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Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. (e risk of liquidity is
a wide and complex topic as it depends on several factors and causes. While much has been written on the subject, there exists no
clear-cut mathematical description of the phenomena and typical market risk modeling methods fail to identify the effect of
illiquidity risk. In this paper, we do not propose a definitive one either, but we attempt to derive novel mathematical algorithms for
the dynamic modeling of trading volumes during the closeout period from the perspective of multiple-asset portfolio(s), as well as
for financial entities with different subsidiary firms and multiple agents. (e robust modeling techniques are based on the
application of initial-value-problem differential equations technique for portfolio selection and risk management purposes. (is
paper provides some crucial parameters for the assessment of the trading volumes of multiple-asset portfolio(s) during the
closeout period, where the mathematical proofs for each theorem and corollary are provided. Based on the new developed
econophysics theory, this paper presents for the first time a closed-form solution for key parameters for the estimation of trading
volumes and liquidity risk, such as the unwinding constant, half-life, and mean lifetime and discusses how these novel parameters
can be estimated and incorporated into the proposed techniques. (e developed modeling algorithms are appealing in terms of
theory and are promising for practical econophysics applications, particularly in developing dynamic and robust portfolio
management algorithms in light of the 2007–2009 global financial crunch. In addition, they can be applied to artificial intelligence
and machine learning for the policymaking process, reinforcement machine learning techniques for the Internet of (ings (IoT)
data analytics, expert systems in finance, FinTech, and within big data ecosystems.

1. Introduction

Liquidity risk measures and the illiquidity of assets and
trading volumes, in both financial and commodity markets,
have been a subject of much debate, interest, and con-
troversy in the last few decades. (ere is a longstanding
Wall Street saying that “it takes trading volume to make
prices move.” (us, there are plentiful empirical conclu-
sions to reinforce the impact of trading volume on absolute
value of price changes, conditional volatility, and the illi-
quidity of multiple trading assets during the closeout pe-
riod [1–9].

In an earlier strand of research papers, Jain and Joh [1]
investigate the dependence between hourly prices and
trading volume and provide evidence on the joint features of
hourly common stock trading volume and returns on the
New York Stock Exchange. (eir study shows that the av-
erage volume traded displays substantial changes across
trading hours of the day (i.e., average trading volumes across
six trading hours of the day) and across days of the week,
while the average returns deviate across hours of the day and,
to a certain extent, across days of the week. In addition, the
relation between trading volume absolute returns is sig-
nificantly more different for positive returns than for
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nonpositive returns. In a similar vein, the dynamics between
stock returns, trading volume, and volatility in nine key
national stock markets (i.e., index returns and trading
volume from USA, Japan, UK, France, Canada, Italy,
Switzerland, Netherlands, and Hong Kong) are examined by
Chen et al. [2]. (eir empirical outcomes indicate a positive
correlation between trading volume and the absolute value
of the stock price change, as well as persistence in volatility,
and indicate that trading volume provides certain infor-
mation to the returns process.

(e 2007–2009 global financial crisis (GFC) has stressed
the necessity for more efficient liquidity measures and
management tools, in both normal and stressed market
conditions, and placed the market microstructure of li-
quidity risk measures and trading volumes [1, 2] at the
forefront agenda for research and development, particularly
in emerging and illiquid markets [3–6]. One of the raising
concerns in the wake of the GFC is that typical Value-at-Risk
(VaR) market risk measures omit a key component, the risk
associated with illiquidity of trading assets. As a result, fi-
nancial markets and institutions would like to implement
robust models and optimization algorithms that can place a
cost not only for market risk but also for liquidity risk [4, 7].
In addition, the 2007–2009 financial meltdown has under-
lined the deficiencies of the Value-at-Risk (VaR) risk
measures for the computation of market risk because such
metrics do not integrate liquidity risk into the total risk
process [3]. Furthermore, the GFC stressed the fact that
illiquidity risk is challenging to quantify as it relies on
multiple market microstructure parameters and that sce-
nario testing is critical to any contemporary liquidity risk
modeling process. (us, robust liquidity modeling tech-
niques and appropriate scenario identification risk processes
have become major issues for the financial community to
address. In fact, very little is written about why modeling the
dynamics of the trading volume is important in measuring
liquidity risk. To that end, the connection of the trading
volume modeling under consideration to illiquidity risk is
the key motivation of this paper.

(e notion of illiquidity refers to the aptitude to convert
in timely manner trading assets into cash at the prevailing
market prices with little or no cost, risk, or disruption and
without affecting its asset price [4]. (us, liquidity risk is
synonymous with both the necessary time to liquidate
trading assets and the cost of liquidation, a trade-off that is a
key feature in modeling market liquidity risk. (e market
liquidity risk depends on quite a few parameters and
grounds. For instance, certain trading assets, such as highly
traded equites, are integrally more liquid than other assets.
In addition, the position size is a significant parameter and
plays a key role in liquidity risk since it refers to ability of the
financial trading entity to unwind into the financial markets,
in one trading day, the aggregate number of shares com-
pared with that day’s total trading volume. Nevertheless,
under stressed market conditions, liquidity can drop dras-
tically, as financial markets’ participants generally tend to be
more risk-averse. In this case, the financial trading entity
may be involuntary obliged to retain its assets positions for a
much longer period, thereby intensifying liquidity risk [6].

Market liquidity risk has currently gained a great deal of
consideration in light of the aftermath of the 2007–2009
GFC. During the past few years, quite a few research papers
were written on the consideration of illiquidity risk in the
VaR methodology. While a great deal has been written on
the topic, the notions of liquidity risk, position size and
traded volume, and the unwinding of assets during the
closeout periods lack clear definitions, let alone the risk
processes themselves.

Yet, despite this widespread acknowledgment of the
phenomena, there exists no specific mathematical descrip-
tion of illiquidity risk and conventional VaR methods fail to
identify the effect of illiquidity risk. In this paper, we do not
propose a complete one either, but we propose novel
modeling algorithms of some classes of illiquidity risk which
are helpful for complementing the description of market risk
and for forecasting dynamic trading volumes declines (or
decays) during the closeout horizon under illiquid and
stressed market circumstances and within a multivariate
context. Undeniably, the reinforcement machine learning
processes of the liquidity modeling algorithms proposed in
this paper do not integrate all the microstructure features of
the illiquidity risk measures(machine learning, which has
been identified as a technology with significant impacts for
portfolio construction and risk management, can enable the
development of far more accurate risk-return forecasting
techniques by identifying sophisticated, multifaceted, and
stochastic trends in big data among all types of investments
[10–13]. (e categorization of machine learning approaches
encompasses a wide range of methodologies and technol-
ogies that convey a shared goal from many perspectives. In
this way, machine learning approaches may be classified
using quite diverse metrics and conventions depending on
the type of learning desired. As a result, the authors direct
readers to [10–13] for some of the most recent research on
machine learning, big data, and expert systems in finance for
modern portfolio optimization and management. Further-
more, some literature addressed the genuine concerns of big
data and associated green challenges and applications, while
others examined the notion of information and commu-
nication technologies (ICT) for sustainable development
goals (SDG). For further insights on these two important
topics, the authors refer the readers to [14, 15].). However, it
is useful as a tool for estimating dynamic trading volumes
and liquidity risk when the influence of liquidity of certain
financial assets is substantial.

A range of liquidity risk modeling techniques have been
suggested in the academic literature. For convenience, and to
be faithful to the literature, we focus on some contemporary
challenges to tackle the issue of illiquidity risk and liquidity-
adjusted VaR (LVaR) with special emphasis on merely the
recent attempts and literature.

