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Tis paper proposes a forecasting methodology that investigates a set of diferent sparse structures for the vector autoregression
(VAR) model using the Ivanov-based least absolute shrinkage and selection operator (LASSO) framework. Te variant auxiliary
problem principle method is used to solve the various Ivanov-based LASSO-VAR variants, which is supported by parallel
computing with simple closed-form iteration and linear convergence rate. A test case with ten crude oil spot prices is used to
demonstrate the improvement in forecasting skills gained from exploring sparse structures. Te proposed method outperformed
the conventional vector autoregressive model.

1. Introduction

Crude oil, as one of the world’s largest traded commodities
and most valuable energy resources, plays a vital role in the
global economy. It is well known for its wide price fuctu-
ations, which have a direct impact on the economy. Te rise
in oil prices may cause infation and eventually afect the
economies of oil importers, while the fall in oil prices may
cause economic recession and political instability in the
economies of oil exporters. Furthermore, even a minor
fuctuation in the price of oil can result in signifcant eco-
nomic losses and social consequences. Te energy crisis and
the constantly fuctuating price of petroleum have drawn
considerable attention of researchers [1–3]. Crude oil is a
globally infuential commodity because it is the major source
of primary energy. Crude oil prices are a refection of market
expectations for future macroeconomic variables. In today’s
turbulent world, some shocks, such as the COVID-19
pandemic and the Ukraine war, are having a cascading efect
on the world economy. In this environment, even a rumor of
a possible crude oil production cut could result in a

signifcant oil price hike. Crude oil forecasting, as suggested
by many literature, has become an important topic in terms
of both theoretical and practical implications [4–6]. How-
ever, forecasting crude oil prices is an extremely tough and
challenging task in the prediction literature. On the one
hand, the price of crude oil is fundamentally determined by
supply and demand [7]. On the other hand, unlike other
commodities, the price of crude oil is determined by ex-
ogenous factors, such as extreme events, global economic
conditions, speculative expectations, political instabilities, as
well as technological trends [8–11]. Because of the afore-
mentioned factors, forecasting crude oil prices is one of the
most important but challenging tasks, attracting the at-
tention of an abundance of prediction literature.

According to the existing literature, diferent types of
predicting methods have been proposed to forecast crude
oil price. By using parameter evaluation methods, the
existing approaches can be classifed into three groups:
(1) traditional, statistical, and econometric models, (2)
artifcial intelligence (AI) techniques, and (3) hybrid
models.
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Te traditional statistical and econometric models used
in crude oil forecasting studies include linear regression, co-
integration analysis, autoregressive integrated moving av-
erage (ARIMA), generalized autoregressive conditional
heteroscedasticity (GARCH) family models, naive random
walk, gray model, vector autoregression (VAR), and error
correction (ECM) models [8, 11–13]. Morana [12] employed
a semiparametric GARCH methodology to forecast the oil
price over short-term horizons. Hou and Suardi [13] used
nonparametric GARCH models to estimate and forecast
crude oil price return volatility. Ye et al. [14] incorporated
low- and high-inventory variables in a single equationmodel
to forecast short-term crude oil prices. Mirmirani and Li [15]
used a VAR-based method to make ex-post forecast of U.S.
oil price movement. Lanza et al. [16] proposed a compre-
hensive analysis of crude oil and product price dynamics
using co-integration and ECMmodels. However, traditional
statistical and econometric methods are based on linear
assumptions and have good prediction ability when the price
series are linear or nearly linear. As demonstrated by the
existing literature [4], the prediction performance of tra-
ditional statistical and econometric approaches might be
very poor because there is a signifcant deal of nonlinearity
and irregularity in crude oil price series.

