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&e problem of finding optimal sampling schemes has been resolved in two models. &e novelty of this study lies in its cost
efficiency, specifically, for the applied problems with expensive sampling process. In discussed models, we show that some
observations counteract other ones in prediction mechanism. &e autocovariance function of underlying process causes
mentioned result. Our interesting result is that, although removing neutralizing observations convert sampling scheme to
nonredundant case, it causes to worse prediction. A simulation study confirms this matter, too.

1. Introduction

Prediction is often the main goal in analyzing spatial pro-
cesses and time series. It is widely used to making applicable
decisions in a numerous scientific fields such as geology,
biology, medicine, crime surveying, natural disasters, and so
on (see for instance Isaaks and Srivastava [1] and Akselsson
et al. [2]). &e problem of finding an optimal sampling
scheme is an important task of researchers, since in applied
sciences often collecting of samples is a laborious and ex-
pensive process. We refer the interested readers to the works
such as McBratney and Webster [3]; Zio et al. [4]; Xiao et al.
[5]; and Sward et al. [6].

In this work, the authors attempt to consider some
theoretical points in a branch of stochastic processes. In
contrast, there are deep studies in existing stochastic pro-
cesses. Among them, we refer to Xie et al. [7] and Cheng

et al. [8]. In the first work, a memory-based event-triggered
asynchronous control was addressed for semi-Markov
switching systems. In the latter, the authors focus on static
output feedback quantized control for fuzzy Markovian
switching singularly perturbed systems with deception at-
tacks. For other works, one can see Zhou et al. [9], Cheng et
al. [10] and Xie et al. [7].

By Cressie [11], kriging is the most important pre-
diction method for geostatistical data. For prediction in
lattice data or discrete time series, we need to apply a model
to data. Two predictors for a single missing value in a
stationary autoregressive process of order one (AR(1))
model have been compared by Hamaz and Ibazizen [12]
and Saadatmand et al. [13]. &ey considered the following
model:

Zt � φZt−1 + εt, t � 1, . . . , n, |φ|< 1, (1)
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in which εt is a white noise process. &eir comparison was
done by Pitman’s measure of closeness (PMC) criterion,
&ey showed the best predictor depend only on two nearest
observations. In spatial context, Saber and Nematollahi [14]
and Saber [15] studied the stationary first-order multipli-
cative spatial autoregressive (MSAR(1)) model on a m × n

lattice Λ, that is,

Zi,j � aZi−1,j + bZi,j−1 − abZi−1,j−1 + εij, � 1, . . . , m,

j � 1, . . . , n, |a|< 1, |b|< 1.
(2)

Saber and Nematollahi [14] performed a comparison
among the three predictors in the abovemodel.&ey showed
that predictor which uses the quarter observations is better
than predictor based on observations in the first neigh-
borhood. Also, it is better than predictor based on obser-
vations in the nearest neighborhood wherever parameters a

and b are near 0. However, for most values of a and b, the
predictor which uses the nearest neighborhood observations
is the best among three recommended predictors. Saber [15]
compared interpolation and extrapolation in MSAR(1)

model. Figure 1 represents schemes of used observations for
these two predictors.

In Saber and Nematollahi [14], predictors use from all
observations, while two predictors in Saber [15] do not use
all observations. In fact, the interpolator which has been
constructed on eight observations uses only two observa-
tions. Also, the extrapolator which is based on ten obser-
vations is constructed by just one observation. &ere are one
or two observations which play an important role in the
prediction process. It can be seen that the result of the
prediction based on one basic and neutralizing observation
is better than prediction based on a large number of non-
essential observations. We show both models (1) and (2) are
in this mentioned class.

So, this paper is organized as follows. In Section 2, the
neutralizing observation for prediction in MSAR(1) model
is achieved in some sampling schemes. A comparison be-
tween prediction by one neutralizing observation and pre-
diction by eight usual observation has been performed in
this section, too. Section 3 is the same as Section 2 in which
the AR(1) model is in the role of MSAR(1) model. Finally, a
discussion about redundant sampling is stated in Section 4.

2. Prediction in MSAR(1) Model

Suppose for any fixed values of i and j we want to predict Zi,j

by a set of other observations (Zi,j) whose indices belong to
Oi,j as a subset of lattice Λ. In other words,
Oi,j � (k, l); Zk,l ∈ Zi,j􏽮 􏽯 and Zi,j � Zk,l; (k, l) ∈ Oi,j􏽮 􏽯. Also,
the predictor of Zi,j in terms of the components of set Zi,j is
denoted by 􏽢Zi,j.