In effect, previous researchers have endeavored to study
the notion of illiquidity risk but not fundamentally within
the perception of multiple-asset portfolios (for other rele-
vant literature on liquidity risk, internal risk modeling
techniques, asset pricing, and portfolio choice and diver-
sification, one can refer as well to Al Janabi [12]; Ruozi and
Ferrari [16]; Grillini et al. (2019); Roch and Soner [17]; Al
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Janabi et al. [6]; Weiß and Supper [8]; Al Janabi, Ferrer, and
Shahzad [7]; Madoroba and Kruger [18]; Madhavan et al.
[19]; Takahashi and Alexander [20]; Cochrane (2005); and
Meucci [21]; among others). (eir main motivation, in fact,
was on examining transaction costs (i.e., the expanding of
the bid-ask spreads); however, the special impacts of un-
desirable market prices with distinct dependence measures
have not been researched systematically, yet Hung et al. [3],
Weiß and Supper [8], Al Janabi et al. [6], and Al Janabi et al.
[7] are exemptions. In their research study,Weiß and Supper
[8] propose a multivariate model for evaluating liquidity-
adjusted intraday VaR based on vine copulas and the
attained research outcomes validate that the recommended
method functions adequately in forecasting possible intra-
day liquidity-adjusted portfolio shortfalls. Al Janabi et al. [7]
and Al Janabi et al. [6] used a modified version of Al Janabi
model for liquidity risk management [18] combined with
different copula function and presented an endogenous li-
quidity adjusted VaR method, which measured the liquidity
risk triggered by illiquid t holdings and difficult supply-
demand imbalances. Al Janabi et al. [6] present a portfolio
optimization model based on the integration of dynamic
conditional correlation t-copula and LVaR algorithms. In a
similar vein, Al Janabi, Ferrer, and Shahzad [7] examine a
robust portfolio optimization approach based on vine-
copula and LVaR modeling algorithm. While Al Janabi et al.
[6] study a portfolio that consists of nine assets (i.e., G-7
stock market indexes, crude oil, and gold commodities), [7]
a research paper substitutes oil by a general commodity
index and it incorporates Bitcoin as an additional asset.
Among the conclusions therein is the fact that the presence
of liquidity dimension in market risk is feasible to improve
the robustness of market risk computations.

On another front, Hung et al. [3] study the influence of
illiquidity on calculating VaR predictions using multivariate
GARCH-t and GJR-GARCH-t models for portfolios with
unlike liquidity strengths. (e obtained conclusions show
that calculating portfolio VaR predictions with multivariate
techniques outperform the univariate techniques for full and
subsample cycles in terms of precision and estimations of
effectiveness. Allaj [5] presented a general framework of a
one period risk measurement technique that incorporates
illiquidity risk into standard risk measures. (ese risk
techniques are decomposed into two terms, one determining
the risk of the future value of a given position in an asset or a
portfolio of assets and the other the initial cost of that
position. Finally, Careta and Jaimungal [9] examined an
optimal execution policy for an investor seeking to complete
a large order using limit and market orders. (ey demon-
strated that the different considered strategies outperform
the Almgren and Chriss [22] modeling technique because
those strategies benefited from the optimal mix of limit
orders.

In this backdrop, though many attempts in liquidity risk
modeling focused on transaction costs and VaR measures, it
is well known that traditional risk measures such as VaR
models are incoherent [23] and can lead to regulatory ar-
bitrage to reduce capital requirements. As such, conven-
tional VaR methods cannot satisfy the subadditivity

requirement to be classified as coherent measures like other
popular measures such as Expected Shortfall (ES). (e lack
of subadditivity in a risk measure can be manipulated to
form regulatory arbitrage as financial institutions can es-
tablish different subsidiary firms to save regulatory capital.
(is is where this research study comes in as we attempt to
make clear the fundamental nature of illiquidity risk mea-
sures and propose novel modeling techniques and robust
algorithms to tackle the problem of illiquidity risk and
trading volumes during the closeout (or unwinding) period
for multiple-asset portfolios within the same financial entity,
as well as for financial holding enterprises with different
subsidiary firms and multiple agents.

Despite the large amount of research on liquidity risk,
our special interest in introducing the trading volume, as a
key factor for a multiagent dynamic model of trading ac-
tivities and then in modeling the dynamics of the trading
volume during the closeout period (i.e., the liquidation or
unwinding horizon), rests on the lack of research studies that
apply trading volume in an attempt to boost the forecasting
of riskmeasures. Our study contributes to the understanding
of liquidity risk and the dynamic modeling of trading vol-
ume during the closeout period in several ways. First, this
paper is the first econophysics attempt, to the best of my
knowledge, to develop a novel modeling technique and
robust techniques for the estimation of trading volumes and
illiquidity risk during the closeout period and within the
context of multiple-asset portfolios, as well as for financial
holding entities with different subsidiary firms and multiple
agents. Second, in contrast to all known models for liquidity
risk, this paper implements an innovative dynamicmodeling
technique in deriving the liquidity risk process and trading
volume using initial-value-problem differential equations
algorithms, as other authors have done heretofore. (e
proposed robust modeling techniques can resolve some of
the main drawbacks of the traditional VaR method of being
incoherent because of its lack of subadditivity and its ten-
dency to lead to a form of regulatory arbitrage [23]. (ird,
this paper provides some new important parameters, which
are the first of their kind to the best of the author’s
knowledge, for the assessment of the trading volumes of
multiple-asset portfolios during the closeout period, where
the mathematical proofs for each theorem and corollary are
provided. Based on the new developed econophysics theory,
this paper presents for the first time a closed-form solution
for key parameters for the estimation of trading volumes and
liquidity risk, such as the unwinding constant, half-life, and
mean lifetime, and discusses how these novel parameters can
be estimated and incorporated into the recommended
techniques. Fourth, we examine potential reinforcement
machine learning algorithms for the implementation of the
proposed novel econophysics modeling techniques to risk
forecasting and multiple-asset portfolio selection practices.
To that end, in line with Al Janabi et al. [7] and Al Janabi
[12], we define a modified dynamic process of Al Janabi
model [18] for multiple-asset portfolio selection and risk
forecasting and combine it with the innovative initial-value-
problem differential equations algorithms. As a result, the
alternative reinforcement machine learning algorithms can
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address some of the drawbacks of the traditional mean-
variance VaR technique, presenting robust generalizations
and meaningful improvements on Markowitz’s [24] mean-
variance solution. Fifth, the developed modeling techniques
are appealing in terms of theory and are promising for likely
real-world applications, particularly in developing dynamic
and robust portfolio management algorithms that financial
markets and institutions could put into effect in the wake of
the 2007–2009 global financial meltdown. In addition, it can
be applied to artificial intelligence and machine learning for
the policymaking process, reinforcement machine learning
techniques for the Internet of (ings (IoT) data analytics,
expert systems in finance, FinTech, and within big data
ecosystems.

(e remainder of the paper is organized as follows. In
Section 2, we provide details of mathematical definition and
derivation of the modeling algorithms and liquidity risk
process using initial-value-problem differential equations
techniques. Section 3 provides expansion of the modeling
algorithms to multiple-asset portfolios. Section 4 examines
portfolio selection and risk management practices and
highlights certain reinforcement machine learning issues. In
addition, in this section, we present one potential rein-
forcement machine learning algorithm for the possible
implementation of the proposed modeling techniques to
multiple-asset portfolio selection and risk management
practices, and we discuss the overall reinforcement machine
learning process with the aid of an operational flowchart.
Section 5 concludes the paper and provides future directions
for research on the topic and the possible applications of the
proposed novel modeling techniques and robust algorithms.

2. The Model

We define the dynamic process of continuous changes in the
trading volume of any portfolio of multiple assets as an
initial-value-problem differential equation of the form

dV(H)

dH
� −μV(H) + VN(H), (1)

where V(H) is the current trading volume of a multiple-asset
portfolio, whose domain consists of all nonnegative real
numbers (R+); that is, V(H)≥ 0; VN(H) is the rate of in-
corporation of “new” trading volume of multiple assets to the
current trading portfolio, whose domain consists of all
nonnegative real numbers (R+); that is, VN(H)≥ 0; H is the
closeout period (i.e., unwinding horizon or holding period),
which can take nonnegative real numbers that are above or
equal to 1.0 (R+

≥ 1.0) only during the unwinding process to
convert trading assets into cash at the prevailing market
prices; that is, H≥ 1.0; and μ� is a constant of proportionality
that we can label as the “unwinding constant.”(is unwinding
constant can be defined as the probability per unit time that
the current trading volume of any portfolio of multiple assets
will undergo a decline (or a decay) in its holding assets, given
that multiples of trading assets will be sold (i.e., unwound)
during the closeout period H.

In fact, the first term on the right-hand side of (1) de-
notes the rate of decline (or the rate of the decay process) of
the current trading volume of the existing multiple-asset
portfolio, whereas the second term indicates the rate of
incorporating (i.e., the rate of the “production” or “creation”
process) new multiple-asset trading volume to the existing
portfolio. Certainly, the above statements are rather am-
biguous and, hence, we need to explain the economic
foundations in some mathematically and financially
meaningful means. To begin, we need somemeans to explain
the rationality and usefulness of the proposed dynamic
trading volume model and to link its assumptions to market
dynamics.

