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Surface flattening plays an important role in the whole process of garment design. We proposed a novel method by using three-
dimensional triangle mesh flattening in this study. First, the three-dimensional triangle mesh is flattened to a two-dimensional
plane to approximate the original surface. +e initial flattening results are then used as preliminary guesses for subsequent
optimizations. Considering that the deformation energy in the real woven fabric is related to tensile or shear deformation, a
simplified fabric deformation model based on energy is proposed to update the energy distribution to determine the best two-
dimensional pattern. An innovative unified axis system process is proposed to obtain the deformation energy, and energy
relaxation in local flattening is proposed to release the distortion of flattening. Finally, the experimental results show that complex
surfaces such as garments could achieve better flattening results. Compared with other energy-based methods in garment design,
our proposed methods are more flexible and practical.

1. Introduction

+ree-dimensional computer-aided design(CAD) tools have
developed rapidly in the fashion design industry [1, 2] and
achieved better results in recent years. However, what
garment industry need is a two-dimensional design rather
than three-dimensional model. So, surface flattening [3–7]
plays an important role in the whole garment design process.
Almost all garments are nondevelopable [8], and the flat-
tening of a nondevelopable is a complicated process and
local distortions are inevitable. While, the existing surface
flattening methods for triangulated surfaces have several
limitations. A major problem is the existence of gaps and
overlaps in the resulting mesh.

For this phenomenon, a flattening method of energy-
based fabric deformation model is proposed in this study.
+e area representation method is more likely to prevent the

triangle area from being reduced to zero during flattening
than models that only consider edge deformation energy.
+erefore, the fabric energy acquisition method based on
area representation is adopted. Traditional energy-based
fabric deformation models [9] need to be converted to weft
and warp axes before energy can be obtained, which can be
cumbersome. In this article, a simplified model of fabric
deformation based on energy is proposed. A simplified
energy-based fabric deformation model simplifies the cal-
culations; at the same time, the energy relaxation in local
flattening eliminates local deformation.

+e properties of the materials need to be considered
when flattening, so energy-based or physics-based methods
are generally used in the flattening process. In the field of
computer graphics, flattening is mainly used to expand a
three-dimensional grid into a two-dimensional grid to fa-
cilitate texture mapping. +is process is also called grid
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parameterization. To obtain good texture mapping quality,
the mesh should be prevented from being deformed as much
as possible, and the flattening method based on the problem
of minimizing the deformation is often used.+ere are many
flattening methods [10–15], and we briefly summarize the
development of flattening methods over the past few
decades.

Levy [16] proposed a quasi-conformal parameterization
method based on least squares approximation. +is method
uses an objective function to minimize the angular defor-
mation. First, the complex surface is decomposed into a
series of developable surface elements, and then these de-
veloped surfaces are decomposed into another series of
developable surface elements. After the elements are ex-
panded, they are combined to obtain the final parameterized
result. When the elements are expanded, the original ori-
entation of the triangles can be maintained, so there will be
no triangle inversion. However, when the boundaries of the
elements intersect in the texture space, they may overlap. In
this case, we could subdivide the face element until there is
no overlap. Wang et al. [17] proposed a new wire warping
method for flattening surfaces using feature curves retained
by length. In addition, the progressive deformation scheme
for local shape control and the global deformation scheme
for highly curved surfaces were introduced. Since the in-
variant length of feature curves were used to generate the 2D
patterns, these strictly controlled lengths were inappropriate
when highly nondevelopable 3D surfaces were required.
Zhang et al. [18] improved Wang’s wire warping algorithm
by replacing the constant length of the feature curve with an
elastic feature curve. We could use this new feature curve to
control the shape of a flattening 2D pattern.