Because of the limitations of traditional, statistical, and
econometric techniques, the price forecasting literature has
proposed a bunch of nonlinear and AI models, including
support vector machines (SVMs) and artifcial neural net-
works (ANNs). Movagharnejad et al. [17] developed a neural
network model to investigate the price variations of various
commercial oils in the Persian Gulf region. Chiroma et al.
[18] proposed an evolutionary neural network model, which
was based on a generic algorithm and neural network, to
forecast the West Texas Intermediate (WTI) crude oil price.
Abdullah and Zeng [19] investigated a machine learning
approach for crude oil price prediction with an artifcial
neural network-quantitative (ANN-Q) model. Abramson
and Finizza [20] used belief networks, which are knowledge-
based models, to predict crude oil prices. Shambora and
Rossiter [21] used an ANN model with moving average
crossover inputs to forecast future crude oil prices. Xie et al.
[22] forecasted crude oil prices using SVM-based methods
and compared their performance with the ARIMA and
BPNN models.

Numerous studies fnd that AI models often have better
forecasting ability than traditional statistical and econo-
metric models in price forecasting [4, 23, 24]. However, AI
models also have their own shortcomings and limitations.
For instance, ANN is sensitive to parameter selection [4]. To
overcome the limitations of single traditional AI tools, more
and more hybrid methods, particularly decomposition-
based hybrid models, have been applied to the forecasting of
crude oil prices [11, 25–27].

Although these decomposition-based methods outper-
form in forecasting and analysis, these hybrid techniques
have some limitations in price forecasting. For instance,
some hybrid models with fxed basis design are sensitive to
parameter settings in denoising [28]. In addition, the
forecasting accuracy of hybrid models tends to be

constrained by the underlying techniques, and some het-
erogeneous hybrid models are computationally intensive
[29].

Many literature used VAR model to predict the prices
and returns of commodities [30–35]. Te multivariate VAR
model, as one of the most widely used econometric tech-
niques, has been used in numerous empirical studies.
However, the VAR model has two main problems: (1) the
number of time series in a VARmodel is limited because the
number of parameters to be estimated is quadratic with the
number of time series contained [34]; (2) the VAR esti-
mation procedure does not consider fat-tailed errors, so
extreme observations in the volatility series are ignored [36].

To address the concerns raised above, we propose a new
method that combines the VAR- and Ivanov-based least
absolute shrinkage and selection operator (LASSO) frame-
work to forecast multiple crude oil product prices. In ad-
dition, we design a variant auxiliary problem principle
(VAPP) algorithm for solving Ivanov-based LASSO-VAR (I-
LV) problems that can be implemented in parallel based on
their characteristics. Te work proposed in this paper is
closely related to the standard VAR and provides the fol-
lowing original contributions: frst, we investigate a set of
diferent sparse structures for the VAR framework using the
Ivanov regularization based LASSO framework. Second, this
paper applies VAPP to ft the diferent VAR Ivanov-based
LASSO variants. Finally, we present a scalable forecasting
method that is based on parallel computing, a fast con-
vergence optimization algorithm, and matrix calculations.

Many new studies on crude oil price prediction have
recently been published. Jiang et al. [37] combined a de-
composition-ensemble approach with sentiment analysis to
forecast crude oil prices. Because crude oil futures price data
is nonlinear and nonstationary, Sun et al. [38] adopted the
idea of “divide and conquer” to develop a new crude oil
futures price combination forecasting method based on
decomposition and reconstruction integration technology.
Starting with the market economic model, a novel dynamic
time-delay gray model for energy price forecasting is se-
lected based on the diferential information of the difer-
ential equation and diference equation, as well as the data
reduction principle [39]. Wu et al. [40] developed a hybrid
framework in which the Hampel identifer is employed to
identify and correct outliers, while the complete ensemble
empirical mode decomposition removes noise through
decomposition and reconstruction of data. To improve the
forecasting accuracy and stability, they proposed a modifed
multiobjective water cycle algorithm. Based on the fore-
casting research of multisource information and decom-
position-ensemble. Guo et al. [41] proposed a
multiperspective crude oil price forecasting model under a
new decomposition-ensemble framework.