(ere are multiple rationalities behind the mathematical
foundation and the financial dentition of the proposed
differential equation model. To that end, and in line with
other liquidity risk research papers discussed earlier, which
usually make many ad hoc assumptions, we attempt to
typically link in some way the proper economic foundation
and assumptions to market dynamics and provide full
justification, detailed as follows:

(1) In our modeling technique, we are attempting to
explain both terms of (1) as the rate of decline (or
decay) process of trading volume and the rate of the
incorporation process (i.e., the rate of the “pro-
duction” or “creation” process) of new trading
volume. (is is because there are some resemblances
in our econophysics modeling technique and other
physical science and social science processes, such as
the decay and production of radionuclides and the
process of the decline in the population of nations
and the simultaneous process of the incorporation of
new immigrants to those nations.

(2) Portfolio managers and their respective markets’
traders (i.e., multiple agents) can unwind certain
assets and add new multiple assets to the current
trading portfolio on a daily basis. (is is because the
decline in the trading volume of certain multiple
assets is accompanied by the incorporation (i.e.,
“production” or “creation”) of new trading volume by
other multiple agents inside the same financial entity
or within multiple agents of different subsidiaries of
the principal financial holding firm. In addition, in
our model, multiple agents are provided with various
trading volumes that are for a limited time only
associated with their particular circumstances and
the market conditions and, as such, we propose a
dynamic multiagent model with agent-dependent
and time-dependent trading volumes.

(3) (e level and depth of public and private informa-
tion available to the different portfolio managers and
traders are imbalanced (i.e., asymmetric levels of
different news, statistical datasets, figures and facts,
communications, and lines of evidence are accessible
and available to the contrasting market participants).
(is assumption is quite relevant as it allows the
expansion of the proposed dynamic trading volume
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model from the perspective of a single multiple-asset
portfolio to multiple-asset portfolios. It also permits
financial holding entities, with different subsidiary
firms and multiple agents, to consider different
trading volumes and closeout horizons for all
multiple-asset portfolios.

(4) Within a large pool of markets’ traders, the activities,
behaviors, and actions of the individual traders are
uncorrelated in many instances, even though these
traders are engaging and executing buying-selling
market orders of multiple-asset portfolios inside the
same financial entity or within multiple agents of
different subsidiaries of the primary financial
holding company.

(5) One key assumption that we make in our proposed
model is that the trading positions of multiple-asset
portfolio(s) are unwound only at the quoted or
prevailing market prices. As such, the quantity (or
position size) to liquidate each day into the markets
is limited to a preset fraction of that day’s trading
volume. (us, in our suggested modeling technique,
the multiple-asset trading positions will be unwound
into the markets at that fraction of trading volume
over each time period until the overall trading po-
sitions are completely liquidated, and the income
from the unwinding process is settled into cash.

(6) (e rooted effects of the “call option-like” embedded
incentives given to traders to induce them to un-
dertake additional risk as the potential upside re-
wards are quite appealing, whereas the downside
impacts and consequences are very limited for their
irrational and/or exorbitant risk-takings.

(7) In fact, some of these rational assumptions em-
bedded in our econophysics differential equation
model can contradict some traditional market the-
ories and perhaps disappoint fully devoted believers
in efficient markets hypothesis. However, the actual
realities on the ground of how financial markets
work, as evidenced by the latest severe financial crises
and meltdowns besides the scandalous events of
several rogue traders and trading entities, have
placed efficient market hypothesis on the edge of
rationality and judgment to questioning its as-
sumptions and validity. Based on our particular
working experiences in diverse financial markets and
institutions, the authors of this paper fundamentally
believe that some financial markets (probably in the
western hemisphere) are more efficient than other
markets. As such, the authors are strong believers
that the large bulks of emerging markets are con-
siderably less efficient than their western
counterparts.

In this backdrop, rearranging (1) yields

dV(H)

dH
+ μV(H) � VN(H). (2)

Indeed, (2) is a part of a general differential equation of
the form

dy

dx
+ r(x)y � q(x). (3)

In fact, the algebraic step to solve (3) does not separate
variables. However, it does remove the y variable from the
right side of the equation and at the same time sets up the left
side for multiplication by an “integrating factor” trailed by a
vital use of the “product rule” for differentiation.

Theorem 1. Assume that r(x) and q(x) are continuous
functions and let R(x) be any antiderivative of r(x). -e
general solution of the differential equation dy/dx + r(x)y �

q(x) is then

y(x) � e
− R(x)

􏽚 e
R(x)

q(x)dx + Ce
− R(x)

, (4)

where C is an arbitrary constant.

Proof of -eorem 1. (e existence of both dy/dx and y(x) in
the sum on the left side of (3) instructs us to contemplate the
“product rule” for differentiation. If u is a function of x that is
never 0, then we have the following:

d
dx

(uy) � u
dy

dx
+

du

dx
􏼠 􏼡y

� u
dy

dx
+
1
u

du

dx
􏼠 􏼡y􏼠 􏼡.

(5)

(e notion is to obtain a function u so that the factor of y
on the right side of the former equationmatches the factor of
y in (3). Namely, we seek to find a function u such that

1
u(x)

du

dx
􏼠 􏼡 � r(x). (6)

(is separable differential equation can be solved by
rewriting it as

􏽚
1
u
du � 􏽚 r(x)dx. (7)

Given that R(x) is an antiderivative of r(x), the uni-
versal solution of the prior equation is ln(|u|) � R(x) + C0,
where C0 is a constant of integration. Further, since any
specific solution u will help in achieving our purpose, we can
streamline the algebra by selecting a solution u with u(x)> 0
and C0 � 0. With these selections, we can obtain the fol-
lowing ln(u) � R(x), or u(x) � eR(x) which is our inte-
grating factor. Now, onmultiplying both sides of (3) by eR(x),
we can get

r(x)e
R(x)

· y + e
R(x)dy

dx
� e

R(x)
q(x). (8)

(erefore,
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d
dx

e
R(x)

.y􏼐 􏼑 �
d

dx
e

R(x)
􏼠 􏼡.y + e

R(x)dy

dx

� R′(x)e
R(x)

· y + e
R(x)dy

dx

� r(x)e
R(x)

· y + e
R(x)dy

dx

� e
R(x)

q(x).

(9)

In other words, eR(x) · y is an antiderivative of eR(x)q(x),
such that

e
R(x)

· y � 􏽚 e
R(x)

q(x)dx + C. (10)

To that end, formula (4) can be obtained on dividing
each side of (10) by eR(x). (us, the Proof of (eorem 1 is
completed.

Set against this background, linear equations [such as in
the case of (1) and/or (2)] with constant coefficients arise
frequently in practical applications, such as in the case of the
trading volume of multiple-asset portfolio posed in this
paper. In general terms, these differential equations have the
form dy(t)/dt + θy(t) � α. We can realize that by rewriting
this equation in the form dy(t)/dt � −θy(t) + α, which is a
separable linear differential equation. (ough this equation
may be solved using other mathematical techniques, we can
simplify the calculations by implementing (eorem 1. □

Theorem 2. Assume that θ and α are constants with θ≠ 0;
then the linear differential equation is

dy(t)

dt
+ θy(t) � α. (11)

It has a general solution:

y(t) �
α
θ

+ Ce
− θt

. (12)

As a result, the initial-value-problem

dy(t)

dt
+ θy(t) � α, y(0) � y0, (13)

has the following unique single solution:

y(t) �
α
θ

+ y0 −
α
θ

􏼒 􏼓e
− θt

. (14)

Proof of -eorem 2. In fact, (11) is the special case of (3) that
arises from placing q(t) � α and r(t) � θ. Given that R(t) �

θt is an antiderivative of r(t), (4) states that (11) has the
following solution:

y(t) � e
− θt

􏽚 e
θtαdt + Ce

− θt
�
α
θ

+ Ce
− θt

. (15)

(is proves (12). However, if y(0) � y0, then
α/θ + Ce− θ.0 � y0, or C � y0 − α/θ.

