
Research Article
Limiting Dynamics for Q-Learning with Memory One in
Symmetric Two-Player, Two-Action Games

J. M. Meylahn 1,2 and L. Janssen 3

1Department of Applied Mathematics, University of Twente, Enschede, Netherlands
2Dutch Institute of Emergent Phenomena, University of Amsterdam, Amsterdam, Netherlands
3Faculty of Science, University of Amsterdam, Amsterdam, Netherlands

Correspondence should be addressed to J. M. Meylahn; j.m.meylahn@utwente.nl

Received 1 September 2022; Revised 17 October 2022; Accepted 25 October 2022; Published 8 November 2022

Academic Editor: Hassan Zargarzadeh

Copyright © 2022 J. M. Meylahn and L. Janssen. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

We develop a method based on computer algebra systems to represent the mutual pure strategy best-response dynamics of
symmetric two-player, two-action repeated games played by players with a one-period memory. We apply this method to the
iterated prisoner’s dilemma, stag hunt, and hawk-dove games and identify all possible equilibrium strategy pairs and the
conditions for their existence. Te only equilibrium strategy pair that is possible in all three games is the win-stay, lose-shift
strategy. Lastly, we show that the mutual best-response dynamics are realized by a sample batch Q-learning algorithm in the
infnite batch size limit.

1. Introduction

As algorithms are increasingly employed in a variety of
settings, more situations will arise in which algorithms in-
teract. In the case of reinforcement learning (RL) algorithms,
what this interaction will lead to is not easily predictable.
Tis is due to most algorithms being designed for single-
agent settings (or stationary environments). Te theoretical
foundations for multiagent reinforcement learning (MARL)
are thin, with few convergence results [1] and dealing with
nonstationarity has been dubbed one of the grand challenges
of MARL [2]. For an overview of the learning pathologies
faced by multiagent learning (MAL) algorithms see [3] and
for surveys of MAL in general see [4–7]. Te most chal-
lenging setting to overcome nonstationarity in is decen-
tralized MARL, in which the algorithms have no means of
communicating and no information regarding the oppo-
nent’s payofs. One of the advantages of decentralizedMARL
is that such algorithms scale better in environments with
more agents. Tis is the setting we will focus on here.

Tere are many application areas in which multiple
algorithms can be learned in the same environment. For

example, in wireless communications and networking [8],
vehicle routing [9], or algorithmic pricing [10]. Interestingly,
ideas from game theory and multiagent learning are also
applicable in optimal control theory, where control prob-
lems may be transformed into games such that the Nash
equilibrium provides the optimal control policy [11–13].

One approach to modelling the dynamics of decen-
tralized MARL algorithms is based on continuous time
approximations of the learning dynamics (with learning
dynamics, we mean the evolution of the Q-values under the
Q-value updates) [14–16]. Tis approach shows that the
dynamics of the Q-learning algorithm [17] with softmax
exploration and variants of it are well approximated by the
replicator dynamics of evolutionary game theory [18], and
the insights gained from these models have led to the de-
velopment of new algorithms such as frequency-adjusted
Q-learning [19]. A similar approach is taken in [20] with the
diference being that the authors consider Q-learning with ϵ
-greedy exploration. In both cases, the resulting ordinary
diferential equations (ODEs) encode the deterministic
dynamics of how one expects the Q-values to evolve in time
(these ODEs can be viewed as a mean-feld model).
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An alternative approach is developed in [21], where the
authors defne deterministic learning for temporal diference
learning algorithms. Deterministic learning encodes the
learning dynamics under the assumption that the learners
have perfect information; i.e., they have a perfect picture of
the environment (including their opponent) for each
learning update. Te dynamics can be interpreted as the
dynamics of sample batch temporal diference learning al-
gorithms in the infnite batch size limit.

Both of the approaches describe the dynamics in the
value space, i.e., on the level of the Q-values. With ϵ-greedy
exploration, however, the strategy space is fnite given a fxed
exploration rate ϵ. Tis allows us to develop a representation
of the deterministic learning dynamics, interpreted as in
[21], for the case of pure strategies (ϵ � 0) using directed
networks. Te advantage of our approach, over the previ-
ously mentioned approaches, is that the dynamics can easily
be represented in cases where the environment can be in
multiple states (i.e. Markov games), and it allows for the
exact calculation of the possible absorbing states, the con-
ditions for their existence, and their basin of attraction (since
the dynamics here are deterministic, the basin of attraction
of an absorbing state is the fraction of initial conditions that
lead to it). Knowing the possible absorbing states is necessary
for defning appropriate learning goals for the algorithm,
and their basin of attraction quantify the likelihood with
which the learning goals can be achieved.

We will demonstrate our approach in the case of
symmetric two-player, (we will use the terms “player” and
“agent” interchangeably) two-action games, in which both
players can condition their actions on the actions played in
the previous round of the game. Tis is economically rel-
evant since many of the classical strategies (such as the Tit-
for-Tat strategy) for two-player, two-action games require a
one-periodmemory [22]. More specifcally, we will study the
resulting dynamics in the cases of the prisoner’s dilemma
(PD) [23], the stag hunt (SH) [24], and the hawk-dove (HD)
[25] (also known as the chicken or snowdrift) games.

Te choice of these games is motivated by a particularly
relevant application domain in which understanding the
dynamics of multiagent learning is important: algorithmic
pricing [26]. Here, multiple algorithms learn optimal prices
to maximize profts for their respective frms in a market. If
these algorithms converge to higher than competitive prices
(and thus learn to cooperate or collude), this has detrimental
efects for consumers. Recent work has shown that
Q-learning with a one-period memory can learn collusive
strategies [27–29], although this takes place on a prohibi-
tively long timescale [30].

Te PD is a simpler setting (in relation to pricing en-
vironments) in which cooperation (or collusion) can be
observed [30]. Tis is one of the paradigmatic models for
studying the emergence of cooperation in social dilemmas
[31], pricing duopolies [32], and other economics games
[33]. Te model’s simplicity allows for rigorous analysis,
giving insights that can be heuristically extended to more
realistic settings. In addition to the PD, we will study the SH
game and the HD game. Both of these games retain the
interpretation of the two actions as being cooperation and

defection and have been studied extensively in the literature
(see [34–37] for recent contributions in the context of re-
inforcement learning). Tis choice of games is also repre-
sentative of the diferent possible combinations of dilemma
strength parameters (we exclude the trivial Harmony game
in which no dilemma arises). Te dilemma strength pa-
rameters quantify how advantageous it is to defect when
playing against a cooperator and how disadvantageous it is
to cooperate when playing against a defector. Tey are
particularly useful for determining outcomes in evolutionary
game theory [38–42]. Te representation of the game dy-
namics we develop is, however, applicable to all twelve
symmetric two-player, two-action games and can trivially be
extended to all games in the periodic table of 2 × 2 games
[43]. For Q-learning without memory, such games have been
classifed in [44].

