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Edge computing empowers the IoV to achieve performance requirements such as low latency and high computational load for in-vehicle
services. However, the driving of vehicles is random and unevenly distributed, causing problems such as unbalanced load of edge servers
and low edge resource utilization.*erefore, in this article, based on the vehicle trajectories, the edge resource allocation algorithm and load
balancing algorithm are used to obtain the load prediction value of the edge server and then calculate the optimal edge resource quantity in
order to reduce the resource idleness asmuch as possible.*e experiments demonstrate that the application of the edge resource allocation
algorithm and load balancing algorithm based on vehicle trajectory significantly reduces the blocking rate of edge resource requests by
vehicles and improves the benefits of the overall IoV edge system.

1. Introduction

*e Internet of vehicles (IoV) has emerged as a fundamental
technique that substantially pushes forward the develop-
ment of intelligent transportation [1]. *e automotive ap-
plications that significantly benefit people’s daily activities
are increasingly abundant, such as accurate localization,
green travel priority plan query, driving judgment, and
entertainment information. *is may lead to a considerable
amount of data and inefficient service quality. With the
increasing growth of built-in sensors and actuators, vehicles
cannot fulfill the incremental information processing
transmitted from the surrounding environment. In general,
the IoV services are most delay-sensitive, while vehicles are
not integrated with enough computing resources to meet the
real-time requirements, leading to the high traffic demands
from vehicles to the cloud center. However, the option of
requesting to the distal cloud may contribute to the con-
gested backhaul link and unstable connections [2]. As one of
the key enabling technologies in the 5G era, the edge
computing technology can reduce the cloud computing load
and data processing delay by deploying sufficient computing
resources as well as adequate storage capacities in the
proximity of vehicles. With the configuration of EC, the IoV

services can be offloaded to the ENs rather than the remote
cloud center, and the transmission latency resulting from the
cloud is reduced [3]. However, how much edge resources to
deploy is a question, due to the high cost and limited amount
of resources deployed at the edge. *erefore, designing an
efficient edge resource allocation and selection algorithm
will help improve the success rate of the vehicle’s request for
edge resources.

*e authors in [4] propose a proactive resource allo-
cation approach, in which all the cells that are one-hop away
from the current cell will be provisioned with resources. *e
authors in [5] propose to allocate resources to a subset of
neighboring cells, in which each cell is marked with different
weight values that indicate the handover probability. In
[6, 7], a load balancing algorithm between different cells is
proposed. *is algorithm uses the queueing theory and it-
erative methods to find the task redirection flow from an
overloaded edge server to an unloaded edge server and
alleviate the randomness of vehicle driving caused by the
unbalanced loads among edge servers and the low resource
utilization. In order to incorporate the spatial information of
QoS into data prediction and recommendation, the study
presented in [8] puts forward a location-aware nonnegative
tensor factorization technique, in which a location stamp is
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attached to each piece of QoS data. *e location-aware
personalized CF method proposed in [9] leverages both
locations of users and web services when selecting similar
neighbors for the target user or service. *e authors in [10]
propose an optimization framework based on stochastic
traffic analysis, to minimize the cost of resource provisioning
under the premise of ensuring that the service blocking
probability is less than a predefined threshold, in order to
improve the utilization rate of edge resources. In [11], a
citywide and real-time model is proposed for estimating the
travel time of any path (represented as a sequence of con-
nected road segments) in real time in a city, based on the
GPS trajectories of vehicles received in current time slots and
over a period of history, as well as map data sources. In
[12, 13], the authors show that each edge server can retrieve
data from other edge servers to serve users with a low latency
guarantee when another edge server maintains relatively
adequate resources in the same area. *e authors in [14]
propose a selection algorithm between vehicles and edge
nodes based on mobile information, server available re-
sources, and Quality of Service (QoS) conditions of service.
*e algorithm sorts these edge servers around the vehicle
based on distance and service delay, in order to reduce the
response delay at the edge system of the IoV. Referring to
[15], a powerful way to reduce the completion time of a
request in the mobile edge environment is to offload its tasks
to nearby cloudlets, which consist of clusters of computers.
*e authors in [16] propose the edge resource allocation
algorithm based on the improved vehicle trajectory pre-
diction, the and traffic statistics method is used to obtain the
load prediction value of the edge server; then, the optimal
number of edge resources is calculated on the premise of
reducing resource idleness as much as possible. *e authors
in [17] propose the task offloading problem from a matching
perspective and aim to optimize the total network delay and
a pricing-based one-to-one matching algorithm and pricing-
based one-to-many matching algorithms for the task off-
loading. *ree load sharing schemes, namely, no sharing,
random sharing, and least loaded sharing, are mentioned in
[18], which exploit the collaboration between clustered
servers in different degrees, and the simulation experiment is
conducted by queuing theory.