Te remainder of this paper proceeds as follows: Section
2 presents the methodology for forecasting crude oil prices.
Section 3 describes the application of the VAPPmethod to ft
the VAR model in its diferent Ivanov-based LASSO vari-
ants. Section 4 presents the forecasting results and evaluates
the performance of the proposed methodology. Finally,
Section 5 presents the conclusion.
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2. Ivanov-Based LASSO-VAR
Forecasting Methodology

Let ‖ · ‖r represent both vector and matrix Lr norms. Let
Yt􏼈 􏼉 � (y1,t, y2,t, . . . yk,t)′􏽮 􏽯 denote a k-dimensional vector
time series. B(l)∈k×k represents a coefcient matrix related to
the lag l. In order to get a compact matrix notation, let
Y� (Y1, Y2, . . . , YT) defne the k × T response matrix, Z �

(Z1, Z2, . . . , ZT) the kp × T matrix of explanatory (or
predictors) variables in which Zt � (Yt−1′ , Yt−2′ , . . . , Yt−p

′ ),
and p is the order of vector autoregressive process. B �

(B(1), B(2), . . . , B(p)) is the k × kp matrix of coefcients.
To simplify the notation, we consider m � kp. Ten,

there are two standard LASSO-VAR formulations to com-
bine a regularizer Ω(B) (such as B1) and a data-fdelity term
1/2B2

2 as follows:

(i) Tikhonov regularization (referred to as T-LV)

(T − LV): min
B∈k×m

1
2

Y − BZ
2
2 + λΩ(B), (1)

where λ> 0 is a scalar regularization (or penalty)
parameter controlling the amount of shrinkage.

(ii) Ivanov regularization (referred to as I-LV)

(I − LV): min
B∈k×m

1
2

Y − BZ
2
2, (2a)

s.t.Ω(B)≤ δ. (2b)

Similarly, δ > 0 is a scalar regularization parameter.
Although these two problems are equivalent (under mild

conditions), I-LV formulations may be more convenient in
practice because the corresponding parameter is easier to
adjust. However, the I-LV problems cannot be efciently
dealt with. Terefore, in this paper, we will develop an ef-
fcient algorithm for solving I-LV problems.

Diferent regularization penalties can be used in the I-LV
model to reduce the efective dimension of the problem, and
diferent sparse patterns can be detected based on the in-
herent structure of VAR. Te I-LV framework does not
assume that all predictors contribute to the model; instead, it
extracts the most signifcant predictors. Te efcient use of
appropriate penalties will lead to more accurate estimation
and prediction strategies.

Table 1 briefy describes the following I-LV structures
that promote sparsity: standard I-LV (I-sLV), lag-group
I-LV (I-lLV), lag-sparse-group I-LV (I-lsLV), own/other-
group I-LV (I-ooLV), and causality-group (I-cLV). Te
diferent penalties applied to them result in diferent types of
sparsity, depending on the selection target that manages
them. More information on these structures can be found in
studies conducted by Cavalcante et al. [42].

3. I-LV Fitting by VAPP

Te Ivanov-based LASSO-VAR problem can be expressed as
the following Nonlinear Convex Cone Programming
(NCCP):

(NCCP): min
B∈k×m

G(B), (3a)

s.t.Θ(B) ∈ −C. (3b)

where the decision variable is B, objective function G(B) �

1/2Y − BZ2
2, Θ(B) represents diferent regularization terms,

which are listed in Table 1, C is a convex cone. Zhao and Zhu
[43] introduced a fexible frst-order primal-dual algorithm
called VAPP for solving NCCP problems. For the VAPP type
algorithms to be proposed, their main subproblems at each
iteration have closed-form solutions. We review three op-
erators that will help us express these closed-form solutions
of VAPP conveniently.

