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Open Shop Scheduling Problem (OSSP) is one of themost important scheduling problems in the field of engineering and industry.
*is kind of problem includesmmachines and n jobs, each job contains a certain number of operations, and each operation has a
predetermined processing time on its corresponding machine. *e order of processing of these operations affects the completion
times of all jobs.*erefore, the purpose of OSSP is to achieve a proper order of processing of jobs using specified machines, so that
the completion time of all jobs is minimized. In this paper, the strengths and limitations of three methods are evaluated by
comparing the results of solving the OSSP in large-scale and small-scale benchmarks. In this case, the minimized completion time
and total tardiness are considered the objective functions of the adapted methods. To solve small-scale problems, we adapt a
mathematical model called Multiobjective Mixed Linear Programming (MOMILP). To solve large-scale problems, two meta-
heuristic algorithms including Multiobjective Parallel Genetic Algorithm (MOPGA) and Multiobjective Parallel Simulated
Annealing (MOPSA) are adapted. In experimental results, we randomly generated small-scale problems to compare MOMILP
with the Genetic Algorithm (GA) and Simulate Annealing (SA). To compare MOPSA and MOPGA with the state of the art and
show their strengths and limitations, we use a standard large-scale benchmark. *e simulation results of the proposed algorithms
show that although the MOPSA algorithm is faster, the MOPGA algorithm is more efficient in achieving optimal solutions for
large-scale problems compared with other methods.

1. Introduction

Optimal job scheduling problems are classified into single
machine scheduling, job shop scheduling, open shop
scheduling, flow shop scheduling, and hybrid scheduling
problems; where the single machine scheduling is the
simplest problem of scheduling. *e problem is to
schedule the processing of n jobs with varying processing
times on a single machine [1]. In the Job Shop Scheduling
Problem (JSSP), the problem is more complex. Here, each
job consists of a set of operations (O1, O2, . . ., On) that
need to be processed in a specific order. Each operation has
a unique machine on which it must be performed, and only
one operation per task may be performed at the moment
[2]. A more complex problem than JSSP is the Open Shop

Scheduling Problem (OSSP). OSSP involves m machines
(M1, M2, . . . , Mm) to perform n jobs (J1, J2, . . . , Jn), each
job involving m operations. Jth operation of Jj is indicated
by Oij which should be processed onmachine Mi for pij ≥ 0
units of time. *erefore, we will have a total of n × m

operations (O11, O12, . . . , Onm) [3]. Like OSSP, each job in
the Flow Shop Scheduling Problem (FSSP) consists of
precisely m operations. However, the ith operation of the
job must be executed on the ith machine. No machine is
capable of doing many operations simultaneously. *e
execution time for each action of each task is provided
earlier [4]. *e most complex problem in the class of
job scheduling problems is the hybrid scheduling problem
(HSFP). In this problem, n jobs (J1, J2, . . . , Jn), must
be processed in a multistage manufacturing facility in
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which each step has several concurrent and identical
machines [5].

*is paper addresses the problem of Biobjective Open
Shop Scheduling. In case of complexity of the problem, the
OSSP is in between the job shop scheduling and the flow
shop scheduling problems. However, all the problems in this
class are considered as NP-Hard problems. *e OSSP has a
broad range of applications across different sectors that
include timetabling, Satellite communication, health care
management, transportation, tourism, computer vision, and
many other applications. In the following subsection, we
introduce some related works that tried to solve the problem
of open shop scheduling.

1.1. Related Works. Production scheduling problems have
been widely studied in the past years. A detailed review of
this type of research work can be found in [6, 7]. Breit et al.
[8] solved the OSSP of two machines with a predetermined
stop time for one of the machines and proposed a heuristic
algorithm. Next, they set some predetermined stop times for
both machines and again used heuristic algorithms to ap-
proximate the problem. Hsu et al. [9] examined two different
periodic maintenance approaches simultaneously in the
single-machine scheduling problem. Periodic maintenance
approaches considered for their problem are such that the
machine stops after a certain period of time (T) or after
processing a certain number of jobs (K) in order to perform
the maintenance process. Obviously, if either of these
conditions occurs earlier, the machine will stop.

To quantitatively characterize the production and dis-
tribution optimization issue, Fu et al. [10] formulate a
mixed-integer programming model to minimize the maxi-
mum completion time. To best handle the presented issue,
an improved black widow optimization method is created to
address the researched problem. In their suggested method,
the solution representation, population initiation, procre-
ation, cannibalism, and mutation, as well as a simulated
annealing method, are uniquely constructed.

Another condition that arises in the presence of ma-
chines’ unavailability constraint is the impermissibility of
cutting work due to which in the absence of sufficient time to
perform an operation and face the machine stop, the desired
operation is not loaded on the machine and its processing is
postponed until machine stop is finished. Transportation
and movement times between machines are other criteria
that have been considered in scheduling problems. Struse-
vich [11] considered a time interval between the completion
of the processing of one activity of a job on one machine and
the beginning of the next activity of the same job on another
machine for two-machine OSSP and due to occurring
transportation in real conditions named it transportation
time. He also points out that in chemical and metallurgical
applications, these transportation times are equivalent to the
times of the heating or cooling processes.

Recently, Fu et al. [12] offer a stochastic biobjective two-
stage open shop scheduling problem that mimics a car repair
process where duties are delegated to different third-party
organizations with specialized equipment. *e optimization

issue was formulated by reducing the overall lateness and
processing costs, subject to different resource restrictions. In
order to tackle the open shop issue, a hybrid multiobjective
optimization of migratory birds, along with a genetic op-
eration and discrete event system, is developed by consid-
ering problem features.

*e OSSP is known as an NP-hard problem [13–15] and
it is not possible to solve these problems in polynomial time
except in small dimensions.*erefore, approximate solution
achievements including heuristic and metaheuristic
methods can be more efficient than exact methods. Panahi
et al. [16] used multiobjective simulated annealing and Ant
Colony Optimization (ACO) algorithm to solve Multi-
objective Open Shop Scheduling (MOOSS) with the ob-
jectives of total delay and the longest completion time.
Panahi and Tavakkoli-Moghaddam [17] combined general
and multiobjective simulated annealing algorithms with
ACO and used it to simultaneous optimization of two ob-
jective functions including the longest completion time and
total delay in OSSP. Drezner [18] used the Genetic Algo-
rithm (GA) and Simulated Annealing (SA) algorithm for
batch scheduling in the case of multifunction parallel
machines.

Task scheduling has been studied in much different
research works with an array of different applications from
task scheduling in cloud computing [19] to the flow shops in
factories [20, 21]. Most studies on scheduling problems have
been conducted under the basic assumption that machines
are available on all planning horizons, while this is not the
case in the real world. Machines may not be available for
reasons such as preventive maintenance, failure, rest periods,
and residual work from the previous planning period that
should be processed at the beginning of the new period, [22].
In many cases, unavailability times are known in advance, so
the decision-maker can make a more efficient decision by
considering them. Karimi et al. [23] considered a pre-
determined time for machine unavailability in the single
machine problem and proposed two heuristic methods to
solve it.

In this paper, an OSSP is addressed in which stops occur
at different times on machines and its duration is different
but specific for different machines.