Theorem 1. Let Zi,j satisfy (1) with E(Zi,j) � 0 and
Var(Zi,j)<∞. 6en, the best linear predictor for Zi,j w.r.t

mean square error (MSE) based on set Zi,j is only dependent
to Zs0 ,t0

and is given by

􏽢Zi,j � a
i− s0| |b

j− t0| |Zs0 ,t0
, (3)

if there exists a location (s0, t0) ∈ Oi,j such that one of the
following conditions is satisfied for all (u, v) ∈ Oi,j.

i> u, j> v, s0 ≥ u, and t0 ≥ v, (4)

i> u, j> v, s0 ≥ u, and t0 ≥ v, (5)

i> u, j> v, s0 ≥ u, and t0 ≥ v, (6)

i> u, j> v, s0 ≥ u, and t0 ≥ v, (7)

i> u, j> v, s0 ≥ u, and t0 ≥ v, (8)

i< u, s0 ≤ u, and t0 � j, (9)

i< u, s0 ≤ u, and t0 � j, (10)

i< u, s0 ≤ u, and t0 � j. (11)

Proof. Here, the best predictor is earned by projection
theorem (see Brockwell and Davis [16] for details of this
theorem). Consider this predictor in a linear form of
observations 􏽢Zi,j � αZi,j where Zi,j � Zk,l ; (k, l) ∈ Oi,j􏽮 􏽯 and
α � αk,l; (k, l) ∈ Oi,j􏽮 􏽯. By Saber [15], α is computed from
the following equation:

Aα � B, (12)

in which A � var(Zi,j) and B � cov(Zi,j, Zi,j); the first is
covariance matrix of observations and the second is co-
variance vector between observations and unobserved var-
iable, respectively. Regarding Gaetan and Guyon [17],
cov(Zs+h1 ,t+h2

Zs,t) � σ2ε /(b2 − 1)(a2 − 1) a|h1| b|h2| whose
constants σ2ε /(b2 − 1)(a2 − 1) are removed from both sides
of (12). &erefore, the general components of A and B are

a
|s− u|

b
|t− v|

,

a
|s− i|

b
|t− j|

, for all(s, t)and(u, v) ∈ Oi,j.
(13)

Equation (12) can be rewritten as follows:

􏽘
(k,l)∈O

i,j

αk,lCk,l � B,
(14)

in which Ck,l are the columns of A. Since one of the columns
of A is covariance between Zi,j and Zs0 ,t0

, the latter equation
can be written in the following form:

αs0 ,t0
Cs0 ,t0

+ 􏽘

(k,l)∈Oi,j,(k,l)≠ s0 ,t0( )

αk,lCk,l � B.
(15)
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On the other hand, assumptions (3)–(10) along with (13)
lead to

cov Zk,l, Zi,j􏼐 􏼑 � cov Zk,l, Zs0 ,t0
􏼐 􏼑cov Zs0 ,t0

, Zi,j􏼐 􏼑∀(k, l) ∈ Oi,j,

(16)

which gives

B � Cs0 ,t0
a

i− s0| |b
j− t0| |. (17)

By substituting (17) in (15), we have

αs0 ,t0
Cs0 ,t0

+ 􏽘

(k,l)∈Oi,j,(k,l)≠ s0 ,t0( )

αk,lCk,l � a
i− s0| |b

j− t0| |Cs0 ,t0
,

(18)

and the solution is

αs0 ,t0
� a

i− s0| |b
j− t0| |and αk,l � 0.∀(k, l)≠ s0, t0( 􏼁. (19)

&is completes the proof.
To understand the concept of equations (4)–(7), some

examples are given in Figure 2. Conditions (4)–(11) are
available in a sampling process. In Saber [15], O2

i,j has been
defined as O2

i,j � (s, t); |s − i|≤ 2, t − j � −1or − 2􏼈 􏼉 which
satisfies condition (11) for (s0, t0) � (i, j − 1). &erefore, we
see that the predictor 􏽢Z

2
i,j is only dependent on Zi,j−1

observation. □

2.1. Comparison with Unredundant Sampling. Some of the
observations, which satisfy the mentioned cases, do not have
an effect on prediction.&erefore, an important question is
that with a fixed number of observations which sampling
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J

J-1

J+1

J

J-1

i-1 i i+1 i-1 i i+1

Nearest neighborhood Interpolation
J+1

J

J-1

J+2

J+1

J

J-2

J-1
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J
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J-1

i-2 i-1 i i+2i+1

Figure 1: Locations of observations (■) and missing value (△). Upper figure shows three schemes for interpolation while lower figure
shows interpolation and extrapolation.
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Figure 2: Locations of neutralized observations (△), neutralizing observation (+), and missing value (■).
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scheme is better: sampling with redundant observation or
the other?