After substituting the above obtained value of C into
(12), one can obtain formula (14); that is, y(t) � α/θ + (y0 −

α/θ)e− θt and, hence, it finalizes the proof of (eorem 2.
In this backdrop, we can now apply the above theorems

to the case of portfolio management with structural
asset allocations, specifically for the assessment of trading
volume of multiple-asset portfolios at different closeout
periods. □

Corollary 1. As denoted earlier, the closeout period (H) can
take nonnegative real numbers that are above or equal to 1.0
(R+
≥ 1.0) only during the unwinding process to convert trading

assets into cash at the prevailing market prices; that is,
H≥ 1.0. However, to simplify the solution of the initial-value-
problem differential equation at the beginning of the trading
process and before the initiation of the actual liquidation
process of any asset, we are assuming here that the notion of
H≥ 1.0 is still valid before the acquisition of any multiple
assets at the initial conditions of the trading process (i.e., when
t� 0).

In a similar vein and following the differential equations
process of the above two theorems and their respective
proofs, for the singular case of an initial-value-problem of a
multiple-asset trading portfolio at which V(0) � V0 (when
t� 0, at the start of the trading process) and VN(H) � VN

(for the special case of a constant rate for the incorporation
of new volumes of the further multiple assets to the existing
trading portfolio), the solution to (2) is easily obtained as

V(H) � V0e
− μH

+
VN

μ
􏼠 􏼡 1 − e

− μH
􏼐 􏼑. (16)

In addition, for the exceptional case when V0 � 0 at
t � 0, (16) is confined to

V(H) �
VN

μ
􏼠 􏼡 1 − e

− μH
􏼐 􏼑. (17)

Furthermore, for the special case in which there is not
any incorporation of new volumes of multiple assets to the
existing trading portfolio during the closeout horizon (i.e.,
VN � 0), the solution of (2) via (16) can be reduced to

V(H) � V0e
− μH

. (18)

Proof of Corollary 1. Equation (2), that is,
dV(H)/dH + μV(H) � VN(H), has the following general
solution, where C is an arbitrary constant:

V(H) �
VN(H)

μ
+ Ce

− μH
. (19)

(e initial-value-problem can be structured when t� 0 at
the start of the trading process, such that

dV(H)

dH
+ μV(H) � VN(H),

V(0) � V0, for t � 0,

(20)
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and indeed, when VN(H) � VN for the easiest case when
the incorporation or “generation rate” is constant in time
(i.e., the special case of a constant rate for the incorporation
of new volumes of multiple assets to the existing trading
portfolio during the closeout horizon), (20) can be evaluated
analytically to give a unique solution:

V(H) �
VN

μ
􏼠 􏼡 + V0 −

VN

μ
􏼠 􏼡􏼢 􏼣e

− μH
. (21)

Further, (21) can be written as

V(H) � V0e
− μH

+
VN

μ
􏼠 􏼡 1 − e

− μH
􏼐 􏼑. (22)

For the special case when V0 � 0 at t � 0, (22) is reduced
to

V(H) �
VN

μ
􏼠 􏼡 1 − e

− μH
􏼐 􏼑. (23)

As a result, (23) is the same as (17) and, for the ex-
ceptional case in which there is not any addition of new
trading volume to the trading portfolio (i.e., VN � 0), the
solution of (2) via (22) can be reduced to

V(H) � V0e
− μH

. (24)

(is establishes (18) and ends the proof of Corollary 1.
Set against this background, we can now proceed to

determine the required parameters for solving (16) and/or its
special case (18), detailed as follows. □

Corollary 2. Using the special case formula V(H) � V0e
− μH

as discussed earlier in (24) and Corollary 1 along with its
proof, it is not difficult to show that the half-life (H1/2) and the
mean lifetime (H) for a multiple-asset portfolio to unwind its
assets throughout the closeout period (H) can be expressed as

H1/2 �
ln 2
μ

�
0.693
μ

. (25)

H �
1
μ

� 1.44H1/2. (26)

Proof of Corollary 2. (e unwinding of a multiple-asset
portfolio holding is a statistical random or stochastic
process.

It is not possible to foresee whether or not a single asset
can be sold out (closed out) in a given time period along the
unwinding horizon H. Nevertheless, we can forecast the
probable or typical closing-out performance of sizeable
multiple-asset portfolios. We can contemplate a sample
portfolio comprising sizeable volume V of assets. In a very
small holding period interval ΔH, ΔV of the assets can be
sold into the market. (e probability that the holding assets
are being sold into themarket in ΔH is thusΔV/V. Clearly as
ΔH becomes smaller, so will the probably of unwinding of
particular assets within the trading portfolio ΔV/V. How-
ever, as ΔH gets smaller, the statistical variation in the

unwinding rate of trading volume would turn out to be
apparent and the determined unwinding probability per unit
time would have higher statistical variations. As a result, the
statistically averaged unwinding probability per unit time, in
the limit of infinitely small ΔH, comes close to a constant μ;
that is, we can express

μ ≡ lim
ΔH⟶0

ΔV/V
ΔH

􏼒 􏼓. (27)

Indeed, each trading portfolio has its distinguishing
unwinding constant μ, which, for the above characterization,
is the probability a particular trading volume unwinds in a
unit time for an infinitesimal time period (i.e., holding
horizon). (e same concept can be applied to individual
assets within the trading portfolio, or in other words we can
generalize the case of trading volume of a multiple-asset
portfolio to its constituent’s assets. In this sense, each trading
asset within the large portfolio can have its own unwinding
constant, namely, μi. In fact, the smaller μ is, the more slowly
the trading volume can be sold to financial markets. Cer-
tainly, for stable multiple-asset portfolios, which is indeed a
rare case in practical asset management norms, μ� 0.

We can now consider a sample multiple-asset portfolio
constituted of a considerable number of assets with un-
winding constant μ. With a sizable volume portfolio
(V>> 1), we can apply continuous mathematics to define an
intrinsically discrete process. (us, V(H) can be understood
as the average or expected trading volume (a continuous
quantity) of all assets at time H. (erefore, the probability
that holding assets are being sold (or unwound) in an in-
terval dH is μ dH, and the expected number of declines
(diminishes) in the trading volume that happen in dH at
timeH is μ dH V(H). In essence, this must be equivalent to
the decline, dH, in the number of multiple assets in the
sample portfolio (i.e., which is also equal to the decrease in
the number of unsold assets in time dH); that is,

−dV � μV(H)dH (28)

or
dV(H)

dH
� −μV(H). (29)

(is differential equation can be integrated to obtain the
exponential variation with time formula, which governs the
behavior of a process characterized by a constant rate of
change, as follows:

Dividing by V(H), we may integrate (29) from time zero
to time H to obtain

􏽚
V(H)

V(0)

dV(H)

V(H)
� −μ􏽚

H

0
dH, (30)

where V(0) � V0 is the initial trading volume of multiple
assets at the launching of the trading process at t� 0. Noting
that dV(H)/V(H) � d ln(V(H)), (30) becomes

ln[V(H)/V(0)] � −μH. (31)

(e characteristic exponential rate of declining of a
multiple-asset portfolio trading volume is yielded.
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V(H) � V0e
− μH

. (32)

(is dynamic process, which is governed by exponential
decline of portfolio holding assets, has a notable charac-
teristic. (e necessary time it takes for the multiple-asset
portfolio to diminish to one-half the original volume,H1/2, is
a constant termed half-life. In other words, the half-life is a
more intuitive measure of the time during which the trading
activity of unwinding of assets falls by a factor of two. From
(32), we can get

V H1/2( 􏼁 ≡
V0

2

� V0e
− μH(1/2) .

(33)

Solving for H1/2 yields

H1/2 �
ln 2
μ

�
0.693
μ

. (34)

It is essential to note that the half-life is independent
from the holding-horizon time H. (erefore, after n half-
lives, the original trading volume has reduced by a multi-
plicative parameter of 1/2n; that is,

V nH1/2( 􏼁 �
1
2nV0. (35)

(e number of half-lives n required for any given
multiple-asset portfolio to diminish to a fraction ω of its
original volume is obtained as

ω ≡
V nH1/2( 􏼁

V0
�

1
2n. (36)

Upon solving for n, it gives

n � −
ln ω
ln 2

� −1.44 ln ω. (37)

On the other hand, the exponential decline of portfolio
holding assets of (32) could be stated by means of half-life in
this way:

V(H) � V0
1
2

􏼒 􏼓
H/H1/2

. (38)

From the exponential decline of portfolio holding assets,
we can define some suitable probabilities and averages. If we
start by having a portfolio trading volume of V0 at t� 0, we
can expect to have V0e

− μH trading assets after a period of
time H. Accordingly, the probability 􏽢P that the holding
assets do not diminish in value (i.e., are not being sold as yet)
in a time horizon H can be deduced as

􏽢P(H) �
V(H)

V(0)

� e
− μH

.