Te frst minimization problem is as follows:

min
β∈n

cβ1 +
1
2
β − r

2
2, (4)

where c> 0 and r∈n. It has a closed-form solution, which is
given by the soft-shrinkage operator defned as follows:

β∗ � S1(r, c)≜ sign(r) · max 0, |r| − c􏼈 􏼉, (5)

where sign (·) is the sign function.
Te second minimization problem is as follows:

min
β∈n

μβ2 +
1
2
β − r

2
2, (6)

where μ> 0 and r∈n. It has a closed-form solution which is
given by the following equation:

β∗ � S2(r, μ)≜
r

r2
· max 0, r2 − μ􏼈 􏼉. (7)

Te third minimization problem is as follows:

min
W∈m×n

cW1 + μ􏽘

M

i�1
W

(i)
2 +

1
2

W − X
2
2, (8)

where c> 0, μ> 0, and X∈m×n. It has a closed-form solution
which is given by Chartrand and Wohlberg [44].

W
(i)∗

� S2 S1 X
(i)

, c􏼐 􏼑, μ􏼐 􏼑, i � 1, 2, . . . , M. (9)

Now we apply the VAPP to solve the above fve kinds of
I-LV models, and simple closed-form iterations are given. Te
L1 penalty B1 works as a sparsity-inducing term over individual
entries of the coefcient matrix B, and I-sLV problem can be
written as follows:

(I − sLV): min
B

1
2

Y − BZ
2
2, (10a)

s.t. B1 ≤ δ, (10b)

and the primal-dual iterative scheme of VAPP is as follows:

B
k+1

� argmin
B

∇G B
k

􏼐 􏼑, B + πk
1, B1 +

1
2ϵk

B − B
k2
2,

αk+1
1 � max αk

1 + c B
k+1

1 − δ􏼐 􏼑, 0􏽮 􏽯,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

where ∇G(Bk) � (BkZ − Y)ZT and πk
1 � max

αk
1 + c(Bk

1 − δ), 0􏼈 􏼉. Te details about the selection of
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parameters c and ϵk are shown in Zhao and Zhu [43]. Ten,
it follows from (5) that the closed-form solution of the
B-subproblem is given by the following equation:

B
k+1

� S1 B
k

− ϵk∇G B
k

􏼐 􏼑, ϵkπk
1􏼐 􏼑. (12)

Te I-lLV model considers the coefcients grouped by
time lags and looks for time lags that improve forecast
accuracy.

(I − lLV): min
B

1
2

Y − BZ
2
2, (13a)

s.t. 􏽘

p

l�1
B

(l)
2 ≤ δ. (13b)

Te primal-dual B and α2 update solution can be ob-
tained by the following equation:

B
k+1

� argmin
B
∇G B

k
􏼐 􏼑, B + πk

2, 􏽘

p

l�1
B

(l)
2 +

1
2ϵk

B − B
k2
2,

⎧⎨

⎩

αk+1
2 � max αk

2 + c 􏽘

p

l�1
B

(l)k+1

2 − δ⎛⎝ ⎞⎠, 0
⎧⎨

⎩

⎫⎬

⎭, (14)

where πk
2 � max αk

2 + c(􏽐
p

l�1 B
(l)k

2 − δ), 0􏼚 􏼛.Ten, the closed-
form solution of B-subproblem is given by using (7).

B
(l)k+1

� S2 B
k

− ϵk∇G B
k

􏼐 􏼑
(l)

, ϵkπk
2􏼒 􏼓, l � 1, 2, . . . , p.􏼒

(15)

However, it may be too restrictive for crude oil spot price
forecasting because all the coefcients of some lags are not
considered or sometimes inefcient by including the entire
lag if only few coefcients are signifcant. Terefore, the
I-lsLV model adds lag sparsity to the I-lLV.

(I − lsLV): min
B

1
2

Y − BZ
2
2, (16a)

s.t. B1 ≤ δ1, (16b)

􏽘

p

l�1
B

(l)
2 ≤ δ2. (16c)

Similar to the above procedure, the primal-dual iteration
of VAPP is as follows:

B
k+1

� argmin
B

∇G B
k

􏼐 􏼑, B + πk
3, B1 + πk

4, 􏽘

p

l�1
B

(l)
2 +

1
2ϵk

B − B
k2
2 ,

αk+1
3 � max αk

3 + c B
k+1
1 − δ1􏼐 􏼑, 0􏽮 􏽯,

αk+1
4 � max αk

4 + c 􏽘

p

l�1
B

(l)k+1

2 − δ2⎛⎝ ⎞⎠, 0
⎧⎨

⎩

⎫⎬

⎭,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Table 1: Brief description of Ivanov-based LASSO-VAR structures.