Temean-feld approach has been employed successfully
to study the learning dynamics of decentralized MARL al-
gorithms in normal form games, for example, Q-learning in
zero-sum and partnership normal form games [45] and,
exponential RL in zero-sum games with an interior Nash
equilibrium [46]. More recently, similar techniques have
been applied in the stochastic game setting, showing con-
vergence in zero-sum stochastic games [47, 48]. To achieve
this, the authors make use of two-timescale learning dy-
namics, which ensure that the environment is quasi-sta-
tionary for all agents.

Best-response dynamics have a long history as a tool for
analysing learning in games [49, 50]. Te asymptotic
properties of the perturbed best-response dynamics in the
low noise limit correspond to evolutionary game theory
dynamics [51]. Best-response dynamics can be implemented
using fctitious play [52], but this requires full information of
the agent’s own payofs, which we assume not to be available
here.

Our approach lends itself to extensions with which it is
possible to approximate the dynamics of sample batch al-
gorithms with fnite batch sizes in such a way that the efects
of the various components of the algorithms (the batch size,
exploration rate, and learning rate) can be isolated. Un-
derstanding the interplay of these components is necessary
for explaining the learning dynamics of such algorithms in
multiagent settings. Such insights can in turn be used to
design algorithms that learn more successfully in multiagent
settings. Parallel work in this direction [53] shows how the
representation developed here complements the determin-
istic learning dynamics developed in [21].

1.1. Contributions. Tis article aims at contributing to the
modelling of the dynamics of MARL by developing a
method using computer algebra systems for representing the
(deterministic) mutual best-response dynamics in sym-
metric two-player, two-action iterated games with one-pe-
riod memory. More specifcally,

(i) Tis method allows us to study the possible ab-
sorbing states, the conditions for their existence,
and their basin of attraction.
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(ii) We show that the absorbing states identifed in [54]
for the PD are the only absorbing states and fnd that
the number of absorbing states is signifcantly
higher for both the SH game and the HD games.

(iii) Te only strategy pair that is an absorbing state in all
three games is when both players use the win-stay,
lose-shift (WSLS) strategy. Tis suggests that the
WSLS strategy has a structure which makes it ideal
for dealing with dilemmas.

(iv) Finally, we show that the mutual best-response
dynamics are realized by a simple sample batch
Q-learning algorithm in the infnite bath size limit.

1.2. Structure. In Section 2, we identify notation, defne the
model, and introduce Q-learning. In Section 3, we describe
our representation of deterministic learning. In Section 4, we
present the results for the three games we consider, and in
Section 5, we show that a simple sample batch Q-learning
algorithm converges to the mutual best-response dynamics
in the infnite batch size limit. Finally, in Section 6, we
conclude and discuss possible extensions and future
research.

2. Setting

2.1. Notation. For ease of reference, we provide an overview
of the notation used in the article. We denote the actions
available to the players by D, for defect and C, for cooperate.
For the payofs of the game, we use T, R, P, and S. Te
strategy of player a is denoted by πa and the expectation E is
taken with respect to the strategies of the players. Te
discount factor is denoted by δ, the learning rate by α, and
the exploration rate by ϵ. Q-values are denoted by Qa,σ,i,
where the frst index refers to the player, the second index
refers to the state, and the third index refers to the action.
Te related value function is denoted by Va(σ). Te indi-
cator function is denoted by A{ } and evaluates to one whenA

is true and to zero when A is false. We use ∨ to denote the
logical “or” and ∧ to denote the logical “and.”

2.2. Environment. We consider a setting similar to that in
[54], and we will employ broadly similar notation for ease of
reference. Te setting is that of a two-player, two-action
game played by two Q-learners, labelled a ∈ 1, 2{ } and using
the convention −a � 1, 2{ }/a, with one-period memory.
Each Q-learner has a choice each period between two ac-
tions: defect (D) or cooperate (C). We denote the actions by
σa ∈ C, D{ }. Due to the one-period memory, the game be-
comes a multistate game, with the possible states being σ �

(σ1, σ2) ∈ (D, D), (D, C), (C, D), (C, C){ }, where the frst
component of the vector denotes the action of player one
and the second component denotes the action of player two.
Te payof (or reward) for the player a when the game is in
state σ is denoted by ra(σ) and takes the following form:

r1(1), r2(1) r1(2), r2(2)

r1(3), r2(3) r1(4), r2(4)
  �

P, P T, S

S, T R, R
 , (1)

where we have enumerated the states as
(D, D)⟶ 1, (D, C)⟶ 2, (C, D)⟶ 3, and
(C, C)⟶ 4. In addition, we make the standard assump-
tions that T>R>P> S for the PD, R>T>P> S for the SH
game and T>R> S>P for the HD game.

2.3. Learning. Each player chooses their actions according to
a strategy πa, which in the Q-learning with period one
memory setting is the conditional probability of playing
action σa given that the game is in state σ′, i.e. πa(σa|σ′).

Te strategies of the players are updated through a re-
inforcement learning process. We consider the Q-learning
algorithm, which is designed to learn the actions that
maximize the discounted future rewards, i.e.,


∞

n�1
δn

ra(σ(n)), (2)

with 0< δ < 1 (in the case without discounting; i.e., δ � 1, it is
necessary either to consider a fnite time horizon T or to
consider the player’s objective to be maximizing their av-
erage reward. Our method is not directly applicable in this
case, although a similar procedure may be possible in the
latter case by using the stationary distribution over the states
given fxed strategies) being the discount factor and n

denoting the time.
It has been shown that maximizing (2) can be achieved in

a stationary environment by solving

Qa,σ(t),σa(t) � E ra(σ(t + 1))|σ(t), σa(t) 

+ δE max
i∈ C,D{ }

Qa,σ(t+1),i |σ(t), σa(t) .
(3)

Note that, since the actions taken in the previous round
determine the current state, we have used the notation that
σ(t) � (σ1(t − 1), σ2(t − 1)). Te frst term on the right-
hand side is the expected reward from taking action σa(t)

while in state σ(t) and the second term is the discounted
expected maximum reward of behaving optimally
(according to the current estimate) in the state σ(t + 1)

reached by taking action σa(t) in state σ(t). Te Q-function
defned by (3) is related to Bellman’s value function by
Va(σ) � maxi∈ C,D{ } Qa,σ,i .

Te Q-learner a solves (3) by initializing a Q-matrix

Qa,1,D Qa,1,C

Qa,2,D Qa,2,C

Qa,3,D Qa,3,C

Qa,4,D Qa,4,C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

and updating the entries according to

Qa,σ,σa
(t + 1) � (1 − α(t))Qa,σ,σa

(t)

+ α(t) ra(σ(t + 1)) + δ max
i∈ C,D{ }

Qa,σ(t+1),i  ,

(5)

where
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α(t) �
α, if σ, σa(  � σ(t), σa(t)( ,

0, otherwise,
 (6)

is the learning rate. Note that ra(σ(t + 1)) is the reward
obtained in period t (i.e., the reward of taking action σa(t)

while in state σ(t), which leads to state σ(t + 1)). In sta-
tionary environments, the iterative process defned by (5)
has been shown to converge under some general conditions,
for example, in [55]. At any point in time, the Q-learner’s
estimate of the optimal strategy is given by the strategy in
which the learner selects the action with the largest Q-value
in every state.