Energy-based or physics-based methods are often used
in surface flattening. +ere are many methods to obtain
energy [19, 20]. In [21], Afzal proposed a neutrosophic
statistical approach to analyze the resistance of conducting
material for big data. In [22], Afzal adopted neutrosophic
statistical methods; they were more informative, flexible, and
adequate than classical statistics for analyzing the measured
values of data. McCartney et al. [23] proposed a flattening
algorithm to obtain a planar development by minimizing
strain energy.+e algorithm uses an energy model to deform
the edges of the triangle mesh. In addition, darts or gussets
can be handled in a triangular mesh to assist in the fitting
process. Based on McCartney’s algorithm, Wang et al. [24]
introduced a spring-mass system from a geometric point of

view, in which the forces generated by the elastic defor-
mation energy stored in the spring-mass system could be
used to move these points. +e Lagrange equation was
applied to release energy and the penalty function was used
to prevent overlap. In addition, the energy distribution is
displayed using the interpolation function, which is deter-
mined by the surface cutting line. Li et al. [25] introduced
cross-springs to reduce the deformation of the final surface.
+e central triangle improves the levelling efficiency and
proposes a local correction method to overcome the over-
lapping problem. Zhong et al. [26] introduced a novel
method of surface flattening by opening the curved con-
figuration of each winged triangle pair. +e 2D final pattern
is generated on the collision plane, and the strain control
mechanism is introduced to preserve the area and size of the
original 3D surface.

2. The Flattening Process of the Energy-Based
Fabric Deformation Model

2.1. A Simplified Energy-Based Fabric Deformation Model.
Fabric deformation produces energy. Because of shearing,
bending, gravity, and tension, a piece of fabric is thought to
have an energy component. Each energy component is
represented by one term in the energy equation [24]:

Etotal � Egravitional + Etensile + Eshear + Ebending, (1)

where Etotal is the energy of the entire fabric, Egravitional is the
potential energy of the fabric, Etensile represents the energy
produced by tensile energy or compression of the fabric,
Eshear represents the energy produced by shear, and Ebending
is the energy produced by bending of the fabric.

In the process of flattening, a single triangle is flattened at
a time. +e triangle of the 3D shape is designed to be fixed,
and its corresponding 2D triangle is variable during the
flattening process. +erefore, the energy model will calculate
the energy generated by transforming the triangle of the 2D
shape to its corresponding 3D triangle. +e summation of
the shear energy and tensile strain energy indicates the total
internal energy of a triangle [24]. +erefore, this fabric
model only considers the variation associated with shear and
tensile stress. At the same time, it is assumed that the energy
generated by the bending is a constant. Tensile energy Etensile
is described as follows [24]:

Etensile � B1
2
Ksu Su − 1( 􏼁

2dudv + B1
2
Ksv Sv − 1( 􏼁

2dudv �
1
2

A Ksu Su − 1( 􏼁
2

+ Ksv Sv − 1( 􏼁
2

􏽮 􏽯, (2)

where A is the area of the 2D triangle, Ksu and Ksv are the
tensile constants for the U and V directions, respectively,
and Su and Sv (see Section 4.1) are strains. Shear energy Eshear
is described as follows [24]:

Eshear � B 1
2
Krϕ

2
v􏼒 􏼓dudv �

1
2

AKrϕ
2
v. (3)

Similar to (2), A is the area of the 2D triangle, Kr is the
shear constant, and ϕv (see Section 4.1) is the strain.
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To obtain the energy based on fabric deformation, a
transition stage of converting 2D pattern coordinates to weft
and warp coordinates is necessary in the traditional model.
In addition, tedious calculations could take a considerable
amount of time. To reduce the tedious work, we propose a
novel simplified model that instead uses the variable Rratio
during this stage. Based on this simplified energy model, we
propose an innovative unified axis system in Section 4.1 that
will simplify computation and innovate energy relaxation in
Section 4.2, which will increase the convergence speed.
While energy data come from uncertain energy, we adopt
some neutrosophic statistical methods [27, 28].

2.2. Flattening Process. Given a triangular mesh Ω(K, P),
where K � K1, K2, . . . , Kn􏼈 􏼉 is the spatial vertex set,
Ki ∈ R

3, P � T1,T2, . . . , Tn􏼈 􏼉 is the topological connection
information of the mesh, andT � vi, vj, vk􏽮 􏽯 is the triangle of
the surface mesh. +e goal of mesh flattening is to obtain
another triangular mesh Ω′(K′, P), where
K′ � K1′, K2′, . . . , K′􏼈 􏼉n is a 2D plane point set, Ki

′ ∈ R2, and
Ki corresponds to Ki

′. +e area of each triangle and the
length of each side remain unchanged after flattening. In
addition, the entire algorithm flow is shown in Figure 1.

