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Dragon boat sport is a traditional activity in China. In recent years, dragon boat sport has become more andmore popular around
the world. In order to face more challenges, it is urgent for athletes to enhance their own strength. Scientific training methods are
particularly important for athletes, and accurate training data are the basis to support scientific training. Traditional mathematical
statistic methods neither can sample signals accurately nor can they do real-time analysis and feedback the characteristics to each
athlete. In this paper, we use the wearable device with a triaxial accelerometer and heart rate sensor builtin to sample the speed
signals and heart rate signals of athletes in various stages of men’s 1000m straight race. Based on the complex network theory, we
regard the 23 dragon boat athletes in the dragon boat race as 23 nodes so as to establish a network with 23 nodes and reflect the
importance of nodes by measuring the impact of node deletion on the results of the race. &e neural network multilayer
perceptron (MLP) model is used for training to obtain the optimal combined value with speed and heart rate for each race stage.
&e optimal value will be used in the simulated race as the target value to verify if it can help to improve the training efficiency.
Experimental results show that the optimal value obtained by this method has a positive effect on the results of the dragon boat
race which is beneficial to sports training and tactics planning.

1. Introduction

Dragon boat sport, commonly known as a dragon boat race,
is an important part of traditional Chinese culture. In recent
years, dragon boat sport began to be popular in many
countries around the world, and dragon boat race spreads on
all continents. Since 2010, the dragon boat race has been a
part of the Asian Games. Chinese dragon boats are shown as
a demonstration sport event during the canoeing compe-
tition at the Tokyo Olympic Games on August 3, 2021.
Dragon boat as a demonstration sport event included in the
Tokyo Olympic Games, which marked that dragon boat has
started the Olympic application program. Promoting the
dragon boat sports to the Olympic Games plays a very
positive role in the external dissemination and display of
Chinese culture; at the same time, enhancing the competitive
ability has become the main direction in the development of
the dragon boat sports [1].

In the 18th Asian Games in 2018, the Chinese dragon
boat team got two gold medals and two silver medals in five
individual events. &e men’s team and women’s team both
won gold medals in 200m and silver medals in 500m.
However, the men’s 1000m straight race failed [2].
According to the conclusion obtained from the research of
paper [2, 3], for medium-short distance dragon boat races,
such as 200m and 500m, the tactical mode has relatively little
influence on the results of the races, and the athletes basically
rely on using all their strength. However, for long-distance
dragon boat races, such as 1000m, although the result of the
race has a lot to do with the speed ratio of each stage, the
velocity structure is not only associated with tactical ar-
rangements but also with the physical condition of athletes.
It is known from paper [3] that the excellent start speed is
important for victory, but the one-sided pursuit of high
strength set sail will be easy to cause lactic acid accumulation
so that athletes’ overload movement affects the subsequent
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matches. &erefore, in addition to monitoring speed, ath-
letes’ physical condition monitoring is also particularly
important, and heart rate is an important indicator to reflect
athletes’ physical condition. Only by adopting scientific
training methods and carrying out targeted daily training
under reasonable speed and heart rate, we can improve
training efficiency and achieve better results in the long-
distance dragon boat race.

&e scientific training method depends on the sampling
of athlete’s physical data and motion data which can be
analyzed in the process of the game. Effective data support is
the basis for planning effective tactics. It is quite important to
allocate speed reasonably at different stages of the compe-
tition according to the conditions of both sides. &erefore,
real-time signal sample and analysis in the process of the
dragon boat race is the key step to improve sports
performance.