(39)

(e probability P that trading assets do diminish (i.e., are
being unwound or sold) in a time interval H is

P(H) � 1 − 􏽢P(H)

� 1 − e
− μH

.
(40)

As the time interval turns out to be small, that is,
H⟶ΔH≪ 1, we can observe that

P(ΔH) � 1 − e
− μH

� 1 − 1 − μΔH +
1
2

􏼒 􏼓(μΔH)
2

−
1
6

􏼒 􏼓(μΔH)
3

+ . . .􏼔 􏼕,

� μΔH.

(41)

(is approximate solution is in line t with our former
clarification of the unwinding constant μ as being the decline
probability per infinitesimal unwinding time horizon.

Given the above outcomes, we are now able to get the
probability distribution function for when a trading volume
declines in value. Explicitly, let p(H)dH be the probability
that a trading volume that exists at t� 0 declines in value in
the time period between H and H+dH. Evidently,

p(H)dH � Prob · it does not decline in value(0, H){ }

× Prob · it declines in value in thenext dH time interval{ }

� 􏽢P(H)􏽮 􏽯 P(H){ }

� e
− μH

􏽮 􏽯 μ dH􏼈 􏼉

� μe
− μH

dH .

(42)

(e same results of (42) can be obtained if we consider a
sample multiple-asset portfolio with an initial volume of V0
at time t� 0. In view of (32), there will be V0e

− μH trading
volume remaining after H time interval. (e fraction of the
original volume which has not declined in value is therefore
e− μH. (is fraction can also be viewed as the probability that
the portfolio trading volume will not decline in value in the
time interval from t� 0 to t�H. Now let p(H)dH be the
probability that the trading volume declines in value in the
time dH betweenH andH+dH.(is is evidently equal to the
probability that the trading volume has not declined in value
up to time H times the probability that it does in fact decline
in value in the additional time dH. It follows therefore that
p(H)dH � e− μH × μ dH � μe− μHdH, which is the same as
(42).

If (42) is integrated over all H, it is obtained that

􏽚
∞

0
p(H)dH � μ􏽚

∞

0
e

− μHdH

� 1.

(43)

(is shows that the probability that a particular trading
volume eventually declines in value (i.e., unwinds
throughout the holding horizon H) is equal to unity, as
would be expected.

In a large sample multiple-asset portfolio, trading assets
can be sold (i.e., always unwound). From (32), we see that a
large time period (probably an infinite time) is needed to
unwind all multiple assets within the portfolio. However, as
time escalates, less trading assets can be sold into the fi-
nancial markets. In fact, we can calculate the mean lifetime
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(H) for a multiple-asset portfolio to unwind its assets
throughout the closeout period (H) by using the decline
probability distribution p(H)dH of (42). (e average or
mean lifetime can now be determined by finding the average
value of H over the probability distribution p(H). Denoting
the mean lifetime by H,

H � 􏽚
∞

0
Hp(H)dH � 􏽚

∞

0
Hμe

− μHdH

�
1
μ

.

(44)

Moreover, the mean lifetime of (44) can be obtained by
defining H as the average time that a particular trading
volume is likely to survive before it is being sold into the
market. (e trading volume that survives to time H is just
V(H), and the volume that declines in value between H and
H+dH is |dV/dH|dH. (e mean lifetime is then

H �
􏽒
∞
0 H |dV/dH|dH

􏽒
∞
0 |dV/dH|dH

, (45)

where the denominator gives the total number of declines in
trading volume. Evaluating the integrals of (45) gives
H � 1/μ. (us, the mean lifetime is the inverse of the un-
winding constant.

In view of (34), the mean lifetime can also be written as

H �
H1/2

0.693

� 1.44H1/2.

(46)

(is confirms (26) and finalizes the proof of Corollary
2. □

3. Expansion to Multiple-Asset Portfolios

While in the previous section we looked at the dynamic
model of trading volume from the perspective of a single
multiple-asset portfolio, we can now expand and generalize
differential (2) to multiple-asset portfolios, as well as, for
financial holding entities, with different subsidiary firms and
multiple agents, by considering different trading volumes
and closeout horizons for all multiple-asset portfolios, as
follows:

􏽘
k

i�1

dVi Hi( 􏼁

dHi

� 􏽘
k

i�1
−μiVi Hi( 􏼁 + VNi

Hi( 􏼁;

∀i � 1, 2, . . . , k.

(47)

(e solution of the differential equation for each trading
asset within the multiple-asset portfolio of (47) can be
obtained via (16) to yield

Vi Hi( 􏼁 � V0i
e

− μiHi +
VNi

μi

􏼠 􏼡 1 − e
− μiHi􏼐 􏼑. (48)

Furthermore, for the exceptional case when V0i
� 0 at

ti � 0 (i.e., at the initiation of the trading process), (48) is
restricted to

Vi Hi( 􏼁 �
VNi

μi

􏼠 􏼡 1 − e
− μiHi􏼐 􏼑. (49)

Likewise, for the special case in which there is not any
buildup of new volume of some assets (i.e., VNi

� 0 ), the
solution of the above differential equation can be reduced to
yield

Vi Hi( 􏼁 � V0i
e

− μiHi . (50)

(erefore, we can now define the variation in the total
portfolio trading volume (V) throughout the closeout period
(H) as

V(H) � 􏽘

k

i�1
Vi Hi( 􏼁

� 􏽘
k

i�1
V0i

e
− μiHi +

VNi

μi

􏼠 􏼡 1 − e
− μiHi􏼐 􏼑􏼢 􏼣;

∀i � 1, 2, . . . , k.

(51)

(e above equation can be reduced for the special case in
which there is not any addition of new volumes for all assets
during the unwinding horizon (i.e., 􏽐

k
i�1 VNi

� 0; ∀i
� 1, 2, . . . , k.) to yield

V(H) � 􏽘
k

i�1
Vi Hi( 􏼁

� 􏽘
k

i�1
V0i

e
− μiHi ;

∀i � 1, 2, . . . , k.

(52)

Finally, in order to solve for the unwinding constant for
multiple-asset portfolios, we can determine μi for each
trading asset via a trial-and-error process along the indi-
vidual closeout horizons of all assets. For instance, if traders
can determine Hi (i.e., the necessary number of trading days
to completely unwind any particular asset), Vi(Hi), VNi

, V0i

then one can solve for the unwinding constants (μi;∀i �

1, 2, . . . , k) for the different multiple assets under consid-
eration in a given portfolio as follows.

In real-world practices, the overnight trading volume of
multiple assets is appraised as the average volume over
certain time horizon, usually a month of trading operations.
In typical operations, the overnight trading volume of
multiple assets can be viewed as the average overnight
volume that can be unwound during unfavorable market
conditions. One the contrary, the trading volume during a
crisis period can be roughly approximated as the average
daily trading volumeminus a few standard deviations.While
this alternate tactic is relatively unpretentious, it is still fairly
unbiased approach. Furthermore, it is relatively
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straightforward to assemble the needed datasets to imple-
ment the required unwinding events.

In fact, the liquidation days Hi required to completely
unwind any particular asset are associated with the selection
of the unwinding threshold. Nevertheless, the magnitude of
this threshold is expected to alter under stressed ecosystems.
In reality, the selection of the unwinding period (i.e., the
closeout horizon) can be projected from the overall trading
volume and the overnight volume that can be unwound into
the financial markets without substantially interrupting

multiple-asset values. To that end, in real-world applications,
the absolute values of the different closeout periods are
generally estimated as

Hi �
Total Trading Position Size of Asseti
Daily TradingVolume of Asseti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

s.t. Hi ≥ 1.0.

(53)

Equation (53) can also be written as

Hi �
Total Number of Asseti in Trading Portfolio × Price of Asseti

Daily Number of Asseti toUnwind fromTrading Portfolio × Price of Asseti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

s.t. Hi ≥ 1.0.