In contrast to the general multistate setting, the tran-
sitions between states here happen deterministically given
the actions of the players. Tis means that the only sto-
chasticity comes from the action-selection mechanism, i.e.
the strategies. Such an action-selection mechanism must
take into account the exploration-exploitation trade-of,
where exploratory actions are conducive to learning and
exploratory actions maximize the reward given the agent’s
current state of knowledge. Te methods used in Q-learning
for this balancing act can be split into two main categories:
the ϵ-greedy mechanisms and the softmax or Boltzman
mechanisms. We will focus on mechanisms of the frst type
and leave the latter mechanisms for future work. With an ϵ
-greedy action-selection mechanism, the player chooses the
action which it considers to be maximizing its reward with
probability 1 − ϵ(t) and chooses an action uniformly at
random with probability ϵ(t), where the exploration rate
may depend on time.

Q-learning converges to a solution of the Bellman
equations in stationary environments. A Q-learner in a
multiagent setting, on the other hand, is facing a nonsta-
tionary environment since the strategy of the opponent
changes over time. One way to mitigate this nonstationarity
is by learning in batches, during which both players keep
their strategy fxed [21]. At the end of each batch, the players
update their strategies simultaneously. Te postbatch update
can be implemented with a larger learning rate (the learning
rate determines how much weight is given to the infor-
mation obtained during the batch) when the batch is large, as
a larger batch leads to a better estimate of the (now sta-
tionary) environment. In the infnite batch size limit, the
postbatch update may be performed with a learning rate of
one, which leads to both players simultaneously playing the
best response to the strategy of the opponent after each batch

(see Section 5). Te absorbing states of this algorithm are the
same as the absorbing states of the algorithm in [54] (if the
players do not change strategy when mutually best-
responding, they will also not change strategy when se-
quentially best-responding and vice versa).

3. Method

3.1. Self-Consistent Solutions to the Bellman Equations. If we
restrict ourselves to pure strategies, each player can pick one
of two actions for each of the four states, leading to a total of
24 strategies. As a result, the total number of pure strategy
pairs is 28 � 256. Using computer algebra software, such as
Mathematica, we can automate the calculations in [54],
perform them for the 16 symmetric strategy pairs, and repeat
them for all possible strategy pairs. Tis allows us to identify
the best response for each strategy.

To this end, we identify each strategy with a 4-dimen-
sional vector. Te four entries encode the strategy. A zero in
the frst entry means that Q1,1,D >Q1,1,C, while a one means
that Q1,1,D <Q1,1,C. Te vector (0, 0, 0, 0), for example,
represents the all defect (All-D) strategy (the index of the
entry of the vector corresponds to the state in which the
action is taken). Te vector (1, 0, 0, 1) in contrast represents
the win-stay-lose-shift (WSLS) strategy. Similarly, we defne
a strategy pair as an 8-dimensional vector in which the frst
four entries encode the strategy of player 1, and the last four
entries encode the strategy of player 2 (to ensure that the
strategies look the same for both players, we associate the 6th
entry in the vector with state 3rd and the 7th entry with state
2). Each strategy pair vector leads to a system of sixteen
linear equations that can be solved simultaneously for the
sixteen Q-values. Te Q-values are then expressed in terms
of the model parameters T, R, P, and S. Te vector, however,
also encodes an assumption on the inequalities obtaining
between the Q-values. We then perform a self-consistency
check to see if the resulting Q-values satisfy the assumed
inequalities given the assumptions on the model parameters.
In this way, we can determine under which conditions there
is a valid solution to the Bellman equations given the strategy
pair.

To illustrate the computation, we will consider the PD
where both players are playing the all defect strategy, i.e., the
vector (0, 0, 0, 0, 0, 0, 0, 0). Te Bellman (3) for player 1 can
be written in terms of indicator functions when considering
pure strategies. Te equations for player 1 become

Q1,1,D � 1 Q2,1,D >Q2,1,C{ } p + δQ1,1,D1 Q1,1,D >Q1,1,C{ } + δQ1,1,C1 Q1,1,D <Q1,1,C{ }  + 1 Q2,1,D <Q2,1,C{ } t + δQ1,2,D1 Q1,2,D >Q1,2,C{ } + δQ1,2,C1 Q1,2,D <Q1,2,C{ } ,

(7)

Q1,1,C � 1 Q2,1,D >Q2,1,C{ } s + δQ1,3,D1 Q1,3,D >Q1,3,C{ } + δQ1,3,C1 Q1,3,D <Q1,3,C{ }  + 1 Q2,1,D <Q2,1,C{ } r + δQ1,4,D1 Q1,4,D >Q1,4,C{ } + δQ1,4,C1 Q1,4,D <Q1,4,C{ } ,

(8)

Q1,2,D � 1 Q2,2,D >Q2,2,C{ } p + δQ1,1,D1 Q1,1,D >Q1,1,C{ } + δQ1,1,C1 Q1,1,D <Q1,1,C{ }  + 1 Q2,2,D <Q2,2,C{ } t + δQ1,2,D1 Q1,2,D >Q1,2,C{ } + δQ1,2,C1 Q1,2,D <Q1,2,C{ } , (9)
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Q1,2,C � 1 Q2,2,D >Q2,2,C{ } s + δQ1,3,D1 Q1,3,D >Q1,3,C{ } + δQ1,3,C1 Q1,3,D <Q1,3,C{ }  + 1 Q2,2,D <Q2,2,C{ } r + δQ1,4,D1 Q1,4,D >Q1,4,C{ } + δQ1,4,C1 Q1,4,D <Q1,4,C{ } ,

(10)

Q1,3,D � 1 Q2,3,D >Q2,3,C{ } p + δQ1,1,D1 Q1,1,D >Q1,1,C{ } + δQ1,1,C1 Q1,1,D <Q1,1,C{ }  + 1 Q2,3,D <Q2,3,C{ } t + δQ1,2,D1 Q1,2,D >Q1,2,C{ } + δQ1,2,C1 Q1,2,D <Q1,2,C{ } ,

(11)

Q1,3,C � 1 Q2,3,D >Q2,3,C{ } s + δQ1,3,D1 Q1,3,D >Q1,3,C{ } + δQ1,3,C1 Q1,3,D <Q1,3,C{ }  + 1 Q2,3,D <Q2,3,C{ } r + δQ1,4,D1 Q1,4,D >Q1,4,C{ } + δQ1,4,C1 Q1,4,D <Q1,4,C{ } ,

(12)

Q1,4,D � 1 Q2,4,D >Q2,4,C{ } p + δQ1,1,D Q1,1,D >Q1,1,C{ } + δQ1,1,C Q1,1,D <Q1,1,C{ }  + 1 Q2,4,D <Q2,4,C{ } t + δQ1,2,D Q1,2,D >Q1,2,C{ } + δQ1,2,C Q1,2,D <Q1,2,C{ } , (13)

Q1,4,C � 1 Q2,4,D >Q2,4,C{ } s + δQ1,3,D Q1,3,D >Q1,3,C{ } + δQ1,3,C Q1,3,D <Q1,3,C{ }  + 1 Q2,4,D <Q2,4,C{ } r + δQ1,4,D Q1,4,D >Q1,4,C{ } + δQ1,4,C Q1,4,D <Q1,4,C{ } . (14)