*e intended objective functions include minimizing the
longest completion time (Cmax) and the sum of delays, which
are presented as a weight combination in a single function.
Also, due to the possibility of using different devices to
transport different items in a shop, the movement time in a
fixed route is different for each job. Also, the working path
from one machine to another is considered different from its
return path due to the minimization of material flow in-
terference. *erefore, the work transferring matrix is
asymmetric between different workstations. In order to solve
problems with small dimensions and when the weight of
each target is known, the exact approach of the mixed
biobjective linear mathematical model is adapted to use as a
problem-solving method, and later the results are compared
with the results of GA and SA in solving small-scale OSSP.
On the contrary, when the weight of each target is unknown,
the achievement of Pareto optimal solutions using
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metaheuristic algorithms including Multiobjective Parallel
Genetic Algorithm (MOPGA) and Multiobjective Parallel
Simulated Annealing (MOPSA) algorithm are adapted to
solve large-scale problems. *e parameters of the meta-
heuristic algorithms are adjusted using the Taguchi exper-
imental designmethod, as a result of which, algorithms show
a state of stability in the face of various problems.

1.2. 2e Contributions of the Study to the Literature. *is
study has various contributions to the literature from var-
ious aspects. *ese are as follows:

(i) *e exact approach of the mixed multiobjective
linear mathematical model is adapted to use as a
problem-solving method, and later the results are
compared with the results of GA and SA in solving
small-scale OSSP.

(ii) Multiobjective Parallel Genetic Algorithm
(MOPGA) and Multiobjective Parallel Simulated
Annealing (MOPSA) methods are adapted to solve
large-scale OSSP.

(iii) To improve the exploitation and exploration ca-
pabilities of MOPGA, the new candidate generation
stage of MOPGA was developed by changing
crossover and mutation operators.

(iv) Variations in MOPGA and MOPSA were compared
in detail with various heuristic algorithms selected
from the literature according to the average RPD,
execution time, and best solution criteria.

In the following, Section 2 presents a mixed linear
mathematical programming model. *e adapted meta-
heuristic algorithms and their details are described in Sec-
tion 3. Section 4 describes the design of experiments and
computational evaluation. Section 5 provides a conclusion
and future studies.

2. Mathematical Model

In this section, the problem is introduced using simplifying
assumptions as well as mathematical symbols and then a
multiobjective mixed linear programming model is presented
and analyzed to accurately solve small-scale problems.

To achieve the mathematical model, the available time of
each machine is considered as a packet of a certain length Ti
and jobs should be placed in such a way that their total
processing time does not exceed the length of the packet. To
clarify the issues, see Figure 1, in which J[j] indicates j

th job
in sequence and Bil indicates lth packet of machine i.

2.1. Problem Assumptions. Simplifying assumptions are
considered as follows:

(i) Each machine may process up to one task at a time.
(ii) Each machine may process up to one task at a time.

(iii) Jobs can be processed in any order by all or some
machines.

(iv) All jobs are available in the shop from the beginning
of the planning horizon.

(v) Job cutting is not allowed during processing.
(vi) *ere is only one machine of each type in the shop

(operations of each job are performed by only one
specific machine).

(vii) Unavailable times occur at specific times on each
machine.

*e length of available (and unavailable) times of ma-
chines is specific and depends on the machine and is fixed
during the planning period.

2.2. Indexes and Parameters

j, k: indexes of job (j, k� 1,2, . . ., n)
i, h: indexes of machines (i, h� 1,2, . . ., m)
l, l′: indexes of packets (l, l′� 1,2, . . ., b)
pij: processing time of job j on machine i
Trihj: job transferring time frommachine i to machine h
Ti: the length of the available time of machine i
ti: the length of unavailable time of machine i
dj: delivery date of job j

2.3. Decision Variables

stij: start time of preparing job j on machine i
Cij: completion time of job j on machine i
Cj: completion time of job j on the last machine
according to the sequence.
Tardj: tardiness of completion time of job j from the
delivery date

Yihj �
1 if job j onmachine i is processed beforemachine h

0 otherwise

Xijk �
1, if job j is processed onmachine i before job k

0, otherwise

Aijl �
1, if job j is located in packet l of machine i(Bil)

0, otherwise

2.4. Multiobjective Mixed Linear Programming Model. In
this section, using the above assumptions and symbols, a
Multiobjective Mixed Linear Programming Model
(MOMILP) is adapted to solve the open shop scheduling
problem, taking into account the unavailability of ma-
chines, preparation and separation times of jobs and
machines, and transmission times between machines to
simultaneously minimize the criteria of the longest com-
pletion time and the sum of delays as a single function. *e
MOMILP model is as follows:
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min z � θ1Cmax + θ2 

n

j�1
Tardj, (1)

stij + pij � cij∀j, jstij + pij � Trihj∀j, h, j; (2)

M 1 − Yihj ≤ sthji≠ h, (3)

≤ stik − M 1 − Aikl(  − M 1 − Xijk j≠ k stij + pij 

− M 1 − Aijl ∀i, j, k, l;
(4)

stij ≥ (l − 1) Ti + ti( Aijl∀i,j,l, (5)

Cij − M 1 − Aijl ≤ (l − 1)ti + l.Ti∀i,j,l, (6)

Cij + M 1 − Aijl ≥ (l − 1) ti + Ti( ∀i, j, l, (7)

M 1 − Aijl  + M 1 − Aikl‵(  + Xijk ≥ 1
∀i, j, k, l, l‵
j≠ k,

l< b, l‵
(8)

Xijk + Xikj � 1
∀i, k, j;

j< n, k< j
, (9)

Yihj + Yhij � 1
∀i, j, h;

i〈m, h〉i
, (10)



b

l�1
Aijl � 1∀i, j, (11)



n

j�1
pij.Aijl ≤Ti ∀i, l, (12)

Ci ≥Cij ∀i, j, (13)

Cmax ≥Cij∀i, (14)

Tardj ≥Cj − dj ∀j, (15)

stij, Cij, Cj, Cmax, Tardj ≥ 0∀i,j, (16)

Xijk, Yihj, Aijl ∈ 0, 1{ }

∀i, h, j, k, l

≠ h, j

≠ k

(17)

Equation (1) is the objective function of the problem,
which includes the convex linear combination of the two
criteria: (1) the longest completion time and (2) the sum of
the delays.

θ1 and θ2 are positive coefficients that represent the
weight of each target and θ1 + θ2 � 1. *e completion time
of each operation (Cij) is obtained by equation (2). If job j
on machine i is processed before machine h, we have
Yihj � 1, then the start time of preparing job j on machine h
(sthj � 1) will be larger than the completion time of that job
on machine i, this is shown using equation (3). If job j is
processed on machine i before job k (Xijk � 1) and both
jobs are located in the same packet l (Aijl � Aikl � 1), then
the start time of preparing job k on machine i (stik � 1) will
be larger than the completion time of job j on that machine,
this criterion is shown in equation (4). Consequently,
equation (5) ensures that no preparation takes place when
machines are unavailable. Equations (6) and (7) together
prevent the completion of operations during machines are
unavailable. Equations (8) and (9) simultaneously specify
the sequence of jobs on each machine and packets.
Equation (10) determines the order of the machines for the
operations of each job. Equation (11) ensures that each
operation takes place in exactly one packet of each ma-
chine. Equation (12) controls the sum of the total pro-
cessing times of the operations contained in a packet
according to the maximum time of that packet, which is the
access time of the relevant machine (Ti). *e completion
time of each job is calculated through equation (13) and
according to the objective function. Equations (14) and (15)
calculate the longest completion time and the delay time of
each operation, respectively. Finally, equations (16) and
(17) represent the negative variables and binary variables (0
or 1).