(54)

Accordingly, if for instance we determine that it is
necessary to haveHi � 4.0 days to unwindVi(4.0) of volume
of any particular asset i and at the same time VNi

and V0i
are

known data at that specific time horizon, then one can solve
for μi by a trial-and-error process or by using a numerical
procedure such as the iterative process of the Newton-
Raphson method, yielding ((e Newton-Raphson (NR)
procedure is an iteration process. (is NR method involves
the process of iterating (or repeating) technique in which
repetition of a sequence of operations yields outcomes
uninterruptedly closer to a preferred outcome. To that end,
Newton-Raphson method is intended to resolve an equation
of the kind f(x) � 0. It begins with an estimation of the
solution: x � x0. It then yields sequentially improved guesses
of the solution: x � x1, x � x2, x � x3, . . . . . . using the
formula xi+1 � xi − f(xi)/f′(xi). Typically, x2 is very close
to the factual answer.)

Vi(4.0) � V0i
e

− μi4.0
+

VNi

μi

􏼠 􏼡 1 − e
− μi4.0

􏼐 􏼑. (55)

Similarly, for the special case in which there is not any
new addition of volume of this particular asset (i.e., VNi

� 0),
(55) can be shortened to

Vi(4.0) � V0i
e

− μi4.0
. (56)

(us, once the various unwinding (or decay) constants
(i.e., μi;∀i � 1, 2, . . . , k) for the different multiple assets
under consideration are computed, we can now apply the
statistics of the decay constants in (51) to solve for the
various characteristics of the total trading volumes
(i.e., V(H) � 􏽐

k
i�1 Vi(Hi);∀i � 1, 2, . . . , k) by using differ-

ent closeout periods (i.e., Hi;∀i � 1, 2, . . . , k).

4. Portfolio Selection and Risk Management
Practices with a Reinforcement Machine
Learning Process

In this backdrop, we present one potential reinforcement
machine learning algorithm for the implementation of the

proposed econophysics techniques to risk assessment and
multiple-asset portfolio selection practices, detailed as
follows.

In line with Al Janabi et al. [7] and Al Janabi [12], we can
define the following multiple-asset portfolio selection and
risk assessment process:

Stage 1: liquidity-adjusted value-at-risk (LVaR) model
and multiple-asset portfolio algorithm:

(1) Formally, the Value-at-Risk (VaR) for any individual
trading asset i can be computed in this way:

VaRi � E Ri( 􏼁 − V∗ σi( 􏼁 Asseti ∗Fxi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (57)

where E(Ri) is the expected return, V is the con-
fidence level, σi is the conditional risk factor (vol-
atility), Asseti denotes the mark-to-market value,
and Fxi is the foreign exchange unit for any trading
asset.

(2) To get the global VaR of a multiple-asset portfolio,
the correlations parameters [ρi,j] among the diverse
assets are considered and the computational process
can be presented in terms of matrices; thus,

VaRP �

����������������

􏽘

k

i�1
􏽘

k

j�1
VaRiVaRjρi,j

􏽶
􏽴

�

��������������

[VaR]
T

[ρ][VaR]

􏽱

.

(58)

It is feasible that the risk engine and objective
function can include the special impacts of non-
linearity and nonnormality of assets returns in the
optimization process. (is can be achieved by
employing Kendall’s tau algorithm (or any other
copula-based modeling methods) as a yardstick to
evaluate the degree of nonlinear dependence and to
be used instead of the linear Pearson’s correlation
factors. Similarly, Cornish-Fisher expansion as a
yardstick of nonnormality can simply be tailored to
solve the problem of nonnormality in multiple-asset
returns.
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(3) As in the work of Al Janabi et al. [6], the LVaR
algorithm for the computation of multiple-asset
portfolios for any closeout period Hi can be
expressed as

LVaRiadj
� VaRi

���������������
2Hi + 1( 􏼁 Hi + 1( 􏼁

6Hi

􏽳

⎛⎝ ⎞⎠, (59)

where the closeout period can be estimated using
(53) or (54) above. In order to compute the LVaR for
the entire multiple-asset portfolio (i.e., LVaRPadj

), the
next model, which is an extension of (58), can be
used:

LVaRPadj
�

���������������������

􏽘

k

i�1
􏽘

k

j�1
LVaRiadj

LVaRjadj
ρi,j

􏽶
􏽴

�

��������������������

LVaRadj􏽨 􏽩
T
[ρ] LVaRadj􏽨 􏽩

􏽲

.

(60)

(4) (e simulation experiments for this first stage can be
conducted as follows:

(i) From the obtained multiple-asset datasets, the
distribution parameters are estimated (i.e., the
vector of expected returns and variance/co-
variance matrices or the association matrices of
any other dependence measures)

(ii) Next, these parameters are used to produce
samples of independent identically distributed
random vectors from multivariate elliptical
distributions or any other selected distributions

(iii) (e forecasting returns distribution is obtained
using time series modeling techniques

(iv) Each trading asset’s expected return and con-
ditional risk parameters are computed and
sample of k observations is generated

Stage 2: portfolio optimization algorithm and financial
and operational constraints:

(1) (e portfolio optimization problem and the proce-
dures of solving the proposed modeling algorithm
are formulated as follows:

Min: LVaRPadj
�

���������������������

􏽘

k

i�1
􏽘

k

j�1
LVaRiadj

LVaRjadj
ρi,j

􏽶
􏽴

�

��������������������

LVaRadj􏽨 􏽩
T
[ρ] LVaRadj􏽨 􏽩

􏽲

.

(61)

(2) (e risk objective function of (61) could be mini-
mized dependent on complying with the following
operational and financial constraints:

􏽘

k

i�1
E Ri( 􏼁xi � E RP( 􏼁; li ≤ xi ≤ ui i � 1, 2, . . . , k, (62)

􏽘

k

i�1
xi � 1.0; li ≤ xi ≤ ui i � 1, 2, . . . , k, (63)

􏽘

k

i�1
Vi Hi( 􏼁 � V(H) i � 1, 2, . . . , k, (64)

[LRF]≥ 1.0; ∀i � 1, 2, . . . , k, (65)

where LRF is the liquidation risk factor that is
expressed for any particular asset i as

LRFi �

���������������
2Hi + 1( 􏼁 Hi + 1( 􏼁

6Hi

􏽳

⎡⎢⎣ ⎤⎥⎦≥ 1.0; i � 1, 2, . . . , k.

(66)

In (62)–(66) above, E(RP) and V(H) symbolize the
target portfolio expected return and the total volume
of the multiple-asset portfolio, respectively, and xi is
the fraction (i.e., the weights) for every trading asset.
(e values li and ui, for i � 1, 2, . . . , k in (62)–(63),
stand for the lower and upper limits for the portfolio
weights xi. Moreover, [LRF] denotes a (k × 1) vector
of the closeout periods for each trading asset of the
multiple-asset portfolio. (erefore, as indicated
earlier, the various unwinding constants
(i.e., μi;∀i � 1, 2, . . . , k) for the different multiple
assets under consideration can be computed using
the procedure discussed in (51)–(56). Next, we can
use the statistics of the decay constants in (51) to
solve for the various characteristics of the total
trading volumes (i.e., V(H) � 􏽐

k
i�1 Vi(Hi);

∀i � 1, 2, . . . , k) by applying different closeout pe-
riods (i.e., Hi;∀i � 1, 2, . . . , k). (ereafter, the ob-
tained individual trading volumes for each of the
multiple assets (i.e., Vi(Hi);∀i � 1, 2, . . . , k) can be
used in an iteration process to recompute the specific
closeout periods, Hi, using (53) or (54). Finally, the
obtained total trading volume (i.e., V(H)) can be
integrated into the optimization process as a con-
straint in line with (64).

(3) (e simulation experiments for this second stage can
be implemented as follows:

(i) For each modeling technique, the related op-
timization problems are solved to structure the
different efficient frontiers of the multiple-asset
portfolios and the related asset allocation is
determined
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(ii) Out-of-sample features of the attained portfo-
lios are computed applying the factual factors of
the underlying distribution

(iii) (e above two steps are reiterated several times
to calculate more steady assessment of out-of-
sample traits s of the chosen portfolios and
structure the corresponding efficient frontiers

Stage 3: construction of efficient frontiers, comparison,
and validation with the mean-variance method:

(1) Solve the modeling algorithm in (61)–(66) by using a
quadratic programming (QP) technique to obtain
the best allocation weights of each trading asset and
then construct the equivalent efficient frontiers for
multiple-asset portfolios.

(2) In this final stage, construct different efficient
frontiers of the LVaR proposed algorithm versus the
traditional mean-variance method [24], using
(53)–(66).

(3) Validate and compare the output results of the
multiple-asset portfolio(s) obtained in Stage (2) with
the optimum portfolio(s) defined in Stage (1).