However, these methods do not integrate the calculation
of minimum edge resources with the load balancing among
edge nodes. In order to incorporate the keeping of QoS into
the allocation and selection methods of IoV edge resources,
it is challenging to achieve the trade-offs between reducing
the expenditure of edge servers and maximizing the success
rate of requesting to edge server by connected vehicle. *is
article is the first attempt to adjust the optimal edge resource
in each edge node. *e main contributions are summarized
as follows:

(i) An optimization framework is developed in order to
minimize the cost of configuring edge resources to
compute the minimum amount of edge resources in
each cell and in each period, while the service
blocking probability is guaranteed to be smaller
than a predefined threshold

(ii) A novel method is proposed for adjusting the load
balancing of different edge servers and making a
distribution of the minimum amount of resource
among these edge servers, in order to improve the
overall benefits of the edge system of the IoV

(iii) An algorithm is developed for connected vehicles to
select edge nodes, and then, a set of experiments are
performed to evaluate the validity and efficiency of
the edge resource allocation and selection method
based on vehicle trajectory prediction

2. Model of the Edge Computation
System for IoVs

In order to show the operational process in IoVs, this article
assumes the model of edge computation system for IoV as
shown in Figure 1. *e model is a three-layer architecture,
generally including a user layer (data generation), edge layer
(data filtering and decision-making), and cloud layer (data
fusion, analysis, and macroadjustment).

In Figure 1, the vehicle moves among different adjacent
cells. In each cell, there is an amount of edge devices
configured servicing passing vehicles covered by the cell,
such as roadside base stations (RSU, distributed on both
sides of the road) and edge servers. *e cloud computing
center monitors and adjusts all the operational processes of
edge services in all the cells. When a vehicle will soon leave
cell A to cell B, the wireless connection between the vehicle
and a road site unit (RSU) in cell A interrupts when the
connection to B is built.

3. Trajectory Prediction Based on Historical
Trajectory Data

Assume a working day is divided into a sequence of periods
at equal intervals, where T is the total number of periods. In
the interactive environment between the actual vehicle and
edge system, the GPS trajectory data can be obtained by the
real-time navigation and positioning system, and the future
trajectory is predicted based on the fine-grained GPS tra-
jectory data, in order to obtain the movement prediction of
the vehicle between different communities. *e geometric
method is used to predict in advance the location of the
vehicle at the beginning of the next period, based on the
vehicle’s location, speed, and direction:

Sn(t) � S1(t), S2(t), . . . , SN(t) , (1a)

SFn(t) � SF1(t), SF2(t), . . . , SFN(t) . (1b)

Since the number of vehicles covered by a cell in different
periods is changing, in order to facilitate the comparison
between the experimental prediction results and actual re-
sults, the fleet distribution vector is defined as
Sn(t)(0< n≤N; 0< t≤T) and the vehicle-mounted distri-
bution vector is denoted by SFn(t)(0< n≤N; 0< t≤T).
*ey are introduced in equations (1a) and (1b), which
represents the actual number of vehicles and the total on-
board capacity of vehicles at the beginning of period t
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covered by cell n, usually determined by the GPS positioning
system. Note that N denotes the total number of cells di-
vided in the area:

H(t) ≔

H1,1(t) H1,2(t) · · · H1,N(t)

H2,1(t) H2,2(t) · · · H2,N(t)

⋮ ⋮ ⋱ ⋮

HN,1(t) HN,2(t) · · · HN,N(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2a)

HF⋮ ≔

HF1,1(t) HF1,2(t) · · · HF1,N(t)

HF2,1(t) HF2,2(t) · · · HF2,N(t)

⋮ ⋮ ⋱ ⋮
HFN,1(t) HFN,2(t) · · · HFN,N(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2b)

In this article, based on the trajectory prediction of GPS
trajectory data, the fleet mobility prediction matrix and
vehicle-mounted mobility prediction matrix are obtained, as
shown in equations (2a) and (2b), where Hi,j(t) is the
number of vehicles transferring from cell i to cell j in period
t, and HFi,j(t) represents the vehicle-mounted capacity of
moving from cell i to cell j in period t, which is convenient to
distribute requests among vehicle RSU and Cloudlet.

4. Analysis of Vehicle Arriving and Leaving

Based on the fleet mobility matrix obtained in Section 3, in
order to improve the success rate of the vehicle requesting
edge resources in the actual situation, it is necessary to
estimate the time point when vehicle v removes from cell n to
the neighboring cell n′ (i.e., the time when the vehicle
reaches the cell boundary). Since it is almost impossible to
accurately estimate the vehicle’s travel time, this article uses
the probability distribution function of the arrival time,
which represents the probability distribution of the arrival
time of the vehicle from the perspective of probability [14].
Similarly, the probability distribution function of the de-
parture time of the vehicle is used to represent the proba-
bility distribution of the departure time of the vehicle.