Traditional signal sampling and analysis methods can
only be used for simple signals; it requires a lot of human
intervention; moreover, they are time consuming and not
accurate enough to complete real-time targeted signal
sample and analysis. With the increasing development of
artificial intelligence technology, wearable equipment
technology is constant to promote the development of
motion signal sampling. Relevant sensors such as acceler-
ation and heart rate can be embedded in wearable devices
such as sports bracelets to sample a large amount of signals
in real time. At the same time, with the development of the
artificial neural network, as we know from paper [4],
multilayer perceptron (MLP) can be approximated to per-
form any function virtually to achieve the desired accuracy
to fuse multiple features for optimal results. &us, MLP is
useful for us to research how to get the optimistic value in
this paper. At the same time, it is also necessary to discuss the
importance of each athlete and the impact of the association
between athletes in the dragon boat race. &e complex
network theory in network science provides a theoretical
basis for the discussion of the above issues [5,6]. &e results
also provide effective data support for the multilayer per-
ceptron (MLP) model and make the optimistic value ob-
tained more accurate.

Accordingly, the contributions of this paper are sum-
marized as follows: (i) the real-time speed and heart rate
signals of dragon boat athletes are sampled in each stage of
the competition by wearable bracelets with triaxial accel-
erometer and heart rate sensors built-in and filtered sepa-
rately; (ii)&e MLP model is used to train the sampled
signals, and the optimal combined value of heart rate and
speed are combined; (iii) the optimal value feedback to
coaches and athletes, the effectiveness of the optimal value is
verified by experimental methods and evaluated whether it
has a positive influence on training.

&e rest of this paper is organized as follows. Section 2
reviews the related work. In section 3, the proposed method
is introduced. In section 4, the implementation method of
signal sample in dragon boat sport is presented. Experi-
mental design and results analysis are presented in sections 5
and 6, respectively. Section 7 concludes this paper and gives
future research directions.

2. Related Work

Paper [7] was accomplished by monitoring dragon boat
athletes who won the championship, and based on the re-
search, the researchers found that there was a connection
between the volume of training load intensity and motor
function before the dragon boat competitions; the research
showed that reasonable arrangements for the training
content of each cycle, strength, and load had a significant
impact on improving the capacity of the athletes’ aerobic
power and the athletes’ performance. In [8], Parry examined
dragon boat racing (DBR) for breast cancer survivors and
revealed that DBR contributes to women’s social, emotional,
physical, spiritual, and mental health. In [9], Santiago and
Sousa presented a survey on relevant work, current tech-
niques, and trends in the area of team tracking systems
applied to sports. Nikolakaki et al. showed that using final
score difference provides yet a better prediction metric for
competitive balance in 2020 [10]. Wei et al. focused on the
historical evolution of the dragon boat race and the de-
velopment of sports nonmaterial cultural heritage in [11].

Paper [12] discussed that the wearable input device could
provide the user with one data input device and authenti-
cation system that was portable and could be worn like a
fashion accessory. Paper [13] surveyed the state of the art in
HAR based on wearable sensors and also proposed a two-
level taxonomy in accordance with the learning approach
(either supervised or semisupervised) and the response time
(either offline or online). In [14], Wang et al. introduced the
state-of-art sensor modalities in HAR and talked more about
the techniques involved in each step of wearable sensor
modality-centred HAR in terms of sensors, activities, data
preprocessing, feature learning, and classification, including
both conventional approaches and deep learning methods.
In paper [15], Montalto exploited a wearable device
equipped with inertial sensors such as accelerometer, gy-
roscope, and compass used for behavioral analysis (BA)
focused on human activity recognition (HAR) to evaluate
quantity and quality of movements. Paper [16] exploited
MuSA (a tiny device, suitable for being worn at the belt and
embedding an Inertial Measurement Unit) to enable user-
aware behavioral analysis based on environmental devices.
Paper [17] used wearable sensor arrays for multiplexed in-
situ perspiration analysis. Paper [18] discussed the type of
methods and technologies used for HAR, IL, and data fusion,
and the precision obtained for them were performed. Paper
[19] provided a review of recent trends in the area of
wearable sweat sensing with discussions on relevant topics of
interest in material science, device development, sensing
mechanisms, power generation, and data management.