Since we assume that both players are using the All-D
strategy in this example, we can evaluate the indicator
functions in (7) as follows:

1 Q2,1,D >Q2,1,C{ } � 1, 1 Q1,1,D >Q1,1,C{ } � 1, 1 Q1,1,D <Q1,1,C{ } � 0, (15)

1 Q2,1,D <Q2,1,C{ } � 0, 1 Q1,2,D >Q1,2,C{ } � 1, 1 Q1,2,D <Q1,2,C{ } � 0. (16)

So, (7) reduces to

Q1,1,D � p + δQ1,1,D. (17)

By proceeding in the same way for (8)–(14), we obtain
the following system of equations:

Q1,1,D � p + δQ1,1,D,

Q1,1,C � s + δQ1,3,D,

Q1,2,D � p + δQ1,1,D,

Q1,2,C � s + δQ1,3,D,

Q1,3,D � p + δQ1,1,D,

Q1,3,C � s + δQ1,3,D,

Q1,4,D � p + δQ1,1,D,

Q1,4,C � s + δQ1,3,D.

(18)

By solving the following equation, we get

Q1,1,D � Q1,2,D � Q1,3,D � Q1,4,D �
p

1 − δ
, (19)

Q1,1,C � Q1,2,C � Q1,3,C � Q1,4,C � s +
δp

1 − δ
. (20)

Since this is a symmetric strategy pair, the solutions to
the Bellman equations for player 2 are the same.

To see if this is a valid solution or not, we check that the
inequalities of the assumed strategy pair are satisfable by

the model parameters. In this case, the inequalities require
that

Qa,i,D >Qa,i,C for all a ∈ 1, 2{ }and i ∈ 1, 2, 3, 4{ }, (21)

so that we must have

p

1 − δ
> s +

δp

1 − δ
, (22)

or equivalently

p(1 − δ)> s(1 − δ). (23)

Tis is always satisfed since p> s for the PD. We
conclude that the All-D strategy is the best response against
an opponent playing the All-D strategy. Te best response,
given an opponent’s strategy, as calculated by solving a linear
system of equations such as (18), will be unique unless the
payof parameters lead to a solution with Qa,i,D � Qa,i,C for
some a and i. We will neglect such cases, as these occur in a
vanishingly small part of the parameter space.

3.2. Best-ResponseNetworks. We can now construct two types
of direct networks for each choice of the parameters t, r, p, s,
and δ from the pure strategy best-responses. Te frst type we
call best-response networks (BRNs) and they are constructed as
follows: We convert each of the 16 strategies into a number:
(0, 0, 0, 0)⟶ 0, (0, 0, 0, 1)⟶ 1, etc (to do this consistently,
we use the binary representation of numbers). Tese become
the labels for the nodes of our graph, and we draw a directed
edge from each strategy to its best response.

Te second type of networks we call mutual best-response
networks (MBRNs). For these, we convert the strategy pairs
into numbers so that
(0, 0, 0, 0, 0, 0, 0, 0)⟶ 0,(0, 0, 0, 0, 0, 0, 0, 1)⟶ 1, etc.
Now we draw a directed edge from a strategy pair to the
strategy pair that contains the best response to player one’s
strategy in the last four entries and the best response to player
two’s strategy in the frst four entries. TeMBRN encodes the
mutual best-response dynamics, where in each round each
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player switches their strategy to the strategy that is a best
response to their opponent’s previous strategy (see [56]).

In this article, we are interested in studying the limiting
dynamics of the mutual best-response dynamics. We will see
that the restriction to pure strategies means that the limiting
dynamics can consist of absorbing strategy pairs (strategy
pairs in which both players play the best response to their
opponent’s strategy) and limiting cycles in which both
players cycle through a sequence of strategies.

Absorbing states for the mutual best-response dynamics
will appear as nodes with self-loops in the MBRN. Tese
absorbing states correspond to Nash equilibria for the dy-
namics. Symmetric absorbing states will appear as self-loops
in the BRN as well, but nonsymmetric absorbing states will
appear as reciprocal edges. In addition to the absorbing
states, the MBRN will exhibit limit cycles consisting of
strategy pairs in which each player plays a strategy that is
part of an absorbing state but not the same absorbing state.
In this situation, the mutual best-response dynamics dictate
that the players will switch to the opponent’s strategy at each
round. Tis is an example of the miscoordination learning
pathology discussed in [3]. Our focus in this article will be on
absorbing states because once all the absorbing states are
known, all the limit cycles can be constructed (each pair of
distinct absorbing states gives rise to a limit cycle by
combining the strategy of player one of the frst absorbing
strategy pair with the strategy of player two of the second
absorbing strategy pair).

3.3. Classifcation of Strategy Pairs. In this section, we in-
troduce two classifcations that allow us to identify the types
of absorbing strategy pairs.Te frst classifcation is based on
the type of behaviour the strategy pair gives rise to, and the
second classifcation is based on the symmetries or anti-
symmetries in the strategy pair.

3.3.1. From Strategies to Actions. Knowing which strategy
pair is being played is still not necessarily informative as to
which actions will be taken by the algorithms. As an ex-
ample, consider the symmetric strategy pair of both players
using the TFT strategy with exploration. If the system starts
in the CC or DD state, it will remain there until one of the
players explores and picks D or C, respectively. Ten the
system will oscillate between the DC and CD states until one
of the players again explores to synchronize their action with
that of the opponent. Tis means that the state graph of the
game has three disconnected components. Transitions be-
tween components occur only due to exploration.

Te vector for this state is given by (0, 1, 0, 1, 0, 1, 0, 1)

(note that states 2 and 3 require opposite responses from
players 1 and 2). Te transitions between states of the
game when both players play a pure strategy are shown in
Figure 1.

We can include the transitions due to exploration as
follows: Let the probability that no one explores be (1 −

ϵ)(1 − ϵ) � A, the probability that player 1 explores be ϵ(1 −

ϵ) � B (this is the same as the probability that player 2
explores), and the probability that both explore be ϵ2 � C.

Ten the transition (stochastic) matrix for the game with the
symmetric TFT strategy pair and ϵ-greedy exploration is
given by
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(24)

Te eigenvector of P with eigenvalue 1 will give the
stationary distribution on the game states and therefore tell
us how much time is spent in each state. For this matrix, the
stationary distribution is the uniform distribution on the
states, i.e., (1/4, 1/4, 1/4, 1/4). Tis means that the system of
two players playing TFT spends equal amounts of time at
each state.

A similar calculation yields the following stationary
distribution for the symmetric grim trigger strategy pair:

1 −
(5 − 2ϵ)ϵ

4
(2 − ϵ)ϵ

4
(2 − ϵ)ϵ

4
ϵ
4

 . (25)

In the limit as ϵ goes to zero, this is (1, 0, 0, 0), which
shows that even though cooperation is possible in the GT
symmetric strategy pair when exploration is used, it vanishes
in the small exploration rate limit.