4.1. Analysis of Vehicle Arriving Flow and Leaving Flow.
Parr

n,t and P
dep
n,t represent the probability distribution of the

arrival time entering cell n and the probability distribution of
the departure time leaving cell n of a vehicle in period t,
respectively. In this article, the normal distribution is used to
represent the probability distribution of the arrival time and
departure time, as shown in Figure 2. In fact, based on the
fleet mobility matrix H (cf. Section 3), the number of ve-
hicles accounts for the majority in period t when arriving at
cell n, and a small number of vehicles do not arrive according
to the results given by the vehicle trajectory prediction
model.

Assuming that the arrival time of all the vehicles arriving
in cell n in period t follows the same normal distribution, the
expected number of vehicles arriving in cell n during period t

is denoted by λn(t). *e computation is shown in the fol-
lowing equation:

λn(t) �

0, M � 0 ,



M

k�1


t+1

t
P

arr
n,t (t)dt, M≠ 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where each integral represents the probability of each vehicle
arriving at cell n in period t, and M � 

N
i�1,i≠n Hi,n(t).

Similarly, the expected number of vehicles leaving cell n

during period t is denoted by μn(t):

μn(t) �

0, M � 0,



M

k�1


t+1

t
P
dep
n,t (t)dt, M≠ 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where each integral represents the probability of each vehicle
leaving cell n in period t, and M � 

N
j�1,j≠n Hn,j(t).

As the vehicles arrive and leave, the number of vehicles
covered by a cell is changing. *e expected arrival/departure
number of vehicles cannot be directly used to calculate the
optimal number of edge resources for each cell. Because the
calculated expected average does not take into account all the
possible values, if the actual number of vehicles arriving in
cell n exceeds the expected average value, some vehicles may
fail to request the edge resources of cell n.

4.2. Dynamic Analysis of Traffic Flow. Due to complex traffic
conditions, different driving habits of different drivers and
human subjective factors, it is inevitable that the vehicles will
have high mobility problems. In fact, it is difficult to ac-
curately calculate the number of resources that the edge
devices need to provide. Even a big gap exists between the
estimated number of vehicles covered by a cell and the actual
number. In order to analyze the flow of vehicles arriving and
leaving cell n at period t, the vehicle arriving and leaving
flows are modeled as Poisson processes, in which the pa-
rameters of the two Poisson processes are λn(t) and μn(t),
respectively.

4.2.1. Vehicle Arriving Flow. A random variable Dn(t) is
defined in period t indicating the number of vehicles

A

B

C

D

ICloud

Figure 1: Model of the edge computation system in IoV.
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arriving at cell n, and aiming at considering the number of all
the possible values, as shown in the following equation:

PDn(t)(x) �
λn(t)( 

x
e

−λn(t)

x!
, (5)

such that 0≤ x≤ �Bn(t), where �Bn(t) represents the max-
imum possible number of vehicles during period t ar-
riving at cell n, which is usually the upper bound of Dn(t).
*e calculation formula is shown in the following
equation:

B
⌣

n(t) � 
N

i�1,i≠n
Hi,n(t). (6)

4.2.2. Vehicle Leaving Flow. A random variable Un(t) is
defined in period t indicating the number of vehicles leaving
from cell n, and aiming at considering the number of all the
possible values, as shown in the following equation:

PUn(t)(x) �
μn(t)( 

x
e

−μn(t)

x!
, (7)

such that 0≤ x≤ Bn(t), where Bn(t) represents the max-
imum possible number of vehicles during period t

leaving from cell n, which is usually the upper bound of
Un(t). *e calculation formula is shown in the following
equation:

B
⌢

n(t) � 
N

j�1,j≠ n

Hn,j(t). (8)

4.2.3. Vehicle Composite Flow. A random variable Rn(t) is
defined to consider both the arriving flow and leaving flow
while representing the difference between the number of
arriving vehicles and the number of leaving vehicles at
period t in cell n (cf. equation (9)). It indicates that the

required number of edge resources is greater than the
number of edge resources to be released.

Rn(t) � Un(t) − Dn(t). (9)

In order to consider all the possible values, a joint
probability distribution function Rn(t) is defined to repre-
sent the probability distribution of the difference between
two independent streams. It is expressed in the following
equation:

PRn(t)(x) � 

B
⌢

n(t)

k�0
PUn(t)Dn(t)(k, k + x), (10)

where 0≤ x≤ �Bn(t).

PRn(t)(x) � 

B
⌢

n(t)

k�0
PUn(t)(k)PDn(t)(k + x). (11)

Within a short period of time in cell n, the arriving flow
can be considered independent of the leaving flow. *ere-
fore, equation (11) can be derived from equation (10).

