, 1.2, 1.3{ } and ϑ � diag 0.8, 0.7, 0.6{ }, respec-
tively. *e relevant designed parameters are selected as
q1 � diag 5, 5, 5{ }, q2 � diag 1000, 200, 500{ },
k1 � diag 2, 2, 2{ }, k2 � diag 1, 1, 1{ }, χ1 � diag 2, 2, 2{ },
χ2 � diag 1, 1, 1{ }, ϖ1 � 0.001, L1 � diag 20, 20, 20{ }.

First, the position tracking error e1 � y − yd without
robust FTC is shown in Figure 2. It can be noted that all
tracking errors deviate from the origin severely. To reflect
the movement of the helicopter more visually, Figure 3 is
presented, where the magenta lines P d represent the desired
trajectories, and the black lines P s are the actual outputs.
From Figure 3, it can be seen that if there is no effective
robust FTC scheme, satisfactory trajectory tracking per-
formance cannot be obtained. Simulation results of Figures 2
and 3 reveal that the actuator faults, which are coupled with
the unknown control directions and external disturbances,
have a great negative influence on the control performance
of the helicopter system. If these negative effects can not be
tackled timely, they will lead to degradation of system
performance and even catastrophic consequences.

In order to ensure the safe flight for the unmanned
helicopter with unavailable states, unknown control direc-
tions, actuator faults, and external disturbances, a robust
adaptive NN output feedback FTC scheme is developed, and
the corresponding simulations are given by Figures 4–7.

Figure 4 provides the contrastive results of tracking errors,
where the blue lines e1ip denote the tracking errors under the
proposed controller, and the red lines e1in denote these
under adaptive FTC strategy proposed in [11]. According to
Figure 4, it can be observed that both control schemes can
guarantee that the tracking errors converge to a small
boundary. However, compared with the adaptive FTC
strategy proposed in [11], the developed control algorithm
has faster convergence rate and smaller tracking error.
Meanwhile, the three-dimensional graph of the output
trajectory y is provided in Figure 5, where the blue lines P p

denote the system output under the proposed controller, and
the red lines P n refer to these under adaptive FTC strategy
proposed in [11]. From Figure 5, we can see that the pre-
sented control scheme can make the system output reach the
desired trajectory faster, which reflects the same conclusion
as Figure 4. *e curve of designed fault tolerant controller is
provided in Figure 6. Figure 6 manifests that the control
command signals are convergent and can adjust dynamically
to restrain the adverse impacts. Furthermore, the RBFNN
weight matrix changes in reasonable boundary as time goes
on, which is displayed in Figure 7.

5. Conclusion

In this paper, a NN-based adaptive output feedback FTC
scheme has been proposed for uncertain MIMO nonlinear
systems with unmeasured states, unknown control direc-
tions, actuator faults, and external disturbances.*e RBFNN
has been utilized to approximate the unknown nonlinear
function, and the NDO has been constructed to estimate the
external disturbances. Especially, the unknown actuator
faults and control directions have been handled by the
constructed Nussbaum function. *e stability of the closed-
loop system has been proved, and the performance of the
presented controller has been confirmed through simulation
results on unmanned helicopter position movement. In the
future, the novel robust FTC strategy for the variable gain
nonlinear systems with random faults and disturbances is
worthy of further exploration, which are the other common
difficulties in practice.
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Figure 6: Input signals of the proposed controller.
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