I-LV st. Penalty Selection target
I-sLV B1 ≤ δ Individual entries
I-lLV 􏽐

p

l�1 B
(l)
2 ≤ δ Lags

I-cLV 􏽐i≠j(B(1))ij, (B(2))ij, . . . , (B(p))ij2 ≤ δ Causality
I-lsLV B1 ≤ δ1 􏽐

p

l�1 B
(l)
2 ≤ δ2 Lags and individual entries within lags

I-ooLV 􏽐
p

l�1 diag(B(l))2 ≤ δ1 􏽐
p

l�1 B
(l)−
2 ≤ δ2 Lags diagonal (diag (B(l))) and of-diagonal entries (B(l)− )
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where πk
3 � max αk

3 + c(Bk
1 − δ1), 0􏼈 􏼉 and

πk
4 � max αk

4 + c(􏽐
p

l�1 B
(l)k

2 − δ2), 0􏼚 􏼛. By using (9), we can

get B-subproblem closed-form solution as follows:

B
(l)k+1

� S2 S1 B
k

− ϵk∇G B
k

􏼐 􏼑􏼐 􏼑
(l)

, ϵkπk
3􏼒 􏼓, ϵkπk

4􏼒 􏼓, l � 1, 2, . . . , p.

(18)

Many crude oil spot price predictions are infuenced
more by their own past observations than by past obser-
vations of other spot prices. In the I-ooLV, the coefcients
are grouped by the diagonal entries and by of-diagonal
entries.

(I − ooLV): min
B

1
2

Y − BZ
2
2, (19a)

s.t. 􏽘

p

l�1
diag B

(l)
􏼐 􏼑2 ≤ δ1, (19b)

􏽘

p

l�1
B

(l)−
2 ≤ δ2. (19c)

Its primal-dual iteration is as follows:

B
k+1

� argmin
B

∇G B
k

􏼐 􏼑, B + πk
5, 􏽘

p

l�1
diag B

(l)
􏼐 􏼑2 + πk

6, 􏽘

p

l�1
B

(l)−
2 +

1
2ϵk

B − B
k2
2 ,

αk+1
5 � max αk

5 + c 􏽘

p

l�1
diag B

(l)k+1

􏼒 􏼓
2

− δ1⎛⎝ ⎞⎠, 0
⎧⎨

⎩

⎫⎬

⎭,

αk+1
6 � max αk

6 + c 􏽘

p

l�1
B

(l)−k+1

2 − δ2⎛⎝ ⎞⎠, 0
⎧⎨

⎩

⎫⎬

⎭,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where πk
5 � max αk

5 + c(􏽐
p

l�1 diag(B(l)k

)2 − δ1), 0􏽮 􏽯 and πk
6 �

max αk
6 + c(􏽐

p

l�1 B
(l)−k

2 − δ2), 0􏼚 􏼛. Moreover, the closed-form
solution of B-subproblem is as follows:

B
(l)k+1

� S2 diag B
k

− ϵk∇G B
k

􏼐 􏼑􏼐 􏼑
(l)

􏼒 􏼓, ϵkπk
5􏼒 􏼓 + S2 B

k
− ϵk∇G B

k
􏼐 􏼑􏼐 􏼑

(l)−
, ϵkπk

6􏼒 􏼓, l � 1, 2, . . . , p. (21)

Te I-cLV model groups the coefcients according to
their corresponding spot prices in order to learn a causal
inference from the data.