2.5.AnExample. Here, to clarify the concept of the problem,
we provide an example and solve it using the above
MOMILPmodel.*is example includes five jobs (n� 5), two
machines (m� 2), and five packets for each machine (b� 5).
*e rest of the parameters are as follows:

J[1] … J[j] J[j+1] … … … J[n]

Bi1
Bi2 Bi1

machine i

idle time of machine idle time of machineidle time of machine

Ti Ti Titi ti ti

Figure 1: A sequence of jobs on the machine.
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pij �

6 11

12 16

15 14

11 15

9 15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Trih1 �
0 0

2 0
 ,

Trih2 �
0 0

0 0
 ,

Ti � 26 16( , ti � 2 4( , dj,

Trih3 �
0 2

2 0
 , Trih4 �

0 0

2 0
 , Trih5 �

0 0

2 0
 

Ti � 26 16( , ti � 2 4( , dj

Ti � 26 16( , ti � 2 4( , dj

� 19 48 60 37 28( 

(18)

Considering the weight of the targets θ1 � θ2 � 0.5, the
global optimal solution Z� 90.5 is obtained by solving the
MOMILP model in Lingo 8 software; the Gantt chart of
which is depicted in Figure 2. As can be seen, no operation is
performed during the unavailable times of machines, which
are shown in gray. *us, our main goal of modeling this
design has been met. In addition, the sum of the total
processing times associated with the operations contained in
each packet does not exceed the time of that packet. Also, the
obtained sequence indicates that the delivery date has been
observed so that the jobs with an earlier delivery time are at
the beginning of the sequence and the jobs with a later
delivery time are at the end of the sequence. Another
noteworthy point is the observance of transfer times; as an
example, we can point to the distance between the com-
pletion of job J1 on machine M2 and starting this job on the
next machine (Tr211 � 2).

2.6. Model Analysis. In this section, the sensitivity of the
MOMILP model to the number of jobs (n), machines (m),
and packets (b) is investigated. To do so, all indexes related to
variables and constraints are shown in Tables 1 and 2, re-
spectively. *e effect of increasing the number of jobs,
machines, and packets on the number of variables and
constraints can also be seen in Table 3.

3. The Genetic Algorithm-Based Method

As mentioned in the introduction, the OSSP is known as an
NP-hard problem and only small-scale problems can be
solved accurately in a reasonable amount of time [24]. Al-
though the proposed mathematical model achieves an ac-
curate solution, its efficiency decreases as the dimensions of
the problem increase. Hence, heuristic methods or approx-
imate algorithms are more effective for solving medium- and
large-scale problems that commonly occur in the real world.

Genetic algorithms (GAs) are a class of general-
purpose search strategies based on natural selection and
genetics. GAs have been used effectively to a wide array of
optimization challenges [19, 25, 26]. In contrast to local
search algorithms such as SA, which are often focused on
manipulating a single viable solution and are extremely
quick, GAs retain and modify a population of possible
solutions. Despite the fact that GAs have shown to be a
diverse and successful search tool for addressing opti-
mization issues, there are still several scenarios in which
the basic GA performs poorly. *erefore, several hy-
bridization methods have been reported in the literature.
In this section, we also propose to use the Multiobjective
Parallel Genetic Algorithm to solve the OSSP.

3.1. Chromosome Display. Chromosomes are in fact
encoded solutions and points in solution space. In this
paper, each operation is considered as a gene and each
chromosome (solution) is represented as a permutation
of genes (operations). For example, consider a problem
with five jobs and 2 machines, and so 10 operations. A
chromosome (or an encoded solution) can be looked at
in Table 4 for reference.where Oij is the operation of job j
on machine i. According to this chromosome, operation
O21 will be processed before operation O11 (note that
these two operations are related to the same job) and
operation O14 will be processed before operation O11
(note that these two operations are related to the same
machine).

3.2. Initial Population. Scattering in generations prevents
rapid convergence and local optimums. *erefore, we
randomly generate the initial population (initial generation)
to maintain the scattering of solutions in the solution space
as much as possible. *at is, a random permutation from the
set {1, 2, . . ., m.n} is considered as an individual where m.n
indicates the number of operations.

3.3. Objective Function. In order to calculate the objective
function for each chromosome (solution space points), these
so-called coded solutions should be decoded. For this
purpose, we place the operations on the machines in as-
cending order from the first operation to the last one; taking
into account their unavailable times as well, we calculate
their completion time. *en, taking into account the
completion time of all operations, the longest completion
time is obtained Cmax � maxi,j Cij .

Also, in order to calculate the second expression of the
objective function, i.e., the sum of the delays, first the
completion time of each job is calculated as Cmax � Cj �

maxi Cij  and then the delay of that job is obtained by
Tardj � max[0, Cj − dj ]. Finally, the sum of delays is
calculated as 

n
j�1 Tardj. How to determine the values of

the coefficients θ1 and θ2 is explained in the next sections.
*erefore, the objective function of each chromosome is
calculated as Z � θ1Cmax + θ2 

n
j�1 Tardj.
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3.4. Selection. Selection is the process by which individuals
present in a generation are selected in pairs for mating.*ere
are various approaches for selection in the literature [27]. In
this paper, we use the roulette wheel selection approach,
according to which individuals with higher fitness have a

better chance of mating and this is in fact the basis of
Darwin’s theory. In order to apply the roulette wheel se-
lection, two parameters are required: individual selection
probability and individual cumulative probability, which are
obtained from equations (18) and (19), respectively:

PSi �
fi


popsize
j�1 fj

, (19)

CPi � 
i

j�1
PSj. (20)

According to the roulette wheel selection approach, a
number is randomly generated in the range [0, 1], then
individual i that meets the condition CPi−1 < r<CPi is se-
lected as one of the pairs. *is process is repeated for the
second one.

3.5. Crossover Operation. After selecting a pair of parents
using one of the selection methods, a genetic crossover
operator with the probability pc is used to combine the two
parents and generate two children. *ere are several
crossover techniques and combining parents: single-point
crossover, two-point crossover, multipoint crossover,
uniform crossover, and so on [28]. However, the main
problem with the crossover operation is that the feasibility
of new solutions (newborns) may not be guaranteed. In
cases where new chromosomes or newborns produce in-
feasible solutions, corrective action is usually taken to turn
them into feasible solutions, which will lengthen the
solving time, by maintaining the feasibility of new chro-
mosomes in each generation and without any modification
process [29]. In the following, the crossover operation is
described in four steps:

Step 1: Select two operations randomly from chro-
mosome 1 (parent).
Step 2: Transfer the genes from the two selected op-
erations along with all the genes between them from
parent 1 to child 1 while maintaining their location.
Step 3: Select the rest of the genes needed by child 1
from left to right until creating a complete chromosome
and place them the same way from left to right in the
empty spaces of child 1.
Step 4: To create the second child, replace the two
parents 1 and 2 and repeat steps 2 and 3 with the genes
of the same operations selected in step 1.