In other words, is it logical that we remove neutralizing
observations in the prediction process? In order to find

answer of this question we compare these two methods in
this section. To this end, two sampling schemes are con-
sidered in Figure 3.

A �

c(0, 0) c(0, 1) c(1, 1) c(1, 0) c(1, 1) c(2, 1) c(2, 0) c(2, 1)

c(0, 1) c(0, 0) c(1, 2) c(1, 1) c(1, 0) c(2, 2) c(2, 1) c(2, 0)

c(1, 1) c(1, 2) c(0, 0) c(0, 1) c(0, 2) c(1, 0) c(1, 1) c(1, 2)

c(1, 0) c(1, 1) c(0, 1) c(0, 0) c(0, 1) c(1, 1) c(1, 0) c(1, 1)

c(1, 1) c(1, 0) c(0, 2) c(0, 1) c(0, 0) c(1, 2) c(1, 1) c(1, 0)

c(2, 1) c(2, 2) c(1, 0) c(1, 1) c(1, 2) c(0, 0) c(0, 1) c(0, 2)

c(2, 0) c(2, 1) c(1, 1) c(1, 0) c(1, 1) c(0, 1) c(0, 0) c(0, 1)

c(2, 1) c(2, 0) c(1, 2) c(1, 1) c(1, 0) c(0, 2) c(0, 1) c(0, 0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

By &eorem 1, the predictor which has based on re-
dundant sampling is
􏽢Z

R

i,j � a
2
b
2
Zi+2,j+2, i � 1, . . . , m − 2, j � 1, . . . , n − 2. (21)

By the same method as Saber [15], the other predictor
based on unredundant sampling is

􏽢Z
IR

i,j � A− 1BZIR
i,j , i � 1, . . . , m − 4, j � 1, . . . , n − 4, (22)

where ZIR
i,j � (Zi+2,j+3, Zi+2,j+4, Zi+3,j+2, Zi+3,j+3, Zi+3,j+4,

Zi+4,j+2, Zi+4,j+3, Zi+4,j+4).
BT � (c(2, 3)c(2, 4)c(3, 2)c(3, 3)c(3, 4)c(4, 2)c

(4, 3)c(4, 4)) and c(u, v) � au bv. After a cumbersome
computation, we have

􏽢Z
IR

i,j � a
2
b
3
Zi+2,j+3 + a

3
b
2
Zi+3,j+2−, a

3
b
3
Zi+3,j+3,

i � 1, . . . , m − 4, j � 1, . . . , n − 4.
(23)

A theoretical comparison of 􏽢Z
R

i,j and 􏽢Z
IR

i,j is not possible,
so to compare them, we use 􏽤MSPZ(􏽢Z) � 􏽐

m,n
i,j

(􏽢Zi,j–Zi,j)
2/mn and 􏽤PMCZ(􏽢Z|􏽥Z) � 􏽐

m,n
i,j U(|􏽥Zi,j − Zi,j|−

|􏽢Zi,j–Zi,j|)/mn estimators. Here U(t) is 1 for positive t and 0
otherwise.

Two well-known distributions normal (N(0, 1)) and
exponential (E(1)) for errors have been used. By Saber and
Nematollahi [14], in case of E(1) errors, we apply the mean-
zero variables Z∗i,j � Zi,j − 1.

Now, we simulate random variables Zi,j with Normal
distributed errors on a 200 × 200 lattice and compute
􏽤MSPZ(􏽢Z

R
), 􏽤MSPZ(􏽢Z

IR
), and 􏽤PMCZ(􏽢Z

R
|􏽢Z

IR
). All the

findings are demonstrated in Figures 4 and 5, respectively. In
both figures, one can see that 􏽤MSPZ(􏽢Z

R
)≤􏽤MSPZ(􏽢Z

IR
) and

􏽤PMCZ(􏽢Z
R
|􏽢Z

IR
)≥ 0.5 for almost all values of parameters a

and b. For some values of these parameters which are less
than 0.25, 􏽤PMCZ(􏽢Z

R
|􏽢Z

IR
)< 0.5. In these cases,

􏽤PMCZ(􏽢Z
R
|􏽢Z

IR
)> 0.495, so they are negligible. In other

words, approximately we have 0≤􏽤MSPZ(􏽢Z
R
)−

􏽤MSPZ(􏽢Z
R
)< 1.75 and 0.495≤􏽤PMCZ(􏽢Z

R
|􏽢Z

IR
)< 0.66 for all

values of parameters a and b. &ese both criteria are in-
creasing functions w.r.t parameters a and b. &ese findings
state that the predictor 􏽢Z