(I − cLV): min
B

1
2

Y − BZ
2
2, (22a)

s.t. 􏽘
i≠j

B
(1)

􏼐 􏼑
ij

, B
(2)

􏼐 􏼑
ij

, . . . , B
(p)

􏼐 􏼑
ij2 ≤ δ. (22b)

Te primal-dual iteration is as follows:

B
k+1

� argmin
B
∇G B

k
􏼐 􏼑, B + πk

7, 􏽘
i≠j

B
(1)

􏼐 􏼑
ij

, B
(2)

􏼐 􏼑
ij

, . . . , B
(p)

􏼐 􏼑
ij2 +

1
2ϵk

B − B
k2
2 ,

αk+1
7 � max αk

7 + c B
(1)k+1

􏼒 􏼓
ij

, B
(2)k+1

􏼒 􏼓
ij

, . . . , B
(p)k+1

􏼒 􏼓
ij2

− δ􏼠 􏼡, 0􏼨 􏼩.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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where πk
7 � max αk

7 + c(􏽐i≠j(B(1)k

)ij,􏽮

(B(2)k

)ij, . . . , (B(p)k

)ij2 − δ), 0}, and B-subproblem closed-
form solution is as follows:

B
(1)

􏼐 􏼑
ij

, B
(2)

􏼐 􏼑
ij

, . . . , B
(p)

􏼐 􏼑
ij

􏼔 􏼕
k+1

�

B
k

− ϵk∇G B
k

􏼐 􏼑􏼐 􏼑
(1)

ij
, . . . , B

k
− ϵk∇G B

k
􏼐 􏼑􏼐 􏼑

(p)

ij
􏼒 􏼓􏼔 􏼕, i � j,

S2 B
k

− ϵk∇G B
k

􏼐 􏼑􏼐 􏼑
(1)

ij
, . . . , B

k
− ϵk∇G B

k
􏼐 􏼑􏼐 􏼑

(p)

ij
􏼒 􏼓􏼔 􏼕, ϵkπk

7􏼔 􏼕􏼒 􏼓, i≠ j.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

4. Practical Implementation and Results

In this section, we frst describe the data set used in our
paper, followed by the experimental setup for predicting
crude oil prices. Finally, we discuss in detail the forecasting
results.

4.1. Data Description and Experimental Setup. Te VAPP
algorithm is applied to the proposed I-LV variants in order
to predict crude oil spot price values for horizons up to fve-
steps-ahead. Te crude oil spot price data deployed in this
paper are from the U.S. Energy Information Administration.
Te spot price dataset include US WTI crude oil, European
Brent crude oil (Brent), New York Harbor regular con-
ventional gasoline (NYCG), U.S. Gulf Coast regular con-
ventional gasoline (USCG), New York Harbor No. 2 heating
oil (NYHO), New York Harbor ultra-low-sulfur No. 2 diesel
fuel (NYDF), U.S. Gulf Coast ultra-low-sulfur No. 2 diesel
fuel (USDF), Los Angeles ultra-low-sulfur No. 2 diesel fuel
(LADF), U.S. Gulf Coast kerosene-type jet fuel (USJF), and
Mont Belvieu Texas propane (MB). Te sample time ranges
from January 2, 2018 to December 31, 2019. We use the
samples from 2018 and 2019 as training and testing data,
respectively, in our studies.

Table 2 lists time spans and observations of the training
and testing sample. Te observations in the training and
testing samples are 246 and 249, respectively, because
commodity prices are not reported on weekends or holidays
and we discard observations with missed prices.

Table 3 presents descriptive statistics of diferent com-
modity prices. Two lags are utilized in each of the models.
Te evaluation of the I-LV structures performance is
accessed using the root mean squared error (RMSE) and
mean absolute error (MAE) calculated for each t+ h; h� 1; 2;
. . .; 5, lead time with the following expressions:

RMSEt+h �
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k

􏽘

k
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1
k

􏽘
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i�1
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where 􏽢Yt+h|t represents the forecasting made at time instant t
and Yt+h is the observed crude oil spot price value.

4.2. Forecasting Results andDiscussion. Te performances of
the I-LV models are compared by computing the im-
provement over the VARmodel (using least square estimate)
in terms of RMSE andMAE. Tables 4 and 5 show the average
MAE and average RMSE across all spots for diferent I-LV
structures.