To be flattened, triangle list V, active triangle list A,
flattened triangle list F, and initial flattening mesh Θ(K″, P)

are introduced in an initial flattening algorithm.
Initial flattening algorithm (its aim is to obtain the initial

flattening mesh Θ of Ω) is as follows:

(i) Step 1: Initially, add all triangles inΩ to V, and set A

and F as empty.
(ii) Step 2: Seed triangle Ts is searched in list V and then

Ts is flattened. +en, Ts is added to the active list A

and removed from the available list V. +e selection
of seed triangle is detailed in Section 3.1.

(iii) Step 3: Perform a search in list V to find all the
triangles that share an edge with Ts and insert them
into the tail of list A.

(iv) Step 4: If the list A is empty, stop processing.
Otherwise, obtain the next triangle T from the rest
of list A.

(v) Step 5: Insert triangle T into the tail of list F and
then mark T as flattened. A search is performed in
list V to find all the triangles that share an edge
with T and are not marked as flattened, and then
they are inserted into the tail of list A. Return to
Step 4.

To optimize vertex Vk and optimize triangle set Tset,
initial vertex set K″ is introduced in the optimal flattening
algorithm.

Optimal flattening algorithm (its aim is to obtain the
optimal flattening mesh Ω′ of Ω) is as follows:

(i) Step 1: Obtain the first vertex Vk from K″.
(ii) Step 2: A search is performed in list F to find the

triangle set Tset that contains vertex Vk.

(iii) Step 3: Each 2D triangle of triangle set Tset proceeds
with its corresponding 3D triangle of Ω in the
unified axis system and then obtains the energy of
vertex Vk.

(iv) Step 4: Calculate the minimum value of the energy
at the original position of vertex Vk and its eight
directions position. +ereafter, vertex Vk is moved
to the minimum energy position.

(v) Step 5: If the vertices in K″ are all traversed, go to
Step 6. Otherwise, take the next vertex Vk. Return to
Step 2.

(vi) Step 6: Iterate Steps 1–5, until all vertex positions are
unchanged.

3. Key Procedure for Initial Flattening

3.1. Selection of Seed Triangle. Before flattening, selecting the
seed triangle is an important process. +e order in which
triangles are flattened depends on the selected seed triangle,
so selecting the seed triangle can effectively reduce the
number of iterations and running time. Li et al. [25] used
integer indices to mark all vertices in the mesh. Also, Liu
et al. [29] applied the integer index to label all triangular
faces in the mesh. However, we use a novel labelling
standard that relies on the triangular edges. In addition, the
selection algorithm is detailed as follows:

(1) Set the triangle mesh edge index on the boundary to
0.

(2) Search all unlabelled triangle mesh edges that have
the same vertices as the labelled edge and increase the
unlabelled edge index number by 1.

(3) Repeat Step 2 until all triangular mesh edges are fully
labelled.

(4) Select the largest sum of the three edge indices as the
seed triangle. If there is more than one, choose one of
them.

3.2. Unconstrained Triangle Flattening. In the phase of
surface flattening, there are two kinds of flattening methods:
the unconstrained triangle flattening method and the con-
strained triangle flattening method. When one edge of a
triangle has been flattened, the third vertex can be located
using the unconstrained triangle flattening method. As
shown in Figure 2, T(v0, v1, v2) is a 3D triangle and the
vertices are arranged in reverse order. Edge v0v1 has been
flattened to edge v0′v1′ and then vertex v2 is flattened. +e
angle between the vector v0v1

���→ and the vector v0v2
���→ is cal-

culated as follows:

θ � arccos v0v1
���→

, v0v2
���→

( 􏼁. (4)

Vector τ is obtained by rotating vector v0′v1′
���→

counter-
clockwise by angle θ. +en, vertex v2′ is located using the
following expression:

v2′ � v0′ + v0v2
���→􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌τ. (5)
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As a result of flattening, the length of the triangle edge
has no change without producing elastic potential energy,
which is known as unconstrained triangle flattening.