R is better than predictor 􏽢Z
IR with

respect to both criteria MSP and PMC. &erefore, for pre-
dicting Zi,j in model (2), using one observation Zi+2,j+2 leads
to better results than using 8 observations in ZIR

i,j . When
parameters a and b are near 1, recommendation for using of
this one observation rather than 8 observations in ZIR

i,j be-
comes more serious.

j

t0

s0

Redundant Sampling

i

j

Irredundant sampling

i

Figure 3: Two schemes for redundant sampling and unredundant sampling with eight observations.
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Figure 4: Comparison between 􏽢Z
R and 􏽢Z

IR for some fixed a and all b. Here, innovations have normal distribution.
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Figure 5: Comparison between 􏽢Z
IR and 􏽢Z

IR with normal errors for some fixed b and all a.
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Figure 6: Comparison between 􏽢Z
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R with exponential errors for some fixed a and all b.

8 Complexity



a=0.15

0.53

0.51

PM
C 

(Z
R|

ZI
R)

0.49

0.2 0.4
b

0.6 0.8

0.99

M
SP

0.97

0.2 0.4
b

0.6 0.8

ZR
ZIR

a=0.35

0.515

0.495

0.505

PM
C 

(Z
R|

ZI
R)

0.2 0.4
b

0.6 0.8

0.99

1.01

M
SP

0.97

0.2 0.4
b

0.6 0.8

ZR
ZIR

a=0.65

0.53

0.51

PM
C 

(Z
R|

ZI
R)

0.49

0.2 0.4
b

0.6 0.8

1.20

1.10

1.00

M
SP

0.2 0.4
b

0.6 0.8

ZR
ZIR

a=0.95
0.65

0.60

0.55

0.50

PM
C 

(Z
R|

ZI
R)

0.2 0.4
b

0.6 0.8

2.5

2.0

1.5

M
SP

1.0

0.2 0.4
b

0.6 0.8

ZR
ZIR

Figure 7: Comparison between 􏽢Z
R and 􏽢Z

IR with exponential errors for some fixed b and all a.

Complexity 9



&e similar work with normal errors has been done for
case of exponential distributed errors with parameter 1. For
exponential case, our findings demonstrate a bit difference
with normal case. Results of this simulation are displayed in
Figures 6 and 7. &ese figures show approximately
0≤􏽤MSPZ(􏽢Z

IR
) − 􏽤MSPZ(􏽢Z

R
)< 1.6 and 0.47≤􏽤PMCZ

(􏽢Z
R
|􏽢Z

IR
)< 0.65 for all values of parameters a and b. &ese

findings state that the predictor 􏽢Z
R is better than predictor 􏽢Z

IR

with respect to criterion MSP. Regarding PMC criterion, we
can see that the predictor 􏽢Z

IR is better than predictor 􏽢Z
R

whenever parameters a and b are near 0.5. However, the latter
result is not significant.

Finally, we conclude that removing observation which
has caused other observations be redundant in prediction
does not lead to better results in almost all situations.

3. Prediction in AR(1) Model

In this section, we show that the best linear predictor at time
t for stochastic process AR(1) uses at most one observation
in every side of time t. First of all, for any fixed time t, define
vector ZT � Zk ; k ∈ Ot􏼈 􏼉 where Ot is a subset of natural
numbers (N).

In the following theorem, we demonstrate the best linear
predictor in this model based on n samples uses at least 2
observations.

Theorem 2. Let Zt come from model (1) with E(Zt ) � 0 and
Var(Zt)<∞ and there exists a time t0 ∈ Ot such that for all
observed times i ∈ Ot,

i< t, and i≤ t0, (24)

or

i> t, and i≥ t0. (25)

6en, the best linear predictor for Zt w.r.t criterion MSP
based on variables Zt � Zk ; k ∈ Ot􏼈 􏼉 is only dependent to Zt0
and

􏽢Zt � φ t− t0| |Zt0
. (26)

Proof. &e proof is similar with the proof of &eorem 1 in
which 􏽢Zt � αZt where α � αk; k ∈ Ot􏼈 􏼉, A � var(Zt),
B � cov(Zt, Zt), and cov(Zs+h, Zs) � σ2ε /1 − φ2φ|h|.

&is matter shows that this is not required to do a
corresponding comparison with Section 2.1. By &eorem 2
and above paragraph, the best linear predictors based on
observations Zt and Znew

t � Zk; k ∈ Ot − t0􏼈 􏼉 are
􏽢Zt � φ|t− t0|Zt0

and 􏽢Z
new
t � φ|t− t1|Zt1

, respectively. Here, t1 is
the nearest time to time t among all times inOt − t0. Clearly,
|t − t1|> |t − t0|, and hence the predictor 􏽢Zt is better than
predictor 􏽢Z

new
t .