(4) Repeat the optimization process until another con-
vergence to meaningful portfolio(s) is accomplished.
(ese portfolios should comply with the optimiza-
tion parameters and budget restrictions defined
above.

(5) At this final phase of the operational method vali-
dation process, new meaningful portfolio(s) with
coherent asset-allocations, which conform to the
constraints’ settings stated in Stage (2), are satisfied
consistently.

(6) Finally, repeat the process to compute more steady
valuation of the characteristics of the out-of-sample
designated portfolios.

Indeed, this extension to multiple-asset portfolios, as
well as for financial holding entities with different subsidiary
firms and multiple agents, can resolve some of the main
drawbacks of the incoherence of traditional VaR models due
to its lack of subadditivity [23]. In fact, the conventional VaR
measure is not coherent because it does not comply with the
subadditivity restriction, which is a clear requirement for
any coherent risk measure; otherwise, there would be no risk
advantage in combining uncorrelated multiple assets into
trading portfolios. Artzner et al. [23] described the following
set of rational criteria that a measure of risk, Ω (X), where X
is a set of outcomes, should comply with the following
requirements: Subadditivity can be defined to satisfy this
condition: Ω (X+Y)≤Ω (X) +Ω (Y). (us, by adding two
multiple-asset portfolios together, the overall risk cannot get
any worse than combining the two risks independently
because of diversification effects that reduce the total risk
substantially. As such, the conventional VaR measure is not
coherent, since it does not satisfy the subadditivity speci-
fication. For instance, if we have two multiple-asset port-
folios X and Y, then this diversification benefit can be

defined as Ω (X) +Ω (Y)−Ω (X+Y), which according to the
subadditivity condition can only take nonnegative values. In
fact, the nonexistence of subadditivity in a risk measure can
be exploited to structure a regulatory arbitrage since a fi-
nancial entity can create different subsidiary firms, in an
opposite procedure of the above example two multiple-asset
portfolios, to avert and/or save regulatory capital cushion.
(us, with a coherent measure of risk (e.g., Expected
Shortfall (ES) risk measure), explicitly due to its sub-
additivity, one can easily incorporate risks of separate
multiple-asset portfolios to obtain moderate assessments of
the aggregate risk.

In this backdrop and to capitalize on its usefulness as a
risk management and portfolio selection tool, we have
structured the portfolio management modeling algorithms
such that the suggested risk engine and robust optimization
modeling techniques can be used for computer program-
ming and machine learning objectives, machine learning for
the policymaking process, and reinforcement machine
learning techniques for the IoT data analytics. To that end,
the graphical flowchart in Figure 1 demonstrates a succinct
framework of the different computational steps of the overall
market and liquidity risk modeling algorithms and their
association for computer programming and reinforcement
machine learning objectives.

(e above robust modeling techniques and algorithms
can be applied to reinforcement machine learning processes
for portfolio selection and risk management to determine
the most suitable risk-return profiles and assets allocation.
Given the iterative nature of the above novel modeling al-
gorithms, it can be applied to reinforcement machine
learning processes for portfolio optimization and risk
management conditional on using credible operational and
financial constraints. Moreover, it can be of interest to
machine learning for the policymaking process, reinforce-
ment machine learning techniques for the Internet of(ings
(IoT) data analytics, financial engineering, FinTech, and
within big data ecosystems.

As an extension to this work, we aspire in another re-
search study to use the proposed modeling algorithms to the
case of multiple asset portfolios and to examine the impact of
adverse prices on the global market and illiquidity risk
profiles. To that end, the following natural step in this re-
search is to choose certain emerging markets or a particular
region and strive to apply the proposed modeling techniques
and algorithms to specific multiple-asset portfolios and then
to compute the effect of market and illiquidity risks on the
global potential risk exposure. In addition, it is quite feasible
to apply the novel econophysics modeling techniques and
algorithms to the case of selected developed, emerging, and
commodity markets. In this case, the proposed robust re-
inforcement machine learning processes and modeling al-
gorithms can be applied to multiple securities trading and/or
asset management portfolios to examine the effect of un-
favorable price impact on the total market and liquidity risk
potential exposures. Our aim would be to demonstrate
different experiments and to test empirically our proposed
approach by simulations using real market datasets and to
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examine the impact of adverse prices on the global market/
and illiquidity risk profiles by implementing realistic op-
erational and financial constraints.

(e flowchart in Figure 1 represents a summarized view
of the three stages of the proposed modeling algorithms and
the connections among the different phases. (is flowchart

Flowchart for Computer Programming, and Reinforcement Machine Learning Process

 Stage (1) Liquidity-Adjusted Value-at-Risk (LVaR) model and multi-asset portfolio algorithm:
Construction of an Overall Dynamic Risk-Function for Reinforcement Machine Learning Objectives

1) Monetary investment in each asset-class or the overall investment in the entire multiple-asset portfolio(s).

2) Closeout periods (unwinding horizons) of each asset-class and/or the overall closeout periods of the whole multiple-asset portfolio(s).

3) Total trading volume of the multiple-asset portfolio(s).

4) Constrained optimization parameters subject to meaningful operational and financial boundaries.

5) Downside risk constraints to estimate non-normality and illiquid assets. Cornish-Fisher expansion as a measure of non-normality can simply
be tailored to resolve the problem of non-normality in assets returns.

6) Correlation coefficients (or other dependence measures) among all asset classes. �is can be achieved by employing Kendal’s tau algorithm 
as a yardstick to evaluate the degree of nonlinear dependence.

7) Expected returns of the multiple-asset portfolio(s).

8) Confidence level of estimated risk-engine parameters under different scenarios and market conditions.

9) Unwinding (decay) constants computed with an iteration process using the initial-value-problem differential equation algorithms.

10) Selections of long-only asset positions or a combination of long/short positions.

 Stage (2) Portfolio optimization algorithm and financial and operational Constraints:
Construction of Robust Optimization Algorithm for Reinforcement Machine Learning Objectives

Minimization of the Objective Risk-Function with Minimum Expected Returns and other constraints
For Optimization Purposes, the Following Financial and Operational Constraints can be Included:

1) Target expected return of the multiple-asset portfolio.

2) Total volume of the multiple-asset portfolio(s).

3) Monetary investment in each asset-class or the overall investment in the entire multiple-asset portfolio(s).

4) �e choices of long-only positions or a combination of long/short positions.

5) Closeout periods of each asset-class and/or the overall closeout periods of the whole multiple-asset portfolio(s).

6) Using the initial-value-problem differential equation algorithms, the unwinding constants can be computed with an iteration process.

Notes: One can use the statistics of the unwinding (decay) constants to solve for the various characteristics of the total trading by applying 
different closeout periods. �erea�er, the obtained individual trading volumes for each multiple-asset can be used in an iteration process to 

recompute the specific closeout periods. Finally, the obtained total trading volume can be integrated into the optimization process as a 
financial/operational constraint.

 Stage (3) Construction of efficient frontiers, comparison and validation with the mean-variance method:
Validation of LVaR Empirical Results with the Mean-Variance Method for Reinforcement Machine Learning Objectives

1) Solve the portfolio modeling algorithms using a quadratic programming (QP) technique to obtain the best allocation weights of each trading
asset and then construct the equivalent efficient frontiers for the multiple-asset portfolios.

2) Construct different efficient frontiers of both the LVaR proposed algorithm versus the traditional mean-variance method.

3) Validate and compare the output results of investable portfolio(s) obtained in Stage (2) with the optimum portfolio(s) defined in Stage (1).

4) Rerun the optimization-engine until a new convergence to meaningful investable portfolio(s) is attained.

5) At this final phase of the operational method validation process, new investable portfolio(s) with coherent asset-allocations structures,
that satisfy the boundary conditions defined in Stage (2), are accomplished accordingly.

6) We can repeat the iteration process to compute more stable estimation of the out-of-sample characteristics of the selected portfolios.

Notes: �e risk-engine and objective function can include the effects of nonlinearity and non-normality of assets returns in the optimization 
process. �is can be achieved by employing Kendall’s tau algorithm (or any other copula-based modeling methods) as a yardstick to evaluate 

the degree of nonlinear dependence and to use instead of the linear Pearson’s correlation factors. Similarly, Cornish-Fisher expansion as a 
measure of non-normality (or any other relevant non-normality modeling methods) can simply be tailored to resolve the problem of non-

normality in the assets returns.