In [20], Assah et al. examined the validity of a combined
heart rate and motion sensor in estimating physical activity
energy expenditure (PAEE) in free-living adults. From [21],
we know that the heart rate was a very sensitive physiological
parameter to reflect the metabolic rate and played an im-
portant role in scientific training. In paper [22], XBee
wireless sensor networks for heart rate monitoring are used
as a training aid for various types of sports. &e paper [23]
described the development of a triaxial accelerometer and a
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portable data processing unit for the recognition of daily
activity. Reference [24] introduced a generic framework for
the automated classification of human movements using an
accelerometry monitoring system. &e framework was
structured around a binary decision tree in which move-
ments were divided into classes and subclasses at different
hierarchical levels, and a better effect was achieved.

In [25], Naughton researched on artificial intelligence
(AI) and training in 1987. Ennals performed practical ap-
plications of AI in education and training in 1990 in [26].
Paper [27] undertook a short review of scientific research
studies centered on the contemporary development of AI
and probabilities of its applied use in sports practice. Paper
[28] examined the possibilities promised for the sports
environment by new technologies such as big data and AI.
&e technologies’ capacity for a more precise data sample
and analysis could enhance sports-related performance.

Neural networks were used increasingly as statistical
models. In [29], the multilayer perceptron as an approxi-
mation to a Bayes optimal discriminant function was pro-
posed in a paper in 1990. In paper [30] the analysis of the
relationship between the hidden nodes and the fault toler-
ance of the multilayer perceptron was given. Paper [4] was
dedicated to the analysis of a limited training dataset in-
fluence on the performance of MLP as a nonparametric
pattern classifier. Paper [31] presented the performance
comparison between multilayer perceptron (back propa-
gation, delta rule, and perceptron). In paper [32], an ex-
tended backpropagation algorithm that allowed all elements
of the Hessian matrix to be evaluated exactly for a feed-
forward network of arbitrary topology was present in 2014.
In [33], the findings of the research showed that artificial
neural networks could be used for parameter estimation in
cause-effect based studies. In [34], the performance of MLP
and that of linear regression (LR) were compared, with
regard to the quality of prediction and estimation and the
robustness to deviations from underlying assumptions of
normality and independence of errors. In [35], the authors
proposed a new neural network model called multilayer
perceptron with embedded feature selection (MLP-EFS). In
[36], the authors proposed a selfish group optimization
algorithm (OISHO) based on orthogonal design and in-
formation update. In [37], the authors proposed an im-
proved whale optimization algorithm based on teaching and
learning based on the simplex method (TSWOA).

3. The Proposed Method

&e overall process of sampling the speed signals and heart
rate signals of dragon boat athletes in various stages of
training or competition based on wearable devices is shown
in Figure 1. Firstly, human acceleration and heart rate signals
are sampled by wearable devices with builtin triaxial ac-
celeration and heart rate sensors, and the acceleration and
heart rate signals are filtered and preprocessed, respectively.
Based on the limit of sample amount, in this paper, the
optimal value is estimated by the MLP model based on the
dataset composed of dragon boat race data and simulated
training race data.

3.1. HumanMotion Model. Under normal circumstances, if
the movement does not involve the rotation of the human
body, the human body can be simplified as a multiparticle
model. When studying body movement, the body can be
regarded as a particle. However, the dragon boat sport is a
compound motion, which has both translation and rotation
in the process of movement so that the shape and size of the
human body need to be considered [38]. &erefore, in the
dragon boat sport, we regard the human body as a multirigid
body system, and the rigid body is a continuous point
composed of a series of particles with a constant distance
from each other.

Havana is widely used at present, as shown in Figure 2,
which divides the human body into 15 segments, each of
which is connected by ball hinges.

3.2.Wearable Device. A wearable device is a portable device
that can be worn directly on the body and worn on the hand
or integrated into the user’s clothing or accessories. It is not
only a hardware device but also can achieve powerful
functions through software support, data interaction, and
cloud interaction [39]. With the development of artificial
intelligence technology, sensors have been built into various
mobile devices, featuring low power consumption, easy
portability, accurate data, and no limitation with scenarios.
Wearable devices can be used to record daily life, physical
health, etc., and can also be used in sports analysis.