J1
11

M2 J5 J2 J4

60

J3
Time

16 20 35 36 40 56 7576 80 94

J4J5M1 J1 J J3
Time

9 13 19 26 28 40 56 71 82 8443 54

d1=19 d5=28 d4=37 d248 d3=60

Figure 2: Gantt chart of optimal solving of the example.

Table 1: Number of variables.

Variable Number
Z, Cmax 1
Cj, Tardj n
Stij, Cij mn
Xijk mn (n− 1)
Yijk mn (m− 1)
Aijl mnb

Table 2: Number of constraints.

Constraint Number
(1) 1
(2), (11), (13) mn
(3) mn (m− 1)
(4) mbn (n− 1)
(5), (6), (7) mnb
(8) mn (n− 1) b (b-1)/2
(9) mn (n− 1)/2
(10) mn (m-1)/2
(12) mb
(14), (15) n

Table 3: Number of variables and constraints according to the
model MOMILP.

Problem size (m.n.b) Number of variables Number of
constraints

2, 4, 4 61 393
3, 4, 4 95 607
2, 5, 5 91 826
3, 5, 5 141 1261
5, 30, 30 7156 2039926
10, 30, 30 15031 4082101
5, 40, 40 12541 6425901
10, 40, 40 26041 12854801

Table 4: An example of a chromosome for a problem with 5 jobs
and 2 machines, and 10 operations.

O11 O12 O13 O14 O15 O21 O22 O23 O24 O25

3 6 8 2 5 1 9 10 4 7

6 Complexity



For example, consider the two parents in Tables 5–8.

Step 1. Suppose the two operations selected by the
parent 1 are O14 and O22, in other words, genes 2 and 9,
respectively.
Step 2. Transfer genes 2, 5, 1, and 9 from parent 1 to
child 1 while maintaining their locations.
Step 3. Select the rest of the genes needed by child 1
(from left to right) from parent 2 and place them (from
left to right) in the empty spaces of child 1.
Step 4. Exchange the two parents 1 and 2 and repeat
steps 2 and 3 until creating child 2 as follows:

3.6.Mutation. In order to prevent the generated generations
from being directed toward the local optimums, a mutation
operator with a probability pm is applied to each of the
produced children. *is operator exchanges the two ran-
domly selected operations and their genes [29]. For example,
suppose that operations O12 and O24 are selected from child
1. *en, genes 6 and 8 are exchanged and mutated child will
be simillar to the result given in Table 9)

3.7. Termination Condition. *e GA continues until a ter-
mination criterion is met, which is m.n.εs from the begin-
ning and produces new generations [30]. Where ε is a
coefficient whose value is adjusted through experiments. In
the following sections, we explain how to set it up. Also, the
reason for choosing this termination condition is that it gives
the algorithm more time to solve larger problems.

3.8. Primary Genetic Algorithm. Before presenting the GA
for solving multiobjective problems, here we describe the
structure and performance of the original GA using the
above explanations. *e following is how the basic genetic
algorithm works in 12 steps:

Step 1. Generate popsize individuals (chromosome)
randomly as the initial population.
Step 2. Calculate the fitness of each individual
Step 3. Select a pair of parents from individuals based
on the selection strategy.
Step 4. Apply crossover operator with the probability pc
on the parents and generate two new children.
Step 5. Apply mutation operator with the probability
pm on each child.
Step 6. Calculate the fitness of children
Step 7. Repeat steps 3–6 until generating popsize new
children.
Step 8. Arrange all existing individuals, both old (i.e.,
the initial population) and new (i.e., generated chil-
dren), that reach 2 × popsize according to their fitness.
Step 9. Transfer popsize number of individuals with the
best fitness to the new generation.
Step 10. Check the termination condition, if it is not
met, go to step 3; otherwise, step 11.
Step 11. Select the best solution (the most fitted one) of
the last generation as the answer to the algorithm.
Step 12. End.

Values related to the parameters of the GA including pc,
pm, popsize, and ε will be determined by designing statistical
tests in future sections.

3.9. Multiobjective Parallel Genetic Algorithm. *ere is a lot
of research in the literature in which GA has been used to solve
multiobjective problems due to its high ability to deal with
multiobjective optimization. Since the GAs deal with a pop-
ulation of points (solutions), Pareto optimal multiple solutions
can be found in a population of GAs [27]. In the following, we
explain how to deal with a multiobjective problem.

In the mathematical model MOMILP, θ1 and θ2 are
introduced according to the weight of each objective Cmax
and 

n
j�1 Tardj, and the objective function is written as a

single function (1). Now, our biobjective problem has be-
come a single-objective problem. However, determining
weights is a delicate and sensitive task. To tackle this
problem, we can divide the population into several groups,
with individuals in each group searching for one of the
possible combinations of goal coefficients, while all groups
search in parallel for Pareto optimal solutions. In this way,
we can turn a multiobjective problem into a single-objective

Table 5: Chromosomes of parents 1 and 2.

Parent 1 3 6 8 2 5 1 9 10 4 7
Parent 2 4 9 5 6 2 1 7 10 8 3

Table 6: Transfer the genes from the two selected operations along
with all the genes between them from parent 1 to child 1 while
maintaining their location.

10 4 79153 6 8 2Parent 1

7 10 8 316 254 9Parent 2

9152Child 1

Table 7: Select the rest of the genes needed by child 1 from parent 2
and place them in the empty spaces of child 1.

10 8 39154 6 7 2Child 1

Table 8: Exchange the two parents 1 and 2 and repeat steps 2 and 3
until creating child 2.

9 10 47123 8 5 6Child 1

Table 9:*e genes 6 and 8 are exchanged andmutated is generated.

37 2 5 1 9 10 84 6Child 1
37 2 5 1 9 10 64 8Mutated Child 1
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problem with different weights. *erefore, we consider a set
of λ different weights with a little difference between the two
consecutive weights. Equation (20) shows the set of possible
combinations.

θ � θ11, θ
1
2 , θ21, θ

2
2 , . . . , θλ1, θ

λ
2  . (21)

Similarly, we divide the population into λ subpopu-
lations and assign weights of the above set to them. *us,
each subpopulation searches for Pareto optimal solutions
in a separate path. Subpopulations act independently and
unrelatedly as parallel GAs, but their other parameters
and operators, including crossover and mutation, the size
of the subpopulation, and termination conditions, are all
the same.

In this way, the scattering of solutions is effectively
strengthened. Also, Pareto solutions are stored to keep
dominant solutions. *is prevents losing dominant solu-
tions during the optimization process. *is set is updated
frequently to get closer to Pareto’s optimal solution. *e
process of MOPGA is as follows:

Step 1. Generate the initial population randomly, in-
cluding λ × popsize members
Step 2. Divide the initial population into λ
subpopulations
Step 3. Create the weights related to the single objective
function and assign to the subpopulations

θ � (sup × ρ, 1 − sub × ρ): sub � 0, 1, . . . , λ − 1 . (22)

For instance, if we set λ � 21 and ρ � 0.05, we will have:

θ � (0.0, 1.0), (0.05, 0.95), . . . , (1.0, 0.0){ }. (23)

Step 4. Perform the initial genetic algorithm process
from step 2 for all subpopulations and save the
dominant solutions
Step 5. Find the best solution among the dominant ones
Step 6. Finish

3.10. 2e Simulated Annealing (SA)-Based Method.
Another common metaheuristic algorithm for solving NP-
hard problems is Simulated Annealing. *is algorithm is
inspired by physical systems in which the energy of atoms is
reduced through the cooling process to a minimum level
[30–32]. SA analyzes the complete surface of the goal
function and attempts to optimize it while going both
uphill and downhill. Consequently, it is essentially inde-
pendent of the initial values, which are often a crucial input
in traditional algorithms. In addition, it can escape from
local optimums and locate the global optimum via uphill
and downhill maneuvers. In addition, SA makes fewer
rigorous assumptions about the objective function than
traditional algorithms. Because of these lenient assump-
tions, it can cope with objective functions with ridges and
plateaus more readily. Finally, it is capable of optimizing
objective functions that are not even specified for certain
parameter values [33].