By calculating the stationary distributions of the
pure strategy pairs in the small exploration rate limit,
we can identify which states of the game the learners
will spend the most time in, giving us an idea of the
actions used and the expected payof. Using this, we can
classify the strategy pairs by the resulting stationary
distributions. In our case, we identify an absorbing
strategy pair as being conducive to cooperation (CC) or
not (NCC). A strategy pair is conducive to cooperation
when the strategy pair assigns positive probability to
being in the (C, C) state in the small exploration rate
limit. Tis provides an avenue for studying the likeli-
hood of cooperation under pure mutual best-response
dynamics.

3.3.2. Structural Symmetry. We fnd that all absorbing states
in the three games we consider fall into one of the following
four categories:

Symmetric (Sym).Te players play the same action in all
states. An example is (0, 1, 1, 0, 0, 1, 1, 0) � 102.
Complemented Middle (CM).Te players play the same
action in the states (0,0) and (1,1), but complimentary
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actions in the states (0,1) and (1,0). An example is
(0, 0, 1, 0, 0, 1, 0, 0) � 36.
Complemented Sides (CS). Te players play the same
action in the states (0,1) and (1,0), but complimentary
actions in the states (0,0) and (1,1). An example is
(0, 0, 1, 1, 1, 0, 1, 0) � 58.
Complemented (Com). Te players play opposite ac-
tions in all states. An example is (0, 1, 1, 1, 1, 0, 0, 0) �

120.

4. Results

In this section we collect the critical conditions at which the
BRNs change, give examples of the resulting networks, and
identify the absorbing state of the mutual best-response
dynamics. We do this for the prisoner’s dilemma, the stag
hunt, and the hawk-dove games, each of which corresponds
to a diferent ordering of the model parameters T, R, P, and S

. Given the ordering, we can obtain the sign of the dilemma
strength parameters. Tese are defned as follows:

Dg �
T − R

R − P
,

Dr �
P − S

R − P
,

(26)

where the frst is the relative gain from defecting against a
cooperator, and the second is the relative risk of cooperating
against a defector. For the PD game we thus have that
Dg, Dr > 0, for the SH game we have Dg < 0 and Dr > 0, and
for the HD game we have Dg > 0 and Dr < 0. Without loss of
generality and for ease of exposition, we will normalize the
games by setting max T, R, P, S{ } � 1 and min T, R, P, S{ } � 0
when plotting the phase diagrams.

4.1. Prisoner’s Dilemma. Using the procedure outlined in
Section 3.1, we fnd that the symmetric absorbing states
found by [54] are the only possible absorbing states. Tis
means that there are no nonsymmetric strategy pairs that
solve the Bellman equations in this setting.

Te only possible pure strategy solutions pairs are the
symmetric all defect (All-D) strategy represented by node 0,
the grim trigger (GT) strategy represented by node 17, and
the win-stay-lose-shift (WSLS) strategy represented by node
153 (the last strategy is also known as the one-period-
punishment strategy or the Pavlov strategy). Te All-D
strategy is always possible, while there are restrictions on the
values of the model parameters, determining when the other
two are possible. Tis is summarized in Table 1.

To illustrate what the conditions in Figure 2 the pa-
rameters imply, we plot the phase diagram in the normalized
PD (i.e., T � 1 and S � 0) in Figure 2. As expected, we see
that increasing R (the parameter controlling how much the
players earn when in (C, C)) increases the number of
possible solutions. Decreasing P has a similar efect, but
there is a critical value for R that dictates whether it is
possible to reach a region in which the GTor WSLS strategy
pairs exist by decreasing P or not. We show how the regions
change as a function of δ in Appendix A.

Te critical conditions in Table 1 indicate when changes
in the BRN lead to the appearance or disappearance of
equilibria. In Table 2 we show all critical conditions at which
changes in the BRN occur.Tese results give two extremes in
the resolution of the phase diagram: the frst is the lowest
resolution and the second is the highest. Tere is an in-
termediate resolution in which we identify the critical
conditions at which changes in the BRN graph lead to
changes in the basin of attraction of the equilibria. We leave
the study of the basin of attraction of the absorbing states for
future work.

From Table 2 we can infer the number of BRNs that are
possible. Since some conditions are repeated (e.g., the
conditions for nodes 9 and 13), we fnd that there are 12
distinct BRNs; i.e., there are twelve regions in the phase
space. We show the phase diagram for these 12 graphs in the
left panel of Figure 2. In Figure 3 we show a graph containing
all possible edges in the BRRNs. We see all three of the
possible equilibria as self-loops (node 0 for All-D, 1 for GT,
and 9 for WSLS).

4.2. StagHunt. In the case of the stag hunt game, the number
of equilibria increases signifcantly, which means that a
simple assessment of the resulting phase diagram is not
feasible. We see in Table 3 that the SH gives rise to a total of
16 possible absorbing states, of which half are symmetric and
half are nonsymmetric. Te nonsymmetric absorbing states
are all of the CM type defned in Section 3.3. We also fnd
that almost 70% of the absorbing states are conducive to
cooperation. For the nonsymmetric strategy pairs, each
combination of strategies appears twice in Table 3, as the two
distinct strategies can be assigned to the two players in two
ways. Tis means that there are 12 diferent strategy com-
binations that can give rise to an absorbing strategy pair.

1

23

4

Figure 1: Game state transitions of the symmetric TFT pure
strategy pair. Here, the states the game can be in are labelled with 1
corresponding to the DD state, 2 corresponding to the DC state, 3
corresponding to the CD state and 4 corresponding to the CC state.
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Table 1: All strategy pairs solve the Bellman equations self-consistently for the prisoner’s dilemma, their structural and behavioural types,
the conditions for their existence, and the regions of Figure 2 in which they exist.

Policy-pair Type Conditions Regions
(0, 0, 0, 0, 0, 0, 0, 0) Sym, NCC Always 1 − 12
(0, 0, 0, 1, 0, 0, 0, 1) Sym, NCC R + δT>T + δP 2, 4, 6 − 12
(1, 0, 0, 1, 1, 0, 0, 1) Sym, CC R + δR>T + δP 9 − 12
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Figure 2: (a) Phase diagram for the possible BRNs in the prisoner’s dilemma, (b) phase diagram for the possible equilibria in the prisoner’s
dilemma (only node 0 in region 1, nodes 0 and 1 in region 2, and nodes 0, 1, and 9 in region 3). For both plots, we have S � 0, T � 1, and
δ � 0.65.

Table 2: Critical conditions for the existence of edges in the pure best-response graph of the prisoner’s dilemma.