Tables 4 and 5 show that the I-LV models exhibit more
signifcant forecasting accuracy than classical VAR, with the
exception of one-day-ahead prediction of I-lLV. In addition,
I-cLV is obviously better than other methods. It is possible to
observe that the performance of VAR drops rapidly with the
lead time, however, I-LV structures are relatively stable.
Figure 1 compares I-cLV with the VAR model, representing
the improvement over the VAR model for each commodity
for the frst lead time. Te results show that, for the frst lead
time, the VAR only outperforms I-cLV for one commodity,
namely “MB.” Apart from that commodity, the improve-
ment over VAR ranges between 5.29% and 87.39% for MAE
and 5.01% and 87.47% for RMSE.

Trough the analysis of the correlation between each
commodity from Table 6, we fnd that the correlation be-
tween “MB” and other commodities is not signifcant, which
is the reason why the prediction performance of I-cLV is
poor. Finally, Figure 2 for “USCG” shows a visualization of
the real crude oil price and the forecast crude oil price output
provided by the I-cLV model for the frst lead time during a
one-year period.

In order to understand the joint dynamic behavior of this
group of commodities, the sparsity patterns (i.e., coefcients’
matrix) obtained by the I-LV structures and VAR for the frst
lead time are depicted in Figure 3. Te blue dots represent
coefcients that are nonzero entries. Figure 3 shows that
classical VAR and I-lsLVmethods give rise to 100% nonzero
entries. Immediately afterwards, the best performance I-cLV
gives rise to 42% sparsity. It can be observed that almost all
fgures agree that the diagonal coefcients of the frst lag are
nonzero entries, indicating that a variable’s own frst lag is
more likely to improve the forecast than the other entries.
Terefore, the I-cLV sparse structure can be useful in de-
termining which commodities can promote the forecasts for
other commodities and obtain the best prediction.

Table 6 shows that the spot price of each crude oil is
closely related not only to the price of that crude oil, but also
to the prices of other crude oils. However, we note that not
all crude oil prices are closely related to the prices of other
types of crude oil, such as MB’s. Only the I-cL model
considers these factors at the same time, while the other fve
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Table 2: Time spans and observations of training and testing sample.

Month Start date End date Obs. Month Start date End date Obs.
Jan, 2018 Jan 2, 2018 Jan 31, 2018 21 Jan, 2019 Jan 2, 2018 Jan 31, 2018 21
Feb, 2018 Feb 1, 2018 Feb 28, 2018 19 Feb, 2019 Feb 1, 2018 Feb 28, 2018 19
Mar, 2018 Mar 1, 2018 Mar 29, 2018 21 Mar, 2019 Mar 1, 2018 Mar 29, 2018 21
Apr, 2018 Apr 3, 2018 Apr 30, 2018 20 Apr, 2019 Apr 1, 2018 Apr 30, 2018 21
May, 2018 May 1, 2018 May 31, 2018 21 May, 2019 May 1, 2018 May 31, 2018 22
Jun, 2018 Jun 1, 2018 Jun 29, 2018 21 Jun, 2019 Jun 3, 2018 Jun 28, 2018 20
Jul, 2018 Jul 2, 2018 Jul 31, 2018 21 Jul, 2019 Jul 1, 2018 Jul 31, 2018 21
Aug, 2018 Aug 1, 2018 Aug 31, 2018 23 Aug, 2019 Aug 1, 2018 Aug 30, 2018 22
Sep, 2018 Sep 4, 2018 Sep 28, 2018 19 Sep, 2019 Sep 3, 2018 Sep 30, 2018 20
Oct, 2018 Oct 1, 2018 Oct 31, 2018 23 Oct, 2019 Oct 1, 2018 Oct 31, 2018 23
Nov, 2018 Nov 1, 2018 Nov 30, 2018 20 Nov, 2019 Nov 1, 2018 Nov 27, 2018 18
Dec, 2018 Dec 3, 2018 Dec 28, 2018 17 Dec, 2019 Dec 2, 2018 Dec 31, 2018 21
2018 Jan 2, 2018 Dec 28, 2018 246 2019 Jan 2, 2019 Dec 31, 2019 249

Table 3: Descriptive statistics of commodity prices.