In this section, we first provide an overview of the SA and
then describe the MOPSA.

3.10.1. 2e Primary Simulated Annealing (SA) Algorithm.
SA starts from a solution (energy level) as the basis of an
initial temperature (temp 0) and searches in the solution
space in the neighborhood of that solution. *e search
continues until reaching a termination condition, which we
set as m.n.φ iterations. Parameter φ is a fixed coefficient in
range (0, 1). In this algorithm, we also use the method of GA
to encode the problem solutions and introduce chromo-
somes. We also considered a random permutation of op-
erations as the base solution for the beginning. In order to
move from one solution to another, the neighborhood
search method described in Algorithm 1 is used. After
completing the neighborhood search process, the current
temperature is reduced by multiplying it by the parameter
μϵ(0, 1) and the neighborhood search process is repeated.

*e algorithm continues until reaching the final tem-
perature (tempf). During iterations and searches, the new
solution is accepted if it improves the value of the objective
function, otherwise, the new solution is accepted with the
probability exp(−Δ/tempi), in which tempi is the current
temperature and Δ � 100 × (Znew − Zold)/Znew. SA is
summarized in Algorithm 2. We consider the final tem-
perature as 1 and the value of other parameters of the al-
gorithm including temp, μ andφ set by the statistical
experiment design method is discussed in Section 4.

3.10.2. Multiobjective Parallel Simulated Annealing (SA).
MOPSA process is very similar to the process of MOPGA
and both use the same approach to deal with multiobjective
optimization. Here, the objective function is considered as a
single function (1) and several SA examines the different
weights of each target in parallel and independently. *e
difference between starting MOPSA and MOPGA is that, in
MOPGA, the initial population is divided into several
subpopulations, but since SA starts with only one chro-
mosome, such a division is not possible. *e process of
MOPSA is as follows:

Step 1. Produce λ chromosomes randomly
Step 2. Produce the weights of the single objective
function as equation (22) and assign them to the
chromosomes
Step 3. Perform the primary SA as shown in Algorithm
2 for all chromosomes from step 2 and store the
dominant solutions
Step 4. Find the best solution among the dominant ones
Step 5. End

4. Experimental Design and
Computation Evaluation

In this section, we seek to establish the adapted algorithms
through experiments and statistical analysis. For this pur-
pose, different levels of the relevant factors are considered
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and their different combinations are investigated. *erefore,
the Taguchi approach is used as an experimental design
method in this paper.

In addition, after adjusting the parameters of the pro-
posed algorithms using the Taguchi method and by gen-
erating random data, two problem groups, one with small
dimensions and the other with large dimensions, are ran-
domly generated and the results of the solution methods are
compared.

We also compare the results of our experiments on a large-
scale benchmark with other methods that solved the OSSP.

4.1. Taguchi Experiment Design. Taguchi method is one of
the statistical analysis methods in which using orthogonal
arrays the number of experiments is significantly reduced
compared to complete factorial designs [30]. For example, to
design an experiment with four factors, each including three
levels, a complete factorial design performs 34 � 81 exper-
iments, but Taguchi reduces them to nine experiments.

Taguchi believed that the key to improving quality was to
reduce deviations, not just controlling placement within the
specified range. *erefore, he tried to reduce the deviations
to zero and paid less attention to being on a fixed slope. *is
is the main reason why the Taguchi method is mentioned as
a reliable method [34]. According to the Taguchi method,
factors are divided into two categories: controllable factors

or signals and uncontrollable factors or noise. In order to
reduce the deviations, a fraction called signal to noise (S/N)
is defined which indicates the sensitivity of the response
variable to uncontrollable factors and shows the deviation
around a certain amount of signal. High values of S/N in-
dicate low deviation, which means that controllable factors
are more effective than uncontrollable ones. Using the
optimal levels of factors obtained by this method, close to the
mean value with the least deviation is expected [30].

To convert the objective function to the fraction S/N, three
types of criteria can be imagined in the Taguchi method: “the
less the better,” “the more the better,” and “the closer to the
nominal value the better” [30]. According to the measure-
ment criterion of the problem discussed in this, which is
expressed as a minimization expression, the “less is better”
mode is appropriate. *e relevant S/N formula is as follows:

S

N
� −10 log10 Z

2
 . (24)

Also, a well-known performance criterion named RPD is
used:

RPD �
Algsol − Minsol

Minsol
.100, (25)

Where Algsol is the value of an objective function of an
example which is obtained from an algorithm of experiment

(1) Choose a gene at random.
(2) If the selected gene is located in the first location of the chromosome, then replace it with the next gene.

Otherwise,
(3) If the selected gene is located at the last location of the chromosome replace it with the previous gene.

Otherwise,
(6) Evaluate exchanging with the two lateral genes (previous and next).
(7) Replace the selected gene with the lateral gene that gets the most improvement.
(8) End of condition.

ALGORITHM 1: Neighborhood search simulated annealing algorithm.

(1) Generate a random permutation of operations.
(2) Calculate the value of the objective function.
(3) Set the parameters temp, tempf, μ,φ.
(4) Check the termination condition, then go to step 5 if not met and go to step 15 if met.
(5) Set repeat � 0.
(6) repeat< Int(m.n.φ) go to step 7, otherwise, go to step 14.
(7) Call the neighborhood search process.
(8) If the value of the objective function is improved, go to step 9; otherwise go to step 10.
(9) Accept the new solution, update the value of the objective function, and go to step 13.
(10) Select a random number in (0, 1) and put it in rand.
(11) If exp(−Δ/tempi)< ran d go to step 12; otherwise, go to step 13.
(12) Accept the new solution, and update the value of the objective function.
(13) Set repeat � repeat + 1.
(14) Modify the new temperature as tempnew � μ.tempold and go to step 4.
(15) End.

ALGORITHM 2: Steps of the primary simulated annealing algorithm.
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design and Minsol is the minimum value of the objective
function of that example which is obtained from all the
algorithms of experiments. So, it is obvious that low RPD
values are more valuable.

4.1.1. Data Generation. To perform Taguchi experiments, a
problem with dimensions (m, n, b) � (10, 5, 20) is con-
sidered, and five iterations of the same are generated ran-
domly. Also, other literature-inspired [9, 35–37] parameters
of the problem are as follows:

(i) Processing times have a continuous uniform dis-
tribution in (1, 99).

(ii) Transfer times between machines have a continuous
uniform distribution in (1) and (20).

(iii) Consecutive unavailable durations of each machine
have a uniform distribution in (1, 50).