Edge Conditions
0⟶ 0 None
1⟶ 0 R + δT<T + δP

1⟶ 1 R + δT>T + δP

2⟶ 0 None
3⟶ 0 None
4⟶ 0 S + δT<P(1 + δ)

4⟶ 13 S + δT>P(1 + δ)

5⟶ 0 (P + R≤ S + T∧S + δT<P(1 + δ))∨(P + R>T + S∧R + δT<T + Pδ)

5⟶ 3 P + R>T + S∧T − R/T − P< δ <P − S/R − S

5⟶ 12 P + R<T + S∧P − S/T − P< δ <T − R/R − S

5⟶ 15 (P + R≤ S + T∧R(1 + δ)>T + δS)∨(P + R>T + S∧S + δR>P + δS)

6⟶ 0 S + δT<P + δS

6⟶ 9 S + δT>P + δS

7⟶ 0 S + δT<P + δS

7⟶ 8 S + δT>P + δS

8⟶ 0 None
9⟶ 1 (1 + δ)R <T + δP

9⟶ 9 (1 + δ)R >T + δP

10⟶ 0 None
11⟶ 0 None
12⟶ 0 None
13⟶ 0 (1 + δ)R <T + δP

13⟶ 11 (1 + δ)R >T + δP

14⟶ 0 None
15⟶ 0 None
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Table 4 shows some similarities to Table 2 with many
critical conditions being identical when exchanging T and R.
Tis similarity is confrmed by the left panel of Figure 4 where
we see the same 12 regions appearing as in the left panel of
Figure 2.Tere is, however, a diference in the regions that are
relevant for changes in the set of absorbing states, as seen by
comparing the right panels of Figures 2 and 4.

In Figure 5 we see that the network of possible edges in
the BRN also difers from the PD case. More specifcally,
both games have the same number of possible edges (25), but
the maximum in-degree of the PD is 16 while the maximum
in-degree of the SH is 5. We plot the in-degree distribution
in Figure 6.

4.3. Hawk-Dove. For the hawk-dove game, we again fnd
many equilibria, as in the SH game. We see in Table 5 that
the HD gives rise to a total of 17 possible absorbing states,
of which 16 are not conducive to cooperation. Te ab-
sorbing state that is CC is the symmetric WSLS, which is
also an absorbing state for both of the other games. Half of
the remaining absorbing states are C, and the other half
are CS. For the nonsymmetric strategy pairs, each com-
bination of strategies appears twice in Table 3. Tis means
that there are nine distinct combinations of strategies that

can form an absorbing strategy pair in the Hawk-Dove
game.

Table 6 again shows some similarities to Table 2 with
many critical conditions being identical when exchanging S

and P. Once again, we fnd the 12 regions seen in the left
panel of Figure 2 in the phase diagram in Figure 7. In this
case, all regions are relevant for changes in the set of ab-
sorbing states.

In Figure 8 we see that the network of possible edges in
the BRN for the HD game is similar to the network for the
SH. More specifcally, we see that the maximum in-degree in
the HD is also 5. Interestingly, the nodes realizing this
maximum are the same for both games (nodes 0 and 15; i.e.,
the All-D strategy and the strategy pair where both players
always cooperate) with the diference that they have a self-
loop in the SH but do not have a self-loop in the HD game. In
addition, the in-degree distributions for the SH and HD
games are identical.

5. Sample Batch Q-Learning

Te learning dynamics we have discussed thus far have been
framed predominantly in terms of mutual best-response
dynamics. In this section, we show that these dynamics are
the limiting dynamics of sample batch Q-learning when

0

1 2 3

4

135

12 15

6

9

7

810 1114

Figure 3: All possible edges in the BRN of the prisoner’s dilemma. See Table 2 for conditions for the existence of edges.

Table 3: All strategy pairs solving the Bellman equations self-consistently for the stag hunt game, their structural and behavioural types, the
conditions for their existence, and the regions of Figure 4 in which they exist.

Policy-pair Type Conditions Regions
(0, 0, 0, 0, 0, 0, 0, 0) Sym, NCC Always 1 − 12
(0, 0, 0, 1, 0, 0, 0, 1) Sym, NCC Always 1 − 12
(1, 0, 0, 0, 1, 0, 0, 0) Sym, CC Always 1 − 12
(1, 0, 0, 1, 1, 0, 0, 1) Sym, CC Always 1 − 12
(1, 1, 1, 1, 1, 1, 1, 1) Sym, CC Always 1 − 12
(0, 1, 1, 1, 0, 1, 1, 1) Sym, CC P + δS> S + δR 1, 5, 6
(1, 1, 1, 0, 1, 1, 1, 0) Sym, CC R + δP >T + δT 5, 7 − 12
(0, 1, 1, 0, 0, 1, 1, 0) Sym, NCC P + δP> S + δR∧R + δP>T + δR 6, 8
(1, 0, 1, 1, 1, 1, 0, 1) CM, CC Always 1 − 12
(1, 1, 0, 1, 1, 0, 1, 1) CM, CC Always 1 − 12
(0, 0, 1, 1, 0, 1, 0, 1) CM, CC P + δS> S + δR 1, 5, 6
(0, 1, 0, 1, 0, 0, 1, 1) CM, CC P + δS> S + δR 1, 5, 6
(0, 1, 0, 0, 0, 0, 1, 0) CM, NCC P + δP> S + δR∧R + δP>T + δR 6, 8
(0, 0, 1, 0, 0, 1, 0, 0) CM, NCC P + δP> S + δR∧R + δP>T + δR 6, 8
(1, 0, 1, 0, 1, 1, 0, 0) CM, CC R + δP >T + δT 5, 7 − 12
(1, 1, 0, 0, 1, 0, 1, 0) CM, CC R + δP >T + δT 5, 7 − 12
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taking the infnite batch size limit. We will use a simple
sample batch algorithm so that it is simple to see that the
infnite batch size limit gives rise to the mutual best-response
dynamics, but more sophisticated sample batch algorithms
exists which make better use of the information gathered
during a batch (see [21, 57]).

Te sample batch algorithm splits the time horizon into
batches of size K and keeps track of two sets of Q-values.Te
frst set, denoted by Qact, will be used to determine the
actions that the algorithm takes during a batch. Tese
Q-values are kept constant during the batch. Te second set,
denoted by Qval, will be used to learn during the batch. At the

Table 4: Critical conditions for the existence of edges in the BRN of the stag hunt.

Edge Conditions
0⟶ 0 None
1⟶ 1 None
2⟶ 0 T + δR >R + δP

2⟶ 4 T + δR <R + δP

3⟶ 5 None
4⟶ 2 δR + S< δ(1 + P)

4⟶ 15 δR + S> δ(1 + P)

5⟶ 3 δR + S<P + δS

5⟶ 15 δR + S>P + δSP

6⟶ 0 P + T>R + S∧R − T/R − P< δ <P − S/T − S

6⟶ 6 (P + T<T + S∧S + δ <P(1 + δ))∨P + T≥R + S∧T + δR <R + δP

6⟶ 9 (P + T≤R + S∧R � δS<T(1 + δ))∨P + T>R + S∧S + δT<P + δS

6⟶ 15 P + T<R + S∧P − S/R − P< δ <R − T/T − S

7⟶ 7 δR + S<P + δS

7⟶ 15 δR + S>P + δS

8⟶ 8 None
9⟶ 9 None
10⟶ 0 (1 + δ)T>R + δP

10⟶ 12 (1 + δ)T<R + δP

11⟶ 13 None
12⟶ 10 None
13⟶ 11 None
14⟶ 0 (1 + δ)T>R + δP

14⟶ 14 (1 + δ)T<R + δP

15⟶ 0 None
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Figure 4: (a) Phase diagram for the possible BRNs in the stag hunt and (b) phase diagram for the possible equilibria in the stag hunt. For
both plots, we have S � 0, R � 1, and δ � 0.65.
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end of the batch, the frst set is replaced by the second and
the process is repeated. A diagram illustrating this process is
given in Figure 9.