Many types of sensors that can be built in wearable
devices, Zigbee, WiFi, Bluetooth, etc., are the common way
of wireless communication. Concrete implementation mode
is to built the sensors through the embedded technology in
wearable devices.&e physiological signals will be mapped to
the activities of athletes after getting enough signals by
monitoring athlete’s training process effectively. &e whole
behavior can be used for the condition of athletes training, to
help assistant coach establish more scientific and more
targeted training plan.

3.3. Multilayer Perceptron. Multilayer perceptron (MLP) is
an artificial neural network, including input layer, multi-
hidden layer, and output layer. &e neural network of
multilayer perceptron is shown in Figure 3. If the perceptron
contains only one hidden layer, MLP contains n neurons,
indicating input n-dimensional signals, and m output
neurons, indicating include m types of output. &e more
hidden layers and themore hidden neurons, the better fitting
ability of the model. Perceptron neural network is defined as
follows:

u � 
n,m

i�1,j�1
wijxi + b,

y � sign(u) �
+1, u< 0,

−1, u≥ 0,


(1)

where b is the bias in the MLP model.
In order to minimize the loss function value, the model is

trained by the reverse gradient propagation algorithm. Back
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propagation is used for weight updates to bring the network
output closer to the label.

4. Implementation Method of Signal Sample in
Dragon Boat Sport

As the issue of identifying athletes’ speed and heart rate at
each race stage, it is essentially a process of sampling athletes’
body signals through sensors and using the processing unit
in wearable devices for signal processing, and the design of
signal sample scheme is one of the key contents for this
paper. Whether the design of the signal sample scheme is
effective or not will affect the reliability of the signal sample
directly and affect the training results at the same time.

4.1. Design Scheme of Signal Sample. Dragon boat sport is
mainly the upper limb sport, so this paper is mainly designed
to comprehensively sample the signals of the upper limb
movement during boating.

In order to obtain the acceleration signals of the upper
limb movement in the rowing process through under-
standing the human body model, the acceleration signals of
the arm in the three-axis direction are needed. In the process
of the signal sample, a device with a three-axis acceleration
sensor and a heart rate sensor is worn on the wrist of the
athlete, and the acceleration signals of each axis and the heart
rate signals of the athlete are sampled during boating.

4.2. Feature Value Extraction Based on Acceleration Signal.
As shown in Figure 4, generally, the human body will
generate acceleration components in three directions in the
process of movement: forward, lateral, and vertical direction
so as to build the motion model of the human body. Since
dragon boat sport also involves forward, lateral, and vertical
behaviors, we have built a three-axis acceleration sensor into
the wearable sports bracelet, which can detect the movement
speed more accurately.

Ideally, the three directions are exactly corresponding to
the three axes, but in practice, the angle of the three axes of
the sensor device is unknown, and the measured value of the
three axes is the projection of the motion acceleration on the
axis. Since rowing action is regular, we regard one swing as a
unit movement cycle. In every time swing, the forward X,
lateral Y, and vertical Z acceleration will have periodic
changes, and the speed and acceleration sampled by the
sensor will change all the time. In order to make the sample
simpler and eliminate coordinate mapping of acceleration
output values at different moments, we adopt the vector sum
of triaxial acceleration as characteristic values of the motion
state of the rotor, denoted as St, where αx,t, αy,t, and αz,t are
the acceleration values obtained by the acceleration sensor at
time t in x, y, and z three-dimensional space, respectively;
then,

St �

�������������

α2x,t + α2y,t + α2z,t



. (2)

4.3. Acceleration Signal Filtering. As the sampled triaxial
acceleration signal contains a lot of interference signals and
noises, in order to facilitate the later processing of the signal,
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Figure 1: Overall process.
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the signal needs to be filtered first. &e sliding filtering al-
gorithm is better than the average filtering algorithm in real
time and filtering effect so that the filtered waveform is
smoother. So, this paper chooses the sliding filtering algo-
rithm. Specific methods are as follows:

&e system first sets the sampling interval as dt and a
cache that can store four kinds of Data (Data0 ∼ Data3) and
initializes the Data buffer to 0. &e buffer Data is moved to
the right, the original rightmost Data Data3 is discarded, and
the new sampled Data is moved to the position Data0. &en,
the cache Data is averaged once, and the filtered value is
obtained before the next sampling.