(iv) Consecutive machine access times (packet size of
each machine) are calculated as follows:

Ti � max a 
n

j�1
pij,maxipij

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (26)

where a is selected from 1/5, 1/4, 1/3{ } randomly.

Delivery time is calculated as follows:

dj � 
m

i�1
pij +


m
i�1 

m
h�1 Trihj 

m
+ U 0 1( .(n − 1).


m
i�1 ti

m
.

(27)

In which dj is the total time that a job is on all machines.


m
i�1 pij is the average movement between all machines.


m
i�1 

m
h�1 Trihj/m is the average unavailable times of all

machines.

4.1.2. Adjusting the Parameters of the MOPGA. Factors to be
set in the MOPGA algorithm are as follows: crossover
probability (pc), mutation probability (pm), population size
(popsize), and termination criterion coefficient (ε).
According to Table 10, three levels are considered for each
factor [29, 30]. So, Orthogonal Array Design L9 is the most
appropriate case because it has exactly the same number of
factors and levels as the experiment and meets all objectives.
Combinations of different levels of factors in each experi-
ment of the design L9 for the MOPGA algorithm are shown
in Table 11. MOPGA and all experiment designs are pro-
grammed in C#.Net visual language and run on a computer
with GHz Intel® Core™ and 4GB ram. According to the
results, optimal levels of factors are as follows: pc � 0.8,
pm � 0.2, popsize � 30 and ε � 0.4.

In order to find the effect of each factor on the response
variable, we perform an analysis of variance (ANOVA). It is
important to note that in the designed experiment, the
degree of error freedom is 0. To deal with this problem, the
factors that have the lowest mean squares are considered
errors. In the above experiment, factors pc and popsize with

mean squares of 0.92 and 0.70, respectively, are of the least
mean squares and so have the least effect on the response
variable. *erefore, these two factors are considered errors.
Analysis of the variance of the S/N fraction is given in
Table 12. *erefore, the most effective factors are pm and ε
with the percentage of effect of 86.92% and 7.81%,
respectively.

4.1.3. Adjusting the Parameters of the MOPSA. According to
the description of the SA, three factors should be adjusted:
initial temperature (temp0), temperature reduction coeffi-
cient (μ), and the coefficient of the number of iterations per
temperature (φ). Considering two levels for each factor,
orthogonal array L4 is suitable and its factors and levels are
depicted in Table 13. Also, the combinations of different
levels of factors in each experiment of design L4 of the
MOPSA are shown in Table 14. MOPSA and all experiment
designs are programmed in C#.Net and run on a computer
with GHz Intel® Core™ and 4GB ram. Optimal levels of
factors are as follows: temp0 � 100, μ � 0.7, and φ � 0.3.

An analysis of variance is performed to find the effect of
each factor. Also, to prevent the error degree of freedom
from zeroing, we consider the factor with the lowest mean
squares as the error. *e results indicate that the factor μ
with the mean square 0.03 has the lowest effect on the re-
sponse variable. Analysis of variance of S/N for the factors of
theMOPSA algorithm is shown in Table 15 in which factor φ
with the percentage of effect of 66.62% has the highest effect
on the response variable. As well, temp0 is the second ef-
fective factor with a percentage of effect of 21.89.

4.2. Computational Evaluation. In order to evaluate the
performance of the MOMILP model and the proposed
algorithms, two sets of problems including small-scale

Table 10: Factors of MOPGA algorithm and their levels.

Factor
Level

(1) (2) (3)
Pc 0.4 0.6 0.8
Pm 0.0 0.1 0.2
popsize 20 30 40
ϵ 0.2 0.3 0.4

Table 11: Experiments related to the array L9 in the MOPGA
algorithm.

Experiment
Factor

Pc Pm popsize ϵ
1 0.4 0.0 20 0.2
2 0.4 0.1 40 0.3
3 0.4 0.2 30 0.4
4 0.6 0.0 40 0.4
5 0.6 0.1 30 0.2
6 0.6 0.2 20 0.3
7 0.8 0.0 30 0.3
8 0.8 0.1 20 0.4
9 0.8 0.2 40 0.2
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Table 12: Analysis of variance of the S/N fraction for the factors of the MOPGA algorithm.

Factor df SS MS F Percentage of effect (%) Cumulative percentage (%) p-value
popsize 2 108.56 54.28 67.07 86.93 86.93 0.00
ε 2 11.23 5.61 6.94 7.81 94.74 0.05
Error (pc + popsize 4 3.24 0.81 5.26 100
Total 8 123.02

Table 13: Factors of MOPSA algorithm and their levels.

Factor
Level

(1) (2)
temp0 50 100
μ 0.7 0.8
φ 0.3 0.6

Table 14: Array experiments L4 in MOPSA algorithm.

Experiment
Factor

temp0 μ ϕ

1 50 0.7 0.3
2 50 0.8 0.6
3 100 0.7 0.6
4 100 0.8 0.3

Table 15: Analysis of variance of the S/N fraction for the factors of the MOPSA algorithm.

Factor df SS MS F Percentage of effect (%) Cumulative percentage (%) p-value
temp0 1 0.17 0.17 6.72 21.89 21.89 0.23
ϕ 1 0.47 0.47 18.40 66.62 88.51 0.15
Error (μ) 1 0.03 0.03 11.49 100
Total 3 0.66

Table 16: Performance of MOMILP model and primary GA and SA algorithms in dealing with small-scale problems (θ1 � θ2 � 0.5.).

Problem
Z Deviation from optimum (%) Solving time (s)

m, n, b MOMILP GA SA MOMILP GA (%) SA (%) MOMILP GA SA
1 2, 4, 8 449.74 449.74 510.53 0 0.00 13.52 11 84 1
2 3, 4, 8 347.31 350.83 668.90 0 1.02 92.60 60 105 1
3 2, 5, 10 492.95 492.95 726.71 0 0.00 47.42 145 106 1
4 3, 5, 10 382.65 466.38 737.00 0 21.88 92.61 1951 147 2
5 2, 6, 12 848.09 859.43 1415.23 0 1.34 66.87 1386 105 3
6 3, 6, 12 — 1026.97 2375.36 — — — 38744 168 4
Average 0 4.85 62.60

Table 17: Average RPD for algorithms MOPGA and MOPSA in solving large-scale problems.

Problem m.n.b MOPGA MOPSA Problem m.n.b MOPGA MOPSA
7 5, 10, 20 0.03 0.69 17 5, 20, 40 0.05 0.39
8 5, 10, 20 0.03 0.62 18 5, 20, 40 0.01 0.47
9 5, 10, 20 0.07 1.10 19 5, 20, 40 0.05 0.48
10 5, 10, 20 0.02 0.76 20 5, 20, 40 0.04 0.65
11 5, 10, 20 0.04 0.80 21 5, 20, 40 0.04 0.54
12 10, 10, 20 0.08 0.73 22 10, 20, 40 0.01 0.20
13 10, 10, 20 0.11 0.80 23 10, 20, 40 0.03 0.24
14 10, 10, 20 0.07 0.73 24 10, 20, 40 0.04 0.28
15 10, 10, 20 0.06 0.80 25 10, 20, 40 0.07 0.45
16 10, 10, 20 0.08 0.61 26 10, 20, 40 0.06 0.41
Average RPD of MOPGA: 0.05
Average RPD of MOPSA: 0.59
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Table 18: Simulation results of the proposed algorithm and comparable algorithms for the Taillard [38] benchmarks.