In order to ensure that all states are visited infnitely
often in the infnite batch size limit, the algorithm uses an ϵ
-greedy action-selection mechanism with a constant ex-
ploration rate depending on the batch size.Tis means that it
selects the action with the maximum Q-value with proba-
bility 1 − ϵ and selects an action uniformly at random with
probability ϵ. Given a batch size K, we defne the exploration
rate to be

ϵ(K) �
1

K
(1− c)/3, (27)

with c> 0 a small constant. Te state-action pairs that are
visited least are the actions with the smaller Q-value in the
states that are only reached when both agents explore, for
example, the (4, C) state-action pair when both players use
the All-D strategy. Using this, we can calculate a lower
bound for the expected number of times any state-action
pair is visited in a batch of size K, given an exploration rate
ϵ(K). Te probability of reaching such a state-action pair
is ϵ3/8 so that the expected number of visits in a batch of
size K is

K ×
ϵ3(K)

8
�

K
c

8
. (28)
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Figure 5: All possible edges in the BRN of the stag hunt. See Table 4 for conditions for the existence of edges.
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Figure 6: In-degree distribution of the BRN containing all possible edges for the PD (red) and the SH (green).

Complexity 11



Since this is a lower bound for the expected number of
visits for all state-actions pairs, we see that all state-action
pairs are visited infnitely often in the limit K⟶∞.

During the batch, the second set of Q-values is updated
using

Q
val
a,σ,σa

(k + 1) � (1 − α(k))Q
val
a,σ,σa

(k)

+ α(k) ra(σ(k + 1)) + δmax
i∈C,D

Q
val
a,σ(k + 1), i  ,

(29)

with

Table 6: Critical conditions for the existence of edges in the BRN of the hawk-dove game.

Edge Conditions
0⟶ 15 None
1⟶ 14 R + δT<T + δS

1⟶ 15 R + δT>T + δS

2⟶ 11 None
3⟶ 10 None
4⟶ 13 None
5⟶ 12 R(1 + δ)<T + δS

5⟶ 15 R(1 + δ)>T + δS

6⟶ 9 None
7⟶ 8 None
8⟶ 0 P + δT> S(1 + δ)

8⟶ 7 P + δT< S(1 + δ)

9⟶ 0 R + S<T + P∧S − P/T − S< δ <T − R/R − P

9⟶ 6 (R + S<T + P∧P + δT< S(1 + δ))∨(R + S≥T + P∧R + δT<T + δS)

9⟶ 9 (R + S≤T + P∧T + δP <R(1 + δ))∨(R + S>T + P∧P + δR> S + δT)

9⟶ 15 R + S>T + P∧T − R/T − S< δ < S − P/R − P

10⟶ 0 P + δT> δP + S

10⟶ 3 P + δT< δP + S

11⟶ 0 P + δT> δP + S

11⟶ 2 P + δT< δP + S

12⟶ 5 None
13⟶ 4 (1 + δ)R <T + δS

13⟶ 15 (1 + δ)R >T + δS

14⟶ 1 None
15⟶ 0 None

Table 5: All strategy pairs solving the Bellman equations self-consistently for the hawk-dove game, their structural and behavioural types,
the conditions for their existence, and the regions of Figure 7 in which they exist.

Policy-pair Type Conditions Regions
(1, 0, 0, 1, 1, 0, 0, 1) Sym, CC P + δR > S + δP∧R + δR>T + δP 4, 5, 9, 10
(0, 0, 0, 0, 1, 1, 1, 1) Com, NCC Always 1 − 12
(1, 1, 1, 1, 0, 0, 0, 0) Com, NCC Always 1 − 12
(0, 0, 0, 1, 1, 1, 1, 0) Com, NCC T + δS >R + δT 1, 3, 7
(1, 1, 1, 0, 0, 0, 0, 1) Com, NCC T + δS >R + δT 1, 3, 7
(0, 1, 1, 0, 1, 0, 0, 1) Com, NCC S + δS>P + δT∧T + δS >R + δT 3, 7
(1, 0, 0, 1, 0, 1, 1, 0) Com, NCC S + δS>P + δT∧T + δS >R + δT 3, 7
(0, 1, 1, 1, 1, 0, 0, 0) Com, NCC S + δS>P + δT 3, 5 − 8, 10 − 12
(1, 0, 0, 0, 0, 1, 1, 1) Com, NCC S + δS>P + δT 3, 5 − 8, 10 − 12
(0, 1, 0, 0, 1, 1, 0, 1) CS, NCC T + δS >R + δR 1 − 8
(1, 1, 0, 1, 0, 1, 0, 0) CS, NCC T + δS >R + δR 1 − 8
(0, 1, 0, 1, 1, 1, 0, 0) CS, NCC T + δS >R + δR 1 − 8
(1, 1, 0, 0, 0, 1, 0, 1) CS, NCC T + δS >R + δR 1 − 8
(0, 0, 1, 0, 1, 0, 1, 1) CS, NCC S + δT>P + δT 7, 8, 12
(1, 0, 1, 1, 0, 0, 1, 0) CS, NCC S + δT>P + δT 7, 8, 12
(0, 0, 1, 1, 1, 0, 1, 0) CS, NCC S + δT>P + δT 7, 8, 12
(1, 0, 1, 0, 0, 0, 1, 1) CS, NCC S + δT>P + δT 7, 8, 12
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Figure 7: Phase diagram for the possible networks in the hawk-dove game with P � 0, R � 1, and δ � 0.65.
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a remains fxed during the batch, while Qval

a is updated.
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Figure 10: Phase diagram for the possible BRNs in the prisoner’s dilemma for diferent values of δ: 0.1 (a), 0.3 (b), 0.75 (c), and 0.99 (d).
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Figure 11: MBRN in the region 12 (in Figure 2) of the PD.
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α(k) �

1
kσ,σa

(k) + 1
, if σ, σa(  � σ(k), σa(k)( ,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

where kσ,σa
(k) is a local time, given by the number of times

that the state-action pair (σ, σa) has been visited up to period
k. At the end of a batch, the Q-values used for determining
the actions are updated as follows:

Q
act
a,σ,σa

� Q
val
a,σ,σa

(K), (31)

for all (a, σ, σa). Tis update is equivalent to performing an
update using a learning rate of α � 1 for the postbatch
update.

Te Q-value update during the batch defned as above
satisfes the conditions for convergence given in [17], since
the environment in which the updates are made is sta-
tionary. In the infnite batch size limit, the Q-values are
updated to the solution of the Bellman equations given the
opponent’s strategy, as calculated in Section 3.1. We con-
clude that, if the initialQ-values of the algorithm are ordered
in each state (so that the optimal strategy based on the Q-
values is a pure strategy), it will follow the mutual best-
response dynamics represented by the MBRNs.
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Figure 12: MBRN in the region 12 (in Figure 4) of the SH.
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Figure 13: MBRN in the region 12 (in Figure 7) of the HD game.