3.3. Constrained Triangle Flattening. Figures 3 and 4 show
two different constrained flattening methods, Figure 4 is a
classic traditional method [25] of calculating the inter-
section point of two circles with two central points and
two radii. +ese circles are centered at v0′ and v1′, and their
radii are r02 and r12, respectively, as shown in Figure 4.
However, this method will produce two intersections. A
point within the flattening range needs to be discarded.
We use another method to find the third point, as shown
in Figure 3. Triangles T0 and T1 have been flattened, and
our aim is to flatten triangle T(v0, v1, v2). We choose edge
v0′v1′, and vertex v2 is flattened to v2″ by using the un-
constrained method in Section 3.2. +en we calculate their
average coordinate as the flattened vertex, that is

v2′ � 1/2(v2′ + v0″). +e side length of the flattened triangle
T′(v0′, v1′, v2′) has been changed with respect to T, which
will produce elastic potential energy. +erefore, after the
initial flattening, optimized flattening is required to re-
lease the elastic potential energy.

4. Optimized Flattening

4.1. Process of Obtaining a Unified Axis System. +e detailed
process of obtaining a unified axis system is shown in

Initial flattening Optimal flattening 

Input 3D triangle surface

Obtain seed triangle and 
unfold it

Get the flattened adjacent 
triangle

Unconstrained flattening/
constrained flattening

All flattened

Initial flattening

No

Get first vertex

Get adjacent triangle 
contain this vertex

Get the energy around 
this vertex

Calculate this vertex 
position

All vertex 
optimal

All vertex 
still

Optimal flattening

No
No

Figure 1: Algorithm flow chart.
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Figure 2: Unconstrained triangle flattening.
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Figure 3: Novel constrained triangle flattening.
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Figure 4: Traditional constrained triangle flattening.
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Figure 5. P is a 2D triangle and P′ is its corresponding 3D
triangle. First, the 2D woven triangle without distortion is
placed on a uv axis system.+e corresponding 3D deformed
triangle is then superimposed on the system under the same
conditions. +e 2D fabric undeformed triangle P without
energy, and its corresponding 3D fabric triangle P′ with
energy is generated after geometric deformation. +e strain
variables Su and Sv, as well as the shear variable ϕv, transform
position v1 to v1′ and v2 to v2′, respectively.

As shown in the right part of Figure 5, v0 is located at the
origin of the coordinates. +e three-side length of the 2D
triangle P is known, and the coordinates of v1 and v2 can be
obtained using (6) and (7), where θ is the angle between axis
u and edge v0v2. z is the angle between edge v0v1 and edge
v0v2. By setting the value of Rratio as 1/2, the flattening could
achieve a better effect. +e v1′ and v2′ coordinates of the 3D
triangles can be obtained in the same way.

Rratio �
v0v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌sin θ

v0v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌sin θ + v0v1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌sin(z − θ)
, (6)

z � arccos
v0v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ v0v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

− v1v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2 v0v1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 v0v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠. (7)

+e unifying process completes the specification geo-
metric transformation that a representative rectangle must
undergo.+is geometric transformation can also deform the
triangle P to P′. +e total energy required for the distortion
can be calculated by determining the energy to distort the
representative weave element. +ereafter, considering it in
its entirety, we utilized the same transformation for the
triangle. +e distortion of the representative woven element
can be represented by an affine transformation. +e scaling
factor and shear angle can be calculated from affine

transformation [30]. +e general representation of an affine
transformation is as follows:

u′v′1􏼂 􏼃 � [uv1]

a11 a12 0

a21 a22 0

a31 a32 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (8)

For a particular affine transformation, the affine trans-
formation matrix will now be referred to as M, where this
matrix is comprised as follows:

u′v′1􏼂 􏼃 � [uv1]M. (9)

+e shape of a triangular fabric is deformed first by
stretching and then by shearing; M is therefore represented
by a matrix:

M �

Su 0 0

0 Sv 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0

sin ϕv cos ϕv 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

Su 0 0

sin ϕv Sv cos ϕv 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(10)

For this special change, coordinate v1 transforms to
coordinate v1′ and coordinate v2 transforms to v2′:

v11, v12( 􏼁⟶ v11′ , v12′( 􏼁, v21, v22( 􏼁⟶ v21′ , v22′( 􏼁. (11)