In the end, we give a theorem with which &eorems 1
and 2 can be expressed as its special cases. □

Theorem 3. Let Zs; s ∈ S􏼈 􏼉, S⊆Rk, k ∈ N be a stationary
stochastic process with E(Zs) � 0 and Var(Zs)<∞. 6en,
the best linear predictor for Zs based on Zs � Zv; v ∈ Os􏼈 􏼉

with respect to MSE is 􏽢Zs � cov(Zs0, Zs)Zs0 if there exists a
point s0 ∈ Os such that

cov Zu, Zs( 􏼁 � cov Zu, Zs0􏼐 􏼑cov Zs0, Zs􏼐 􏼑∀u ∈ Os. (27)

&e proof of theorem is not presented, since it is point to
point similar to the proof of &eorem 1. Notice that both
&eorems 1 and 2 are special cases of &eorem 3 when k � 2
and k � 1, respectively.

4. Conclusion

In this paper, three theorems were presented which are
useful for deriving optimal sampling scheme. In &eorem 1,
the design of an optimal sampling scheme is given for model
(2). A similar result for model (1) is found in &eorem 2.

In fact, we have tried to give an answer to the following
question: for a fixed set of data collected through obser-
vations, if we would like to find the best linear predictor of a
missing value, which of the following sampling schemes is
logical?

(1) Should we use neutralizing observations?
(2) Should we remove neutralizing observations and use

remaining observations?

&e results show that the first scenario is more efficient in
prediction process. Indeed, we have shown that some
samples have no effect on prediction in discussed models.
&e achievement of this work will be useful, since it might
not be possible to access a list of elements in many practical
situations and several types of populations, so the use of an
element as a sampling unit is not applicable.

&ere are other complicated situations than those de-
scribed in &eorem 1. &ey lead to redundant sampling in
mechanism of prediction, too. &is is left as future work.
Also, in Saber and Khorshidian [18], the best predictor in
stationary first-order moving average model has been rep-
resented. So, another interesting study may be searching and
exploring neutralizing and neutralized samples in moving
average models.

Appendix

Comparison between redundant and nonredundant
sampling.

rm(list� ls())
m<−200; n<−200
z0< -rnorm(m+n+ 1)
epsilon< -matrix(rnorm((m+ 1)∗(n + 1)),m+ 1,n + 1)
A< -seq(.05,.96,.05)
B< -seq(.05,.96,.05)
msezr< -msezir< -matrix(0,length(A),length(B))
pzrzir< -matrix(0,length(A),length(B))
for(a in A){
for(b in B){
g< -function(x,y) âx∗b̂y
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zAR< -matrix(0,m+ 1,n + 1)
zAR[1,]<-z0[1:(n + 1)]
zAR[−1,1]<-z0[(n + 2):(n + m+ 1)]
for(i in 2:(m+ 1)){
for(j in 2:(n + 1)){
zAR[i,j]<-zAR[i− 1,j]∗a + zAR[i,j− 1]∗b + zAR
[i− 1,j− 1]∗-(a∗b)
}}
z< -zAR+ epsilon
z< -z[−1,−1]
fZR< -function(i,j){
if((j<�(n− 4)) &(i<�(m− 4))) y<−((a∗b)̂2/2)∗z
[i + 2,j + 2]
if((j> (n− 4))|(i> (m− 4))) y<−z[i,j]
return(y)}
fZIR<−function(i,j){
if((j<�(n− 4)) &(i<�(m− 4))) {
A1<-
matrix(c(g(0,0),g(0,1),g(1,1),g(1,0),g(1,1),g(2,1),g(2,0),-
g(2,1),

g(0,1),g(0,0),g(1,2),g(1,1),g(1,0),g(2,2),g(2,1),g(2,0),
g(1,1),g(1,2),g(0,0),g(0,1),g(0,2),g(1,0),g(1,1),g(1,2),
g(1,0),g(1,1),g(0,1),g(0,0),g(0,1),g(1,1),g(1,0),g(1,1),
g(1,1),g(1,0),g(0,2),g(0,1),g(0,0),g(1,2),g(1,1),g(1,0),
g(2,1),g(2,2),g(1,0),g(1,1),g(1,2),g(0,0),g(0,1),g(0,2),
g(2,0),g(2,1),g(1,1),g(1,0),g(1,1),g(0,1),g(0,0),g(0,1),
g(2,1),g(2,0),g(1,2),g(1,1),g(1,0),g(0,2),g(0,1),g(0,0)),