Figure 1: A graphical flowchart of the operational stages of the proposed modeling algorithm.
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can be very useful for computer programming, compre-
hending the indispensable input factors for the risk-engine,
constrained optimization procedure, and reinforcement
machine learning. (e figure is designed by the author.

5. Conclusion and Future Directions

Liquidity as the ease of trading of assets has recently acquired
a great deal of attention in the academic literature and in
market practices. Illiquidity risk grows with the size of the
holding positions and refers to the inability to unwind
trading assets at the prevailing market conditions without
incurring additional costs. Illiquidity happens over some
short term but disappears over a longer horizon. However,
unlike other risk factors, liquidity risk cannot be diversified
or hedged. Furthermore, the liquidity risk depends on
several factors and causes and, thus, there are not any
standard methods or techniques for its estimation and
control.

In this paper, after a concise review of certain con-
temporary literature on liquidity risk, we propose a novel
econophysics mathematical technique and robust algo-
rithms for the modeling of trading volumes and illiquidity
risk during the closeout period for multiple-asset portfolios,
as well as for financial holding entities with different sub-
sidiary firms and multiple agents.

Liquidity risk should be quantified in a dynamic setting,
accounting directly or indirectly for the influence of the
multiple market risk factors, including the term structure of
the time-varying volatility. In this paper and in contrast to
most of the previous works on market illiquidity, we put in
perspective the analytical components to modeling the
impact of liquidity risk with the use of daily trading volumes
of multiple-asset portfolios.

(e contributions of this paper to the academic litera-
ture, in this specific field of quantitative methods for fi-
nancial markets applications, are severalfold. As such, this
paper is the first attempt, to the best of my knowledge, to
develop a novel econophysics modeling technique and ro-
bust algorithms for the estimation of trading volumes and
illiquidity risk during the closeout period and within the
context of multiple-asset portfolios, as well as for financial
holding entities with different subsidiary firms and multiple
agents, using initial-value-problem differential equations
algorithms. Furthermore, this paper provides some new
important parameters, which are the first of their kind to the
best of my knowledge, for the assessment of the trading
volumes of multiple-asset portfolios during the closeout
period, where the mathematical proofs for each theorem and
corollary are provided. Based on the new developed econ-
ophysics theory, this paper presents for the first time a
closed-form solution for key parameters for the estimation
of trading volumes and liquidity risk, such as the unwinding
constant, half-life, and mean lifetime, and discusses how
these novel parameters can be estimated and incorporated
into the recommended modeling techniques. Finally, in this
backdrop, the robust reinforcement machine learning
modeling techniques and algorithms are promising and
interesting in terms of theory as well as for possible real-

world uses for multiple-asset portfolios and can have a
variety of applications in financial markets and institutions,
predominantly in light of the 2007–2009 global financial
crunch. In addition, the proposed novel techniques and risk
computation algorithms can contribute to improving risk
management and portfolio optimization and selection
processes in emerging, developed, and commodity markets,
especially in the wake of the 2007–2009 financial crunch.
Furthermore, the proposed modeling processes could have
fundamental uses and applications for expert systems in
finance, financial technology (FinTech), machine learning
for the policymaking process, Internet of (ings (IoT), and
within big data environments.

Several venues are still open for future research in this
specific econophysics field. To that end, for further direc-
tions on trading volume and liquidity risk, we recommend
the following:

(1) (e constant of proportionality, μ, that we have
denoted earlier as the “unwinding constant” and
defined as being the decline (or the decay) proba-
bility per infinitesimal unwinding time horizon can
be possibly expanded to multiple unwinding con-
stants using decline or decay chains by competing
processes. (e trading volumes of some multiple
assets will decline by more than one operational
process (or mode) and the market impact of trading
onmultiple-asset prices may well not be one time but
possibly will cause second-phase impacts. As a result,
every decay form (or mode) is differentiated by its
specific unwinding constant μi. To obtain the rele-
vant unwinding constant when the decline process
has n participating decay modes, we need to rewrite
the differential equation in slightly different form by
expressing the unwinding constant of the ith mode
by μi and solving for the overall unwinding constant,
namely, µ � 􏽐

n
i�1 µi. Nevertheless, for general decay

chain processes, the structure of the differential
equations can become rather complex and would
require the use of the so-called Bateman equation(s)
with the set of initial conditions to find a general
solution for the coefficients using the Laplace
transform. In a similar fashion, we can now deter-
mine the half-life and mean lifetime during each
decay mode and then find the effective or overall
half-life and mean lifetime when the decline process
has n participating decay modes.

(2) A general solution to the above posed issue can be
given by the Bateman equation(s) in which the ac-
tivity of the ith mode of the chain is given in terms of
the unwinding constants of all preceding modes. (e
Bateman equations can be derived using the Laplace
transform. (us, the system of differential equations
for all decline or decay modes may be transformed to
a system of linear equations by taking the Laplace
transform. Next, using the notion that the Laplace
transform of a derivative is achieved by integration
by parts, the Laplace transform of the first derivatives
can be obtained. Now, these equations may be solved
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successively, and a solution can be obtained for the
specific coefficients using the inverse transform and
that will yield the Bateman equation(s). (ese simple
properties of the Laplace transform make it a very
convenient tool for solving systems of first-order
linear differential equations, such as the differential
equations posed in this paper. (ey allow these
differential equations to be treated as if they were
systems of simple transformed linear equations
without derivatives.

(3) Although our proposed robust modeling techniques
clearly reflect liquidity risk with the use of trading
volumes of multiple-asset portfolios, we did not
explore the time-varying characteristics of market
liquidity and the dynamic relationships between
trading operations and the movements in assets
prices with respect to market’s spreads. A potential
next step would be to examine the dynamics of
market impact by employing time-series techniques.
Likewise, the market impact of trading on multiple-
asset prices might not be a unique event; rather it
could initiate second phase outcomes. Moreover,
since the motivating strengths on the back of the
tick-by-tick markets price movements are related to
not only trading actions but also the influx of fresh
information and statistics, recognition of these fac-
tors would be crucial to comprehending intraday
price changes in a dynamic framework.

(4) One of the key issues for liquidity risk measures is the
handling of delay risk since the dynamics of delay
and its relation to the price dynamics are yet in-
distinct in times of stressed market conditions and
crises. (e incorporation of delay risk and how to
measure and forecast delay are still unresolved re-
search topics and, thus, further intuitions into when
and under which conditions delay arises can aid to
evolve this line of reasoning.

(5) As discussed earlier, the risk of illiquidity should be
quantified in a dynamic framework. One alternate
measure of liquidation risk and cost can be ac-
complished with the application of a piecewise linear
function that models trading volume discounting, as
the larger the trading position size, the lower the
liquidation price. For this purpose, Laplace trans-
form, which is a more generalized transform, as well
as Fourier transform, can be used to solve piecewise
linear functions. In fact, the Fourier transform,
which is a subset of Laplace transform, is the ex-
tension of the Fourier series to nonperiodic signals
(e.g., the Fourier transform of triangle and rectan-
gular pulse functions). To that end, the Fourier
transform is used largely for steady-state signal
analysis, while Laplace transform is used for tran-
sient signal analysis. (erefore, the Laplace trans-
form is useful at looking for the response to pulses,
step-functions, and delta-functions, while the
Fourier transform is beneficial for continuous sig-
nals. However, it is important to emphasize that one

of the main drawbacks of the Fourier transform is
that it can be clearly defined merely for stable sys-
tems, whereas Laplace transform can be defined for
both stable and unstable systems. Nevertheless, it is
possible to convert Laplace transform to Fourier
transform and vice versa.

(6) In a similar fashion to the piecewise linear function
discussed above, it is also possible to model liqui-
dation risk and cost with the application of pulse
function (i.e., the pulse-transfer function), which are
commonly used in control systems and signal pro-
cesses via the Laplace transform, where the
Z-transform (i.e., the discrete Laplace transform) is
the most suitable for the analytical study of the linear
pulse control systems. As a result, the pulse control
system in which the control is accomplished by
pulses (i.e., signals of short-durations) produced at
preset times can be explained as a system of finite
differences equations.

Data Availability

Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study and the
article describes entirely theoretical research.

Additional Points

A novel modeling technique for forecasting trading volumes
is proposed. (e modeling techniques are based on initial-
value-problem differential equations. We develop algo-
rithms for optimizingmultiple-asset portfolios with liquidity
constraints. We propose operational stages for computer
programming and reinforcement machine learning.
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