4.4. Extraction of Characteristic Values of Heart Rate Signals.
In this paper, the wearable bracelet with a builtin heart rate
sensor is selected to sample the heart rate signal because the
heart rate signal sampled by wearable devices is often mixed
with different degrees of exercise interference due to human
activities, the frequency of interference signal overlaps with
that of heart rate signal, and the signal is distorted and
deformed, thus affecting the accuracy of heart rate detection.
&erefore, the sampled signals need to be filtered first.

Considering the randomness of interference, in order to
improve the accuracy of extracting heart rate signal, this
paper adopts an RLS adaptive filter to denoise the heart rate
signal combined with the acceleration signal. It not only
considers the adaptive adjustment of filter parameters with
the change of external interference but is also easy to do real-
time calculation in wearable devices. By analyzing the
characteristics of acceleration and the correlation degree of
motion, an axial acceleration signal was selected as the
expected signal, and the heart rate signal after preprocessing
was filtered [40]. &en, the heart rate signal is denoised with
the acceleration signals of the other two axes, and a better
effect can be obtained.

It is assumed that the acceleration signal is used to
simulate the motion interference, and the acceleration signal
is used as the expected input signal in the adaptive filter to
remove the motion interference. &e signal model is
expressed in formula 4 as follows, where HRSin represents
the heart rate signal under interference, HRSout represents
the filtered signal, αx, αy, and αz represent the acceleration
signal of three axes, respectively, λ is the weight of HRSout in
HRSin, wx, wy, and wz represent the weight of the triaxial
acceleration signal, respectively.

HRSin(i) � λ × HRSout(i) + αx(i) × wx + αy(i)

× wy + αz(i) × wz.
(3)

In the process of motion, a signal model with motion
interference is constructed for different coaxial acceleration
signals, as shown in the following formula:

HRSin(i) � a1 × HRSout(i) + b1 × αx(i),

HRSin(i) � a2 × HRSout(i) + b2 × αx(i) + c1 × αy(i),

HRSin(i) � a3 × HRSout(i) + b3 × αx(i) + c2 × αz(i).

(4)

&ree denoised heart rate signals can be obtained by the
RLS adaptive filter.&e original heart rate signal was taken as
the input, and the acceleration signal of the three axes was
successively taken as the reference input signal to get the
denoised output heart rate signal.

5. Experimental Design

5.1. Evaluation of the Optimal Value Based on theMLPModel

5.1.1. Experimental Dataset Sources. Assuming that every
250m in the men’s 1000m straight race is a stage, each race
had four stages. 500 groups of sample data which included
heart rate and speed signals are used to train the combined
optimal value in this paper by 23% from each actual men’s
1000m straight race, 77% were derived from the men’s
1000m straight simulation race, samples of each group were
composed of six dragon boat teams, due to the particularity
of the dragon boat sport, and the signal sample was more
difficult than other daily sports, &erefore, this paper adopts
an artificial feature extraction method to extract feature
values [41], and the extracted feature values which have four-
stage data are used as the input dataset of the MLP model.
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Figure 3: MLP model.
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5.1.2. MLP Model. In this paper, a 7-layer perceptron was
used to train the samples, semisupervised by real race results.
500 groups of sample data of the dragon boat race were
input, consisting of two-dimensional features of speed and
heart rates. We also regarded 23 athletes in the dragon boat
race as 23 nodes so as to establish a network with 23 nodes
and imported the result which reflects the importance of
nodes by measuring the impact of node deletion on the
results of the race as one of theMLP input. Loss function loss
is L2, the learning rate is 0.01, and training algebra
epoch� 100.