+e equation can be rewritten again as shown below:

0 0 1

v11′ v12′ 1

v21 v22′ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0 0 1

v11 v12 1

v21 v22 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a11 a12 0

a21 a22 0

a31 a32 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (12)

or U′ � UA, and this results in:

A �
1

v11v22 − v21v12
×

v22v11′ − v12v21′( 􏼁 v22v12′ − v12v22′( 􏼁 0

v11v21′ − v21v11′( 􏼁 v11v22′ − v21v12′( 􏼁 0

0 0 v11v22 − v21v12( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

By comparing (10) and (13), the strain variables Su and Sv

and the shear variable ϕv are as follows:

Su �
v22v11′ − v12v21′( 􏼁

v11v22 − v21v12( 􏼁
, (14)

ϕv � tan−1 v11v21′ − v21v11′( 􏼁

v11v22′ − v21v12′( 􏼁
, (15)

Sv �
v11v21′ − v21v11′( 􏼁

v11v22 − v21v12( 􏼁sin ϕv

. (16)

+e steps for the energy of the triangular fabric defor-
mation are given as follows:

(1) Obtain 3D coordinates of the triangle
(2) Obtain the 2D coordinates of the triangle
(3) Unify the 3D and 2D triangles into the (U, V) axes

with equations (6) and (7)
(4) According to the two unified triangular coordinates,

acquire the strain variables Su and Sv and the shear
variable ϕv by applying equations (14)–(16)

(5) Use equations (2) and (3) to obtain tensile energy
Etensile and shear energy Eshear respectively

4.2. Energy Relaxation Process in Partial Flattening.
Energy relaxation plays an important role through the
flattening process, which determines the efficiency of
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flattening and the effect of flattening. In previous studies,
most works have been conducted to determine how to use
the energy released to achieve a satisfactory flattening result.
Wang et al. [24] used the spring force obtained by the
Lagrange equation to move the vertex, and a better result
could be achieved after many iterations, but the obvious
drawback is the time-consuming process. However, we
propose an innovative method of simplifying fabric defor-
mation based on energy in Section 2.1. As this method adds
four orthogonal directions in the specific node, it shows the
weighted optimization efficiency and optimization effect.
+e original position of the node is considered when cal-
culating the next position of the node; the details of the
process are described below.

As shown in Figure 6, we assumed that there are 2D
vertices P and adjacent vertices P1, P2, . . . , P5. +e triangles
formed with P are T0, T1, . . . , T4. +e energy of the vertex P

is obtained by the following expression, where Eenergy(i) is
the energy of the ith triangle connected to P and n is the
number of triangles connected to vertex P.

EP � 􏽘
n−1

i�0
Eenergy(i). (17)

+e eight directions of optimized flattening are
n
→

, n + 1
����→

, . . . , n + 7
����→

, and the movement increment is Δd. +e
next position of P will slip to the minimum energy value
direction. +e minimum energy value Emin can be obtained
as follows:

Emin � min Ep, E⟶ op+n⟶ , E⟶ op+n+1⟶ , E⟶ op+n+2⟶ , . . . E⟶ op+n+7⟶􏽮 􏽯. (18)

5. Realization of the Virtual Try-On Process

+e realization of the virtual stitching process is an im-
portant step of the virtual try-on. Before virtual garment is
flattened, the virtual human body needs to be tried-on.

5.1.Virtual Stitching. When user selects the stitching edge, if
the start point and the end point of the two corresponding
edges are selected in the same direction (clockwise or
counterclockwise), the corresponding relationship between
the points on the two edges is correct, as shown in
Figure 7(a). If different directions are chosen, that is, one
side selects the start and end points in a clockwise direction,
and the other side selects the start and end points in a
counterclockwise direction, the corresponding relationship
between the points on the two sides will be wrong, as shown
in Figure 7(b).