8,8)
B1<-
matrix(c(g(2,3),g(2,4),g(3,2),g(3,3),g(3,4),g(4,2),-
g(4,3),g(4,4)),8,1)
Q1<-c(z[i + 2,j + 3],z[i + 2,j + 4],z[i + 3,j + 2],z
[i + 3,j + 3],z[i + 3,j + 4],z[i + 4,j + 2],
z[i + 4,j + 3],z[i + 4,j + 4])
y< -t(solve(A1,B1))%∗%Q1 }
if((j> (n− 4))|(i> (m− 4))) y<−z[i,j]
y< -as.vector(y)
return(y)}
fZIR1<-function(i,j){
if((j<�(n− 4)) &(i<�(m− 4))) y<−(â 2∗b̂ 2)∗(b∗z
[i + 2,j + 3] + a∗z[i + 3,j + 2]−a∗b∗z[i + 3,j + 3])
if((j> (n− 4))|(i> (m− 4))) y<−z[i,j]
return(y)}
zr< -matrix(0,m,n)
zir< -matrix(0,m,n)
for(i in 1:m){
for(j in 1:n){

zr[i,j]<-fZR(i,j)
zir[i,j]<-fZIR1(i,j) }}
msezr[abs(a)∗20,abs(b)∗20]<-mean((zr-z)̂2)
msezir[abs(a)∗20,abs(b)∗20]<-mean((zir-z)̂2)
pzrzir[abs(a)∗20,abs(b)∗20]<-sum((abs(zr-z))<(abs(-
zir-z)))/sum((abs(zr-z))!�(abs(zir-z))) }}
grid< -expand.grid(xj�A,yj�B)
AA< -grid$xj
BB< -grid$yj
persp(A,B,msezr, theta� 135,phi� 5,scale�TRUE,
expand� 1,col� “green,” ltheta� 0,
lphi� 0,box�T,ticktype� ”simple,”xlab� “a,”
ylab� “b,” zlab� “MSE(Z1)”)
grid< -expand.grid(xj�A,yj�B)
AA< -grid$xj
BB< -grid$yj
persp(A,B,msezir, theta� 155,phi� 5,scale�TRUE,
expand� 1,col� “green,” ltheta� 0,
lphi� 0,box�T,ticktype� “simple,” xlab� “a,”
ylab� “b,” zlab� “MSE(Z2)”)
grid< -expand.grid(xj�A,yj�B)
AA< -grid$xj
BB< -grid$yj
persp(A,B,pzrzir, theta� 115,phi� 5,scale�TRUE,
expand� 1,col� “green,” ltheta� 0,
lphi� 0,box�T,ticktype� “simple,” xlab� “a,”
ylab� “b,” zlab� “PMC(z1|z2)”)
par(mfrow� c(2,2)) # mean on b similar to b fixed
plot(A,rowMeans(pzrzir), “l,”xlab� “a,”
ylab� “PMC(ZR|ZIR),” main� “Mean on b”)
lines(A,rep(.5,length(A)), “l”)
minn< -min(c(rowMeans(msezr),rowMeans(msezir)))
maxx< -
max(c(rowMeans(msezr),rowMeans(msezir)))
AA< -seq(minn, maxx,length� length(A))
plot(A,AA, “n,” xlab� “a,” ylab� “MSP”)
lines(A,rowMeans(msezr), “l”)
lines(A,rowMeans(msezir), “l”, lty� 2)
legend(“topleft,” legend� c(“ZR,” “ZIR”),lty� c(1,2),
merge�TRUE)
plot(A,colMeans(pzrzir), “l,”xlab� “b,”
ylab� “PMC(ZR|ZIR),” main� “Mean on a”)
lines(A,rep(.5,length(A)), “l”)
minn< -min(c(colMeans(msezr),colMeans(msezir)))
maxx< -max(c(colMeans(msezr),colMeans(msezir)))
AA< -seq(minn, maxx,length� length(A))
plot(A,AA, “n,” xlab� “b”, ylab� “MSP”)
lines(A,colMeans(msezr), “l”)
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lines(A,colMeans(msezir), “l”, lty� 2)
legend(“topleft”, legend� c(“ZR”, “ZIR”),lty� c(1,2),
merge�TRUE)
par(mfrow� c(2,2))
plot(A,pzrzir[,j], “l”, xlab� “a”,ylab� “PMC(ZR|ZIR)”,
main� “b� 0.95”)
lines(A,rep(.5,length(A)), “l”)
minn< -min(c(msezr[,j],msezir[,j]))
maxx< -max(c(msezr[,j],msezir[,j]))
AA< -seq(minn, maxx,length� length(A))
plot(A,AA, “n”, xlab� “a”, ylab� “MSP”)
lines(A,msezr[,j], “l”)
lines(A,msezir[,j], “l”, lty� 2,xlab� “a”)
legend(“topleft”, legend� c(“ZR,” “ZIR”),lty� c(1,2),
merge�TRUE)