Benchmarks Optimal solution SA GA Hybrid GA Hybrid GA GA EGA_OS ACS CS CSO BA_OS MOPSA MOPGA
4× 4−1 193 193 193 213 193 193 193 193 193 193 193 193 193
4× 4− 2 236 236 236 240 236 239 239 236 236 236 236 236 236
4× 4− 3 271 271 271 293 271 271 271 271 271 271 271 271 271
4× 4–4 250 250 250 253 250 250 250 250 252 250 250 250 250
4× 4− 5 295 295 295 303 295 295 295 295 295 295 295 295 295
4× 4− 6 189 189 189 209 189 189 189 189 189 189 189 189 189
4× 4− 7 201 201 201 203 201 201 201 201 201 201 201 201 201
4× 4− 8 217 217 217 224 217 217 217 217 217 217 217 217 217
4× 4− 9 261 261 261 281 261 261 261 261 261 261 261 261 261
4× 4−10 217 217 217 230 217 217 217 217 217 217 217 217 217
5× 5−1 300 300 301 323 300 301 300 301 301 300 300 300 300
5× 5− 2 262 262 262 269 262 263 262 262 262 262 262 262 262
5× 5− 3 323 323 331 353 323 335 323 331 335 323 323 323 323
5× 5− 4 310 310 N/A N/A 310 316 310 315 314 310 310 310 310
5× 5− 5 326 326 N/A N/A 326 330 326 331 329 326 326 326 326
5× 5− 6 312 312 312 327 312 312 312 317 318 312 312 312 312
5× 5− 7 303 303 N/A N/A 303 308 303 308 305 303 303 303 303
5× 5− 8 300 300 N/A N/A 300 304 300 304 303 300 300 300 300
5× 5− 9 353 353 353 373 353 358 353 358 358 353 353 353 353
5× 5−10 326 326 326 341 326 328 326 329 329 326 326 326 326
7× 7−1 435 435 438 447 435 436 435 435 436 435 435 435 435
7× 7− 2 443 443 455 454 443 447 443 445 447 443 443 443 443
7× 7− 3 468 468 N/A N/A 468 472 468 479 472 468 468 468 468
7× 7− 4 463 463 N/A N/A 463 463 463 467 466 463 463 463 463
7× 7− 5 416 416 N/A N/A 416 417 416 419 416 416 416 416 416
7× 7− 6 451 451 N/A N/A 451 455 451 460 454 452 451 452 451
7× 7− 7 422 422 443 450 422 426 422 435 425 422 422 422 422
7× 7− 8 424 424 N/A N/A 424 424 424 424 424 426 424 424 424
7× 7− 9 458 458 465 467 458 458 458 458 458 458 458 459 458
7× 7−10 398 398 405 406 398 398 398 398 399 398 398 399 398
10×10−1 637 637 667 655 637 637 637 638 639 645 637 641 637
10×10− 2 588 588 N/A N/A 588 588 588 588 688 588 588 588 588
10×10− 3 598 598 N/A N/A 598 598 598 599 600 599 598 598 598
10×10− 4 577 577 586 581 577 577 577 577 577 577 577 577 577
10×10− 5 640 640 N/A N/A 640 640 640 640 640 640 640 640 640
10×10− 6 538 538 555 541 538 538 538 538 538 538 538 538 538
10×10− 7 616 616 N/A N/A 616 616 616 616 616 616 616 616 616
10×10− 8 595 595 N/A N/A 595 595 595 595 595 595 595 595 595
10×10− 9 595 595 627 598 595 595 595 595 595 595 595 595 595
10×10−10 596 596 623 605 596 596 596 596 596 596 596 596 596
15×15−1 937 937 967 937 937 937 937 937 937 937 937 937 937
15×15− 2 918 918 N/A N/A 918 918 918 918 918 918 918 919 918
15×15− 3 871 871 904 871 871 871 871 871 871 871 871 871 871
15×15− 4 934 934 969 934 934 934 934 934 934 934 934 934 934
15×15− 5 946 946 N/A N/A 946 946 946 946 946 946 946 948 946
15×15− 6 933 933 N/A N/A 933 933 933 933 933 933 933 933 933
15×15− 7 891 891 N/A N/A 891 891 891 891 891 891 891 891 891
15×15− 8 893 893 928 893 893 893 893 893 893 893 893 893 893
15×15− 9 899 899 N/A N/A 899 899 899 899 902 902 899 913 899
15×15−10 902 902 N/A N/A 902 902 902 902 902 902 902 902 902
20× 20−1 1155 1155 1230 1165 1155 1155 1155 1155 1155 1155 1155 1166 1155
20× 20− 2 1241 1241 N/A N/A 1241 1241 1242 1241 1242 1243 1241 1260 1241
20× 20− 3 1257 1282 1292 1257 1257 1257 1257 1257 1257 1257 1257 1257 1259
20× 20− 4 1248 1274 N/A N/A 1248 1248 1248 1248 1248 1248 1248 1253 1248
20× 20− 5 1256 1289 1315 1256 1256 1256 1256 1256 1256 1256 1256 1256 1256
20× 20− 6 1204 1204 1266 1207 1204 1204 1204 1204 1204 1204 1204 1204 1204
20× 20− 7 1294 1294 N/A N/A 1294 1294 1294 1294 1295 1294 1294 1310 1294
20× 20− 8 1169 1169 N/A N/A 1173 1171 1173 1170 1176 1175 1170 1173 1176
20× 20− 9 1289 1307 1339 1289 1289 1289 1289 1289 1289 1289 1289 1289 1289
20× 20−10 1241 N/A 1307 1241 1241 1241 1241 N/A 1241 1241 1241 1241 1241
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problems (n � 4, 5, 6; m � 2, 3) and large-scale problems
(n � 10, 20; m � 5, 10) have been generated [26]. Con-
sidering one iteration for each of the small-scale prob-
lems and five iterations for each of the large-scale
problems, we will have a total of 26 problems. *e rest of
the parameters are considered exactly as in the Data
Generation Section. Considering the weights as
θ1 � θ2 � 0.5, small-scale problems are solved using the
primary GA and SA and the results will be compared to
the optimal solutions obtained by the MOMILP model
with the mentioned weights. MOMILP model is coded in
Lingo 8 and C#.Net is used to code the primary algo-
rithms GA and SA.

*e performance of the MOMILP model and primary
SA and GA are shown in Table 16. As seen in the table,
although the MOMILP model is a suitable method to solve
small-scale problems, by increasing the computational time
of the MOMILP model while magnifying the problem, the
GA method becomes more efficient with a deviation of
4.85% from the optimum. As well, although the SA algo-
rithm shows a relatively large deviation from the optimal
solution, its time saving compared to GA is clear.

To solve large-scale problems, MOPGA and MOPSA
algorithms are used and each problem is solved five times
using each of the algorithms. In addition, in order to
compare algorithms, obtained results are converted to rel-
ative percentage difference (RPD) criteria and are shown in

Table 17. *erefore, MOPGA with an average RPD of 0.05%
is more efficient and stable than MOPSA in solving large-
scale problems.

In addition, MOPGA and MOPSA are programmed in
C#.Net programming language, and all algorithms including
models MOMILP, GA, SA, MOPGA, and MOPSA are
performed on a computer with CPU 3GHz Intel® Core™ I
and 4GB RAM.