Table 7: Conditions for the regions arising in the PD.

Region Conditions
1 δ <P∧δ + R< 1 + δP

2 δ <P∧δ + R> 1 + δP∧R(1 + δ)> 1 + δP

3 δ>P∧δ<P(1 + δ)∧δ + R< 1 + δP

4 δ >P∧1 + δP < δ + R∧δR<P∧1 + δP >R(1 + δ)

5 P(1 + δ)< δ∧1 + δP >R + δ
6 1 + δP <R + δ∧R(1 + δ)< 1
7 δ<P(1 + δ)∧R(1 + δ)< 1 + δP∧δR>P

8 R(1 + δ)< 1 + δP∧δ>P(1 + δ)∧δ + R> 1 + δP∧(P + R> 1∨R(1 + δ)> 1)

9 δ <P∧1 + δP <R(1 + δ)∧δR <P

10 δ >P∧1 + δP <R(1 + δ)∧δR <P

11 δ >P∧δ <P(1 + δ)∧δR>P∧R(1 + δ)> 1 + δP

12 1 + δP <R(1 + δ)∧P(1 + δ)< δ
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6. Conclusion

6.1. Contributions. Te MBRNs developed in this article are
a network representation of the mutual best-response dy-
namics in symmetric two-player, two-action repeated games
played by players with a one-period memory. We identify all
the edges that are possible in the BRNs and provide the
conditions for their existence. Tis allows us to plot the
phase diagram of the game, where changes in phase are
identifed with changes in the network structure. We fnd
that the phase diagrams are identical for the three games we
consider here, with the only diference being the network
structure associated with each region.

Te limiting dynamics of the mutual best-response dy-
namics fall into one of two categories: absorbing states and
limit cycles. Our focus is on absorbing states for the reason
given in footnote 10. We restrict the phase diagram to only
show critical boundaries at which a change in the set of ab-
sorbing states occurs. Te similarity between the three games
observed in the full-phase diagram is lost under this restriction.

For the PD, we have shown that the three symmetric
solutions to the Bellman equations identifed by [54] (All-D,
GT, and WSLS) are the only absorbing strategy pairs pos-
sible. Tere are a total of 16 possible absorbing strategy pairs
in the SH game, the majority of which are conducive to
cooperation. In the HD game, there are 17 possible ab-
sorbing strategy pairs, almost all of which are not conducive
to cooperation. Te absorbing strategy pairs are all sym-
metric in the PD. In the SH, half are symmetric, and the
other half are complimented in the asymmetric states. Te
HD game has only one symmetric absorbing strategy pair,
with the rest being complimented either completely or in the
symmetric states.

Te WSLS strategy pair is the only absorbing strategy
pair possible in all three games. It is always an absorbing
strategy pair for the SH game, and the fraction of the pa-
rameter space in which it is possible for the PD and HD
games increases as the discount factor increases (see Fig-
ure 10).Te TFTstrategy, on the other hand, does not appear
as an absorbing strategy pair in any of the three games. Tis
is in agreement with the result of [58], showing that the TFT
strategy is outperformed by the WSLS strategy in the PD.
Tis suggests that the WSLS strategy pair is a good learning
goal in social-dilemma type games in which the players care
about future outcomes.

Te mutual best-response dynamics are not only useful
for identifying absorbing strategy pairs but are also the
(deterministic) limiting dynamics of sample batch
Q-learning with infnite batch size. Te MBRNs thus also
correspond approximately to the dynamics of sample batch
Q-learning with large but fnite batch sizes. By studying the
basin of attraction for the absorbing states in theMBRNs, we
can approximate the probability of observing diferent
learning outcomes (e.g., cooperation) when using such al-
gorithms (assuming that the initial strategy is sampled

uniformly at random from the strategy space) as a function
of the model parameters. We leave such an analysis for
future work.

6.2. Extensions. Te representation developed here lends
itself to extensions such as considering two period memory
algorithms, three action games, nonsymmetric games,
more than two players, or placing alternative conditions
on the model parameters. Note, however, that the com-
putational complexity of the method we propose here
limits its immediate application to realistic environments
(the number of equations in the linear system of Bellman
equations that must be solved given a strategy grows as
|A|N+1, where |A| is the number of actions available to the
players and N is the number of players. Tis can be solved
in O(|A|3N+3), but this has to be repeated for all strategies.
Te number of strategies grows as |A||A|N . Te compu-
tational complexity thus grows exponentially in both the
number of actions and the number of players). As the goal
here is to understand multiagent reinforcement learning
dynamics in simple environments, this should not be
regarded as a relevant limitation.

Another direction is the extension of the results to
study how the networks change when considering a
smaller learning rate, i.e., where the sample batch algo-
rithms move in the direction of the best response instead
of playing the best response immediately or including a
constant ϵ-greedy exploration rate. It would also be
possible to study the efect of noise due to using large but
fnite batch sizes. As these extensions can be introduced
one by one, the method allows us to isolate the efects of
these three components. Tese extensions are being in-
vestigated in parallel[53].

Te efect of a smaller learning rate, exploration, or
noise due to fnite batch size will depend on the details of
the sample batch learning algorithm being used. Alter-
natives to the sample batch algorithm considered here,
such as SARSA and actor critic learning, are discussed in
[21]. In addition, it is possible to modify the postbatch
update to make use of techniques such as optimistic
learning [59] or leniency [60].

Finally, the method may be extended to the sequential
move setting as in [54] by constructing a directed network
with two types of edges: the frst dictating how the strategy
pair changes when player one acts, and the second dictating
how the strategy pair changes when player two acts. Te
sequential best-response dynamics in this network will
follow paths of alternating edge types.

Our results, together with the extensions outlined above,
provide an avenue for understanding the dynamics of
multiagent reinforcement learning algorithms in simple
settings. Te insights gained through this understanding
may also be applicable to more complex environments and
may be used in designing algorithms that learn successfully
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in such settings or in designing policies to regulate the use of
certain techniques in multiagent settings with undesirable
outcomes (such as price collusion).

Appendix

A. Phase Diagram as a Function of the
Discount Factor

In Figure 10 we plot the 12 regions of the phase diagram for
the PD for diferent values of δ. Tis shows how the regions
change as we vary the discount factor. Te plots for the SH
and HD games will show the same behaviour, with the
diference that the regions represent diferent graphs. In
particular, the regions associated with the existence of
specifc absorbing states are diferent.

Te plots show that an increase in δ leads to an increase
in the fraction of the phase space occupied by the region
where all three possible equilibria exist in the PD. For the SH
and HD, in contrast, we fnd that regions in which certain
combinations of absorbing states exist disappear as we in-
crease δ.

B. Examples of MBRN

In Figure 11–13, we show theMBRN in the 12th region of the
PD, SH, andHD, respectively.We indeed see that the sizes of
the basin of attraction for the absorbing states are more
evenly distributed in the SH and HD than in the PD.

C. Region Conditions for the PD

In Table 7, we give the conditions for the regions of the
normalized PD. Te conditions for the other two (nor-
malized) games can easily be derived from the conditions
given here by replacing R with T for the SH and P with S for
the HD game.
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