More complicated forms:

a<-.5
b< -.13
g< -function(i,j) â i∗b̂ j
A< -matrix(c(1,a,g(3,2),-
g(3,3),a,1,g(2,2),g(2,3),g(3,2),g(2,2),1,b,g(3,3),g(2,3),-
b,1),4,4)
B< -c(g(2,1),g(1,1),g(1,1),g(1,2))
solve(A,B)
A< -matrix(c(1,a,g(2,2),a,1,g(1,2),g(2,2),g(1,2),1),3,3)
B< -c(g(2,1),g(1,1),g(1,1))
solve(A,B)

Figure 3:

par(mfrow� c(1,2))
y< -c(1,5)
x< -c(1,5)
y1<-c(1,2,3,2,3,1,2,3) + 2
x1<-c(1,1,1,2,2,3,3,3) + 2
plot(x,y,xlab� “”ylab� “”, “n,” main� “Redundant
Sampling,” axes� FALSE).
points(x1,y1,xlab� ““ylab� ,”” pch� 15).
points(3,3,pch� 3). points(1,1,pch� 2). axis(1,1:
5,c(expression(i),’’,expression(s[0]),““,””)). axis(2,1:
5,c(expression(j),“,expression(t[0]),““,””))
box()
y< -c(1,5)
x< -c(1,5)
y1<-c(2,3,1,2,3,1,2,3) + 2
x1<-c(1,1,2,2,2,3,3,3) + 2
plot(x,y,xlab� “”,ylab� ””, “n,”main� “Irredundant
sampling,”axes� FALSE)
points(x1,y1,xlab� ““,ylab� ””,pch� 15)
points(1,1,pch� 2)

axis(1,1:5,c(expression(i),“,”,““,””))
axis(2,1:5,c(expression(j),“,”,““,””))
box()

Comparison between redundant and nonredundant
sampling with exponential error.

rm(list� ls())
m<−200; n<−200
z0<-rnorm(m+n+ 1). epsilon< -
matrix(rexp((m+ 1)∗(n + 1)),m+ 1,n + 1). A< -
seq(.05,.96,.05). B< -seq(.05,.96,.05)
msezr< -msezir< -matrix(0,length(A),length(B)).
pzrzir< -matrix(0,length(A),length(B)). for(a in A){
for(b in B){
g< -function(x,y) âx∗b̂y. zAR< -matrix(0,m+ 1,n + 1)
zAR[1,]<-z0[1:(n + 1)]
zAR[−1,1]<−z0[(n + 2):(n +m+ 1)]
for(i in 2:(m+ 1)){. for(j in 2:(n + 1)){. zAR[i,j]<−zAR
[i− 1,j]∗a + zAR[i,j− 1]∗b+ zAR[i− 1,j− 1]∗− (a∗b) }}
z< -zAR+ epsilon
z<−z[−1,−1]
z<−z−1
fZR< -function(i,j){
if((j<�(n− 4)) &(i<�(m− 4))) y<−((a∗b)̂ 2/2)∗z
[i + 2,j + 2]
if((j> (n− 4))|(i> (m− 4))) y<−z[i,j]
return(y)}
fZIR< -function(i,j){
if((j<�(n− 4)) &(i<�(m− 4))) {
A1<-
matrix(c(g(0,0),g(0,1),g(1,1),g(1,0),g(1,1),g(2,1),g(2,0),-
g(2,1),

g(0,1),g(0,0),g(1,2),g(1,1),g(1,0),g(2,2),g(2,1),g(2,0),
g(1,1),g(1,2),g(0,0),g(0,1),g(0,2),g(1,0),g(1,1),g(1,2),
g(1,0),g(1,1),g(0,1),g(0,0),g(0,1),g(1,1),g(1,0),g(1,1),
g(1,1),g(1,0),g(0,2),g(0,1),g(0,0),g(1,2),g(1,1),g(1,0),
g(2,1),g(2,2),g(1,0),g(1,1),g(1,2),g(0,0),g(0,1),g(0,2),
g(2,0),g(2,1),g(1,1),g(1,0),g(1,1),g(0,1),g(0,0),g(0,1),
g(2,1),g(2,0),g(1,2),g(1,1),g(1,0),g(0,2),g(0,1),g(0,0)),