&e above is to evaluate the combined optimal value of
speed and heart rate at each stage which has a positive
impact on grades.

5.2. Validity Verification of the Optimal Value. All dragon
boat athletes who were participating in the experiment
wore hand bracelets with a triaxial accelerometer and
heart rate sensor. We used 6 same teams, called team A, B,
C, D, E, and F, to simulate 6 groups of men’s 1000m
straight dragon boat race. For the first 3 races, team A
would execute the optimal strategy; for the next 3 races,
team B would execute the optimal strategy, and other
teams would play freely; ifa team won the first prize in
each race, it would get 6 points, in descending order, and
the last one would only get 1 point. When the competition
is finished, the total score and ranking of each team in the
first 3 races and the last 3 races would be counted,
respectively.

6. Experimental Results and Analysis

6.1. Score Ranking Results and Analysis. &e experimental
results of the simulated men’s 1000m straight races are
shown in the following Tables 1 and 2.

&rough the above experimental results, we could ob-
serve that A team got the highest score in the first three
men’s 1000m dragon boat races and B team got the highest
score in the next three men’s 1000m dragon boat races.

&is result shows that

(i) It is feasible to sample speed and heart rate signals
by means of a builtin triaxial accelerator and heart
rate sensor in wearable devices

(ii) &e strategy formulation based on the speed ratio
and the physical condition of the athletes had a great
influence on the results of long-distance dragon
boat race. &e importance of each athlete and the
impact of the association between athletes in the
dragon boat race also had influence on the optimal
values obtained.

(iii) &e optimal values which was trained by the MLP
model have positive influence to 1000m straight
dragon boat race, not only can sample speed and
heart rate signals in real time but also can assist the
coach to make reasonable competition tactics.

6.2. Analysis Time. Analysis time is an important metric in
MLP model construction. In this study, MLPs-EFS [35],
OISHO [36], TSWOA [37], and the proposed method were
used for comparison. As shown in Figure 5, the analysis time
of the algorithm proposed in this paper was the shortest.
After the 700th iteration, the analysis time tended to be
stable and always below 100ms. In contrast to the other
three baselines, the analysis time of MLP-EFS and OISHO
showed an exponential growth trend with the increasing
number of iterations. &is also showed the stability and
flexibility of the algorithm proposed in this paper.

7. Future Works and Prospects

In this paper, the speed and heart rate signals of dragon boat
athletes in the race are obtained through wearable devices.
After effective processing, they are input into theMLPmodel
as samples for training, and the optimal values of speed and
heart rate at each stage of the dragon boat race are obtained,
then used in the men’s 1000m straight simulation race. &e
optimal value strategy is tested, and the experimental results

Table 1: Score ranking from first 3 races.

Team Race 1 point Race 2 point Race 3 point Total score Ranking
A 6 6 6 18 1
B 5 4 4 13 2
C 2 3 5 10 3
D 4 2 3 9 4
E 1 1 2 4 5
F 3 5 1 9 4

Table 2: Score ranking from next 3 races.

Team Race 4 point Race 5 point Race 6 point Total score Ranking
A 4 4 4 12 2
B 6 6 6 18 1
C 3 3 2 8 4
D 5 2 3 10 3
E 2 1 5 8 4
F 1 5 1 7 5
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prove that this value has a positive effect on the performance
and tactics of the dragon boat sport. Due to the complexity of
the dragon boat sport, the physiological requirements for
athletes are relatively strict. In future research, we will not
only improve the accuracy but also add more related
physiological characteristics such as blood oxygen to extract
more multidimensional optimal values to assist the coach in
the training process. More effective dragon boat race tactics
are formulated.

&e number of layers of hidden layers of multilayer
perceptron proposed in this paper has not been determined.
With the rapid development of the deep neural network,
designing a more complex network model should be able to
better obtain the optimal value of speed and heart rate in
each stage of the dragon boat race so as to improve the
accuracy of the simulation.
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