Commodity Obs. Mean Std. Dev. Min Max
USCG 495 1.79437 0.2212457 1.268 2.213
NYCG 495 1.841164 0.2054514 1.36 2.219
Brent 495 67.85065 6.763126 50.57 86.07
WTI 495 61.11267 6.698028 44.48 77.41
NYHO 495 1.990378 0.148289 1.643 2.41
USJF 495 1.953158 0.1469174 1.564 2.345
MB 495 0.7093677 0.1976168 0.365 1.1
LADF 495 2.0742 0.1709855 1.656 2.52
USDF 495 1.965758 0.15365 1.551 2.385
NYDF 495 2.021246 0.1473959 1.663 2.432

Table 5: Average RMSE across all spots for the diferent I-LV structures.

Time horizon 1 2 3 4 5
VAR 0.6475 3.0266 4.5879 12.0190 39.9989
I-sLV 0.5865 2.7230 2.8682 2.9548 2.8950
I-lLV 0.8478 2.7613 2.9743 3.1057 3.0991
I-lsLV 0. 8 1 2.7189 2.8645 2.9517 2.8928
I-ooLV 0.5873 2.7231 2.8661 2.9529 2.8925
I-cLV 0.5894 2.7310 2.8   2.9234 2.84 2
Notes: lowest values are highlighted in bold.

Table 4: Average MAE across all spots for diferent I-LV structures.

Time horizon 1 2 3 4 5
VAR 0.3498 1.6796 3.2479 9.0191 30.371
I-sLV 0.2762 1.1943 1.2604 1.2977 1.2608
I-lLV 0.3858 1.2222 1.3142 1.3689 1.3555
I-lsLV 0.2674 1.1896 1.2583 1.2961 1.2599
I-ooLV 0.2718 1.1936 1.2607 1.2979 1.2606
I-cLV 0.2 48 1.1872 1.2460 1.276 1.2346
Notes: lowest values are highlighted in bold.
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Figure 1: (a) MAE and (b) RMSE improvement of I-cLV over the VAR model at each kind of commodity for lead time t+ 1.

Table 6: Pearson’s correlation between diferent commodities (2019).

USCG NYCG Brent WTI NYHO USJF MB LADF USDF NYDF
USCG 1.0000
NYCG 0.9594 1.0000
Brent 0.6896 0.7314 1.0000
WTI 0.7781 0.8316 0.8997 1.0000
NYHO 0.5547 0.6617 0.8163 0.8418 1.0000
USJF 0.6407 0.7141 0.8167 0.8174 0.9033 1.0000
MB −0.0599 −0.0253 0.3741 0.2075 0.4266 0.3479 1.0000
LADF 0.6384 0.7228 0.7045 0.7340 0.8123 0.7267 0.2024 1.0000
USDF 0.6400 0.7145 0.8348 0.8467 0.9593 0.9568 0.4039 0.7810 1.0000
NYDF 0.5600 0.6650 0.8282 0.8463 0.9965 0.9171 0.4487 0.8004 0.9665 1.0000
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Figure 2: USCG price and correspondent forecast provided by the I-cLV model for lead time t+ 1 in 2019.
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models do not. Terefore, the I-cL model is superior to the
other fve models in terms of prediction accuracy.

5. Conclusion

Tis paper describes a forecasting technique that combines
VAR and several variants of the Ivanov-based LASSO
framework to fully explore data from crude oil time series
distributed across diferent spots. Te proposed method-
ology investigates competing sparse structures for the VAR
coefcients matrix and employs the VAPP optimization
framework to ensure fast convergence and parallel com-
putation. For a real case study with ten crude oil spots, all the
diferent sparse structures of the I-LV model show better
performances than the VAR models. Te I-cLV structure
turns out to be the best choice for forecasting crude oil
prices.
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