In order to show the efficiency of the proposed algo-
rithm (MOPGA), we tested the above algorithm on
benchmarks by Taillard [38] and compared it with other
metaheuristic algorithms including SA [39], GA [40],
Hybrid GA [40], GA [41], Hybrid GA [42], Ant Colony
System (ACS) [43], Cuckoo Search (CS) [43], Cat Swarm
Optimization (CSO) algorithm [44], Extended Genetic
Algorithm Open Shop (EGA_OS) [14], and Bat Algorithm
Open Shop (BA_OS) [22]. Table 18 shows the simulation
results of the proposed algorithm and the comparable al-
gorithms for different benchmarks. As mentioned in this
table, the proposed algorithms were able to achieve the
optimal solution in most benchmarks and solve the
problem well.

As you can see in Table 19, the MOPSA algorithm has
less execution time than the other two algorithms and was
able to respond in less time.*eMOPGA algorithmwas able
to achieve the optimal answer in less time than the CSO
algorithm.

Table 19: Execution time of the proposed algorithm and compared algorithms in terms of seconds.

Benchmarks CSO MOPSA MOPGA Benchmarks CSO MOPSA MOPGA
4× 4−1 0.001 0.001 0.003 10×10−1 160.762 158.514 160.216
4× 4− 2 0.001 0.001 0.007 10×10− 2 474.782 472.948 474.309
4× 4− 3 0.001 0.001 0.018 10×10− 3 68.567 65.781 66.118
4× 4− 4 0.156 0.101 0.148 10×10− 4 41.04 40.014 40.783
4× 4− 5 0.125 0.097 0.129 10×10− 5 679.018 678.091 678.615
4× 4− 6 0.003 0.001 0.009 10×10− 6 126.936 122.726 123.552
4× 4− 7 0.109 0.074 0.101 10×10− 7 22.877 20.281 21.227
4× 4− 8 0.359 0.231 0.287 10×10− 8 375.292 371.557 374.591
4× 4− 9 0.219 0.142 0.186 10×10− 9 263.801 257.890 262.175
4× 4−10 0.156 0.099 0.121 10×10−10 112.65 110.032 11.758
5× 5−1 0.610 0.451 0.573 15×15−1 250.323 247.080 248.903
5× 5− 2 0.735 0.618 0.691 15×15− 2 501.669 494.118 486.337
5× 5− 3 2.235 1.876 2.116 15×15− 3 498.766 492.016 493.768
5× 5− 4 8.906 6.569 8.592 15×15− 4 112.994 109.854 11.243
5× 5− 5 1.344 1.123 1.338 15×15− 5 834.63 827.603 831.728
5× 5− 6 13.813 11.097 12.589 15×15− 6 149.578 147.932 148.005
5× 5− 7 14.688 13.458 13.976 15×15− 7 867.539 863.590 564.329
5× 5− 8 35.236 31.231 34.811 15×15− 8 176.073 175.327 175.824
5× 5− 9 4.032 2.642 3.628 15×15− 9 658.615 652.187 655.442
5× 5−10 2.453 2.321 2.404 15×15−10 891.272 887.849 890.119
7× 7−1 24.375 21.968 23.211 20× 20−1 457.839 453.202 455.601
7× 7− 2 26.065 24.376 24.897 20× 20− 2 618.409 607.114 610.105
7× 7− 3 51.658 47.612 50.626 20× 20− 3 340.266 337.621 338.290
7× 7− 227.313 221.874 224.529 20× 20− 4 816.467 811.479 814.471
7× 7− 5 169.751 167.496 168.004 20× 20− 5 432.391 426.719 431.772
7× 7− 6 640.466 633.012 137.831 20× 20− 6 806.064 805.431 805.712
7× 7− 7 349.208 347.890 348.210 20× 20− 7 859.499 857.386 859.116
7× 7− 8 21.567 20.001 20.901 20× 20− 8 695.772 694.329 694.707
7× 7− 9 83.953 78.016 81.378 20× 20− 9 207.641 203.989 206.752
7× 7−10 112.39 110.731 112.004 20× 20−10 489.458 484.307 488.262
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*e accuracy of the proposed algorithm in programming
things well on machines is shown in Figure 3. *is figure
shows the Gantt chart for the 15 × 15 − 1 benchmark. In this
case, a few free times left for the machine shows the accuracy
of the proposed algorithm.

Figure 4 shows the fitness diagram of the MOPGA for
the 15 × 15 − 1 benchmark. In this diagram, the best fitness
is getting close to 900 while the walk number crosses 900
walks.

Figure 5 shows the dispersion diagram for the 15 × 15 −

1 benchmark. Population dispersion is always maintained in
the MOPGA. As you can see in the above algorithm, pre-
mature convergence of chromosomes is prevented.

5. Conclusion

In this paper, a multiobjective mixed-integer linear pro-
gramming model is adapted to solve biobjective OSSP
considering unavailable times for machines. Also, “maxi-
mum completion time” and “total delays” are considered in
optimization criteria simultaneously. *e efficiency of the
MOMILP model is investigated through a number of small-
scale problems and compared with the efficiency and exe-
cution time of GA and SA. Although the results indicate the
high ability of the MOMILP model to solve small-scale

problems, the analyzes performed on the model highlight
the need to develop other methods such as heuristic and
metaheuristic methods to solve large-scale problems.
*erefore, MOPGA and MOPSA algorithms were intro-
duced for multiobjective problems with unknown weights
for objectives. Also, the reliability of multiobjective algo-
rithms is evaluated by designing Taguchi experiments. Re-
sults show that the MOPGA algorithm is more efficient than
the MOPSA algorithm in dealing with large-scale problems.
Finally, variations in MOPGA and MOPSA were compared
in detail with various heuristic algorithms selected from the
literature according to the Average RPD, execution time,
and best solution criteria. Our experiments proved the
success of the proposed solutions by running MOPGA and
MOPSA not only on low- and medium-scaled open shop
scheduling samples but also on large-scale open shop
scheduling samples.

In the following, some areas of development and
expanding the present study are mentioned:

(i) Developing other solution methods, including new
heuristic and metaheuristic methods to solve large-
scale problems and comparison with the algorithms
proposed in this paper can be a good idea for
making the model more practical.

(ii) Considering more diverse optimization criteria
according to the needs of today’s industry can also
provide the basis for future studies.

(iii) In this paper, optimizing factors of the algorithms in
discrete space are explored. *erefore, another area
of development of the present paper can be the
optimization of factors in the continuous space.

(iv) A sequence-dependent preparation and separation
times can be considered and then a mathematical
model can be developed.

(v) *e number of vehicles can be used as a constraint
on the problem.

(vi) Considering variable speeds for machines seems
practical. *at is, the processing speed of the
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Figure 3: Gantt chart of the MOPGA for the 15 × 15 − 1
benchmark.
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Figure 4: Fitness diagram of the MOPGA for the 15 × 15 − 1
benchmark.
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Figure 5: Dispersion diagram of the MOPGA for the 15 × 15 − 1
benchmark.
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machines decreases after performing a certain
number of jobs or a certain period of time and then
increases again after performing the maintenance
process.

Data Availability

We used data from ref [26] and discussed the same in
Section 4.2 of the manuscript.
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