+e specific representation of stitching is shown in
Figure 7(c).+e brown dots represent discrete mass points of
the garment piece, and Dis represents the distance between
the two mass points. Among them, point A is applied with a
stitching force in the direction of AB

��→
, point B is applied with

a stitching force in the direction of BA
��→

, point A and point B

will gradually approach each other. +e stitching force is
defined as a linear function corresponding to the distance
between stitching points. For two stitching points A and B,
the stitching force can be calculated as follows:

Fstitching​ ​ ​ ​ ​ ​ ​ ​ force
������������������→

� −k• l
→

. (19)

Among them, k is the stitching force coefficient, which is
related to the stitching performance of the fabric. Generally,
a larger stitching force coefficient is used for fabrics that are
more difficult to deform; l

→
represents the distance direction

vector from the stitching point A to B. +e closer the dis-
tance between the stitching points, the smaller the stitching
force.

5.2.VirtualTry-On. +e complete virtual stitching process is
shown in Figure 8. First, seam lines are explicitly specified by
choosing pairs of panel boundary edges. +en, the designed
coats are assembled and linked by seaming lines to simulate
clothing behavior on the 3D mannequin. By applying elastic
force on the seam lines, the garment patterns can be con-
nected to each other during the stitching process, as shown
in Figure 8(a). After stitching, the virtual human completes
the 3D virtual garment try-on, as shown in Figure 8(b).

2D Triangle 3D Triangle Unify axes of coordinate

v1

v0

v2

v′0

v′1

v′2 v0 (0,0)

u

v

v′0

v1 (v11,v12)

v2 (v21,v22)

v′1 (v′11,v′12)

v′2 (v′21,v′22)

P′

P
Su Sv φv

Figure 5: Process of unify axis coordinate.
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Figure 7: Diagram of virtual stitching information: (a)correct correspondence, (b)incorrect correspondence, and (c)diagram of stitching.
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Figure 8: Diagram of virtual dressing process: (a) virtual stitching in progress and (b) virtual stitching completed.
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6. Experiments and Discussion

+is article introduces an energy-based fabric deformation
algorithm, which is implemented by the object-oriented
Visual C++ language. It is implemented on a PC with a Core
i5 CPU and 4GB RAM. A series of triangular mesh object
surfaces are presented to measure the performance of our
algorithm. As classical geometrically shaped parts of a torus,
the garment shapes of coats and pants are selected as our
example.

We used the typical 36-sided cone model as an example
to test our optimized flattening method. +e 3D model is
shown in Figure 9(a). +e initial flattening result is shown in
Figure 9(b) and Figure 9(c) shows the optimized flattening
results after 170 iterations. +e final flattening result is
shown in Figure 9(d).

+ree criteria are used to evaluate the surface accuracy
after flattening, including area accuracy, shape accuracy, and
energy accuracy. +e area accuracy and shape accuracy were
proposed by Wang et al. [24]. +e energy accuracy is pre-
sented in this study based on an energy-based fabric de-
formation model.

Area accuracy:

Earea �
􏽐

n−1
i�0 ai − ai

′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽐
n−1
i�0 ai

, (20)

where Earea is the accuracy of the area after flattening the
entire surface; ai is the ith triangle area before flattening and
ai
′ is its corresponding triangle after flattening; and Eenergy is
the number of triangles.

Shape accuracy:

Eedge �
􏽐

m�1
i�0 ei − ei

′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽐
m�1
i�0 ei

, (21)

where Eedge is the accuracy of the shape after flattening the
entire surface; n is the ith edge length before flattening and ei

′
is the length of its corresponding edge after flattening; and m

is the number of triangular mesh edges.
Energy accuracy:

Eenergy � 􏽘

n−1

i�0
Eenergy(i), (22)

where Eenergy is the energy accuracy of the entire surface after
flattening; Eenergy(i) is the ith triangle energy after flattening,
and the corresponding triangle energy before flattening is
zero; and n is the number of triangles on the entire surface.

Table 1 shows the 36-sided cone measurement accuracy
data using the three kinds of surface accuracy methods. As
we can see from Table 1, the three measurement accuracies
will decrease during the optimized flattening process, and
theminimum value is achieved in the final process.+e value
of area accuracy, shape accuracy, and energy accuracy in the
final process is 0.397%, 1.053%, and 5.1, respectively.