8,8)
B1<-
matrix(c(g(2,3),g(2,4),g(3,2),g(3,3),g(3,4),g(4,2),-
g(4,3),g(4,4)),8,1)
Q1<-c(z[i + 2,j + 3],z[i + 2,j + 4],z[i + 3,j + 2],z
[i + 3,j + 3],z[i + 3,j + 4],z[i + 4,j + 2],
z[i + 4,j + 3],z[i + 4,j + 4])
y< -t(solve(A1,B1))%∗%Q1 }
if((j> (n− 4))|(i> (m− 4))) y<−z[i,j]
y< -as.vector(y)
return(y)}
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fZIR1<-function(i,j){
if((j<�(n− 4)) &(i<�(m− 4))) y<−(â 2∗b̂ 2)∗(b∗z
[i + 2,j + 3] + a∗z[i + 3,j + 2]−a∗b∗z[i + 3,j + 3])
if((j> (n− 4))|(i> (m− 4))) y<−z[i,j]
return(y)}
zr< -matrix(0,m,n). zir< -matrix(0,m,n). for(i in 1:m){.
for(j in 1:n){
zr[i,j]<-fZR(i,j)
zir[i,j]<-fZIR1(i,j) }}
msezr[abs(a)∗20,abs(b)∗20]<-mean((zr-z)̂2)
msezir[abs(a)∗20,abs(b)∗20]<-mean((zir-z)̂2)
pzrzir[abs(a)∗20,abs(b)∗20]<-sum((abs(zr-z))<(abs(-
zir-z)))/sum((abs(zr-z))!�(abs(zir-z))) }}
grid< -expand.grid(xj�A,yj�B)
AA< -grid$xj. BB< -grid$yj
persp(A,B,msezr, theta� 135,phi� 5,scale�TRUE,
expand� 1,col� “green,”ltheta� 0,
lphi� 0,box�T,ticktype� “simple,”
xlab� “a,”ylab� “b,” zlab� “MSE(Z1)”)
grid< -expand.grid(xj�A,yj�B)
AA< -grid$xj
BB< -grid$yj
persp(A,B,msezir, theta� 155,phi� 5,scale�TRUE,
expand� 1,col� “green,”ltheta� 0,
lphi� 0,box�T,ticktype� “simple,”xlab� “a,”
ylab� “b,” zlab� “MSE(Z2)”)
grid< -expand.grid(xj�A,yj�B)
AA< -grid$xj
BB< -grid$yj
persp(A,B,pzrzir, theta� 115,phi� 5,scale�TRUE,
expand� 1,col� “green,”ltheta� 0,
lphi� 0,box�T,ticktype� “simple,” xlab� “a,”
ylab� “b,” zlab� “PMC(z1|z2)”)
par(mfrow� c(2,2)) # mean on b similar to b fixed.
plot(A,rowMeans(pzrzir),
“l”,xlab� “a”,ylab� “PMC(ZR|ZIR)”,main� “Mean on
b”)
lines(A,rep(.5,length(A)),“l”). minn< -min(-
c(rowMeans(msezr),rowMeans(msezir))), maxx< -
max(c(rowMeans(msezr),rowMeans(msezir)))
AA< -seq(minn, maxx,length� length(A))
plot(A,AA,“n”,xlab� “a”,ylab� “MSP”)
lines(A,rowMeans(msezr),“l”)
lines(A,rowMeans(msezir),“l”,lty� 2). legend(“topleft”,
legend� c(“ZR”,“ZIR”),lty� c(1,2), merge�TRUE),
plot(A,colMeans(pzrzir),“l”,xlab� “b”,ylab� “
PMC(ZR|ZIR)”,main� “Mean on a”)
lines(A,rep(.5,length(A)),“l”). minn< -min(-
c(colMeans(msezr),colMeans(msezir))). maxx< -
max(c(colMeans(msezr),colMeans(msezir)))
AA< -seq(minn, maxx,length� length(A))

plot(A,AA,“n”,xlab� “b”,ylab� “MSP”)
lines(A,colMeans(msezr),“l”)
lines(A,colMeans(msezir),“l”,lty� 2)
legend(“topleft”, legend� c(“ZR”,“ZIR”),lty� c(1,2),
merge�TRUE)
j<−19; B[j]
par(mfrow� c(2,2))
plot(A,pzrzir[,j],“l”,xlab� “a”,ylab� “PMC(ZR|
ZIR)”,main� “b� 0.95”)
lines(A,rep(.5,length(A)),“l”)
minn< -min(c(msezr[,j],msezir[,j]))
maxx< -max(c(msezr[,j],msezir[,j]))
AA< -seq(minn, maxx,length� length(A))
plot(A,AA,“n”,xlab� “a”,ylab� “MSP”)
lines(A,msezr[,j],“l”)
lines(A,msezir[,j],“l”,lty� 2,xlab� “a”)
legend(“topleft”, legend� c(“ZR”,“ZIR”),lty� c(1,2),
merge�TRUE)
j<−18; A[j]
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