We compare our optimized method with the classical
mass-spring energy relaxation method, and Figures 10(a)–
10(d) show the flattening result of the partial torus.
Figure 10(a) is the original 3D mesh model of a part of the
torus. As shown in Figure 10(b), the initial flattening result
has great distortion. Figure 10(c) is the result of optimization
based on the fabric deformation model proposed in this
study, and the result of mass-spring energy relaxation is
shown in Figure 10(d). From the appearance point of view,
the optimization result in Figure 10(c) is slightly better than
that in Figure 10(d).

+e performance accuracy is listed in Table 2. In our
experiment, the area accuracy, shape accuracy, and energy
accuracy after mass-spring energy relaxation are 1.201%,
1.533%, and 20.2 Nmm, respectively. +e value of the area
accuracy, shape accuracy, and energy accuracy after the
woven fabric-based method is 1.073%, 1.342%, and
10.3Nmm, respectively.

+e following two groups of experiments are applied in
the garment design process. Figure 11(a) shows the 3D
triangular mesh surface of a skirt, with 3414 triangular faces
and 1851 vertices. Figure 11(b) shows the flattening result
after optimization.

Figure 12(a) shows the 3D triangular mesh surface of a
coat, with 3492 triangular faces and 1965 vertices.
Figure 12(b) is the result of its optimized flattening.

To illustrate the flattening effect of our method, we added
two group experiments of pant and vest in the garment
design process. Figure 13(a) shows the 3D triangular mesh
surface of a pant, with 3852 triangular faces and 1963
vertices. Figure 13(b) shows the flattening result after
optimization.

(a) (b) (c) (d)

Figure 9: Optimized flattening for the 36-sided cone model: (a) 3D original Mesh, (b) initial flattening, (c) optimized iteration after 170
times, and (d) final flattening result.

8 Complexity



Table 1: Accuracy statistic of the 36-sided cone.

Initial Optimized (1) Optimized (2) Final
Area (%) 0.897 0.682 0.564 0.397
Shape (%) 1.642 1.435 1.211 1.053
Energy (Nmm) 23.1 12.2 7.9 5.1

(a) (b) (c) (d)

Figure 10: Comparison of optimization with the woven fabric method and mass-spring method: (a) original 3D mesh, (b) initial flattening,
(c) optimized with woven fabric method, and (d) optimized with mass-spring method.

Table 2: Accuracy statistics of a torus.

Initial Woven fabric Mass-spring
Area (%) 1.932 1.073 1.201
Shape (%) 2.53 1.342 1.533
Energy (Nmm) 62.1 10.3 20.2

(a) (b)

Figure 11: Energy-based flattening method for a skirt: (a) original 3D mesh of a skirt and (b) final 2D flattening pattern of a skirt.
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(a) (b)

Figure 12: Energy-based flattening method for a coat: (a) original 3D mesh of a coat and (b) final 2D flattening of a coat.

(a) (b)

Figure 13: Energy-based flattening method for a pant: (a) original 3D mesh of a pant and (b) final 2D flattening pattern of a pant.

(a) (b)

Figure 14: Energy-based flattening method for a vest: (a) original 3D mesh of a vest and (b) final 2D flattening pattern of a vest.
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Figure 14(a) shows the 3D triangular mesh surface of a
vest, with 3752 triangular faces and 1857 vertices.
Figure 14(b) is the result of its optimized flattening.

7. Conclusion and Future Work

In this article, an optimized flattening method based on the
fabric energy deformation model is proposed. First, the 3D
triangle mesh is flattened. +e selection of seed triangles can
effectively reduce the number of iterations and runs. A new
markup algorithm using the edges of triangles is adopted,
and the constraint triangle flattening method generates the
elastic potential energy and then optimizes the initial flat-
tening results. Second, in the process of optimizing flat-
tening, a new unified axis system process is proposed to
obtain the deformation energy, and an energy relaxation
method is used to release energy to eliminate the local
deformation caused by initial flattening. Finally, based on
the model of fabric deformation, which is determined by the
energy, a new energy precision is proposed in this study to
evaluate the surface accuracy after flattening. +e experi-
mental results show that the complex surface of clothing can
obtain a better flattening effect. Our approach is more
flexible and practical in clothing design than other energy-
based methods. In the future, we will consider different
materials and other physical parameters of the material in
the optimized flattening process for better flattening results.
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