5. Traffic Flow Prediction Model

Based on the prediction of the future trajectory of the ve-
hicle, forecasting based on historical traffic flow can improve
the success rate of the vehicle requesting edge services. In
this article, according to the traffic statistics of the vehicle
trajectory data, the historical traffic flow of the vehicles
exhibits specific laws, such as the periodic similarity and
correlation of the traffic flow. *e experimental part of the
traffic flow statistics is presented in Section 10.2. Although
the short-term traffic flow has the characteristics of non-
linearity, uncertainty, and randomness, which brings certain
difficulties to the prediction of the traffic flow, its charac-
teristics such as periodic similarity, correlation, and self-

n

TT-1 T+1

T-1 T T+1 T-1 T T+1

TT-1 T+1

probability distribution
function of arrival time

probability distribution
function of departure time

Figure 2: Probability distribution of the arrival/departure time of vehicles in cell n.
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organization are convenient for forecasting the traffic
volume.

5.1. Characteristics of the Traffic Flow

5.1.1. Periodic Similarity of the Traffic Flow. Due to the living
habits of travelers, the overall traffic flow distribution
presents specific laws. In addition, the traffic flow of some
road sections has a high degree of similarity in two different
periods.

5.1.2. Correlation of the Traffic Flow. *e correlation of the
traffic flow in time is reflected by the fact that the traffic flow
value of a community is affected not only by the previous
period, but also by the traffic flow of the next period. *e
traffic flow value of a community in several consecutive
periods shows a higher similarity.

5.1.3. Self-Organization of the Traffic Flow. All the vehicles
follow the same principle in driving, and they all hope to
smoothly and quickly reach the destination in order to
maximize the group benefits. *is phenomenon is referred
to as self-organization.

5.2. Traffic Flow Statistics. According to the cells where a
vehicle appears at the beginning of t1, t2, and t3 in t, the
traffic volume of each cell in t is counted. If a vehicle appears
in the same cell at the beginning of the three small periods,
only one vehicle is added to the cell. Otherwise, these cells
where a vehicle occurs will be added. Using this method, the
number of vehicles in each cell and in each period will be
obtained.

5.3. Prediction of the Traffic Flow. Based on the character-
istics of the traffic volume Rn(t)< 0, the traffic volume value
in period t of cell n is related to the statistical average value of
the traffic volume of the continuous-time periods of the last
week in cell n, the statistical average value of the traffic
volume of the continuous-time periods of the previous day
in cell n, and the statistical average value of the traffic volume
of the recent continuous periods in a certain extent. Since the
linear model can be easily modeled and has a high speed and
stable operation, the prediction of the traffic volume is solved
by the linear model as

ft,n xt,n  � wn1xt,n,1 + wn2xt,n,2 + wn3xt,n,3 + bn,

xt,n,1 �
1

2k + 1


t+k

i�t−k

D1(i, n),

xt,n,2 �
1

2k + 1


t+k

i�t−k

D2(i, n),

xt,n,3 �
1
k



t−1

i�t−k

D3(i, n),

(12)

where the input is a vector xt,n � (xt,n,1, xt,n,2, xt,n,3)
T, wn �

(wn1, wn2, wn3)
T represents three weight values, D1(i, n)

denotes the traffic volume at period i in cell n of the last week,
D2(i, n) is the traffic volume at period i in cell n on yesterday,
D3(i, n) represents the traffic volume at period i in cell n on
today, bn is a constant, k represents the length of the selected
periods, and the output ft,n(x) denotes the estimated traffic
volume in cell n during period t.

In order to instantiate the linear model of traffic flow
prediction, the dataset in the linear model is constructed
using the traffic flow statistics of the vehicle GPS tra-
jectory data used in this article. *e optimal value of wn

and bn is then obtained using the least squares method.
Finally, the generated model is applied to forecast the
traffic volume at the next period on cell n based on the
existing traffic volume records. In order to simplify the
calculation, the dataset is represented by a matrix of Xn

with U × 4 size and a vector of yn with U × 1 size, as shown
in equations (13a) and (13b), with vector wn � (wn, bn)

absorbing wn and bn. *e first three columns of each row
in Xn are xt,n,1, xt,n,2, and xt,n,3 in different periods in cell n,
and yi,n in yn corresponds to the actual traffic flow at
period t in cell n:

Xn �

x1,n,1 x1,n,2 x1,n,3 1

x2,n,1 x2,n,2 x2,n,3 1

⋮ ⋮ ⋮ ⋮

xT,n,1 xT,n,2 xT,n,3 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13a)

yn � y1,n, y2,n, . . . , yT,n , (13b)

w
∗
n � XT

nXn 
−1
XT

n yn. (14)

Different weight vectors w and the optimal value b for
different cells are obtained using equation (14) and then
substituted into equation (12) in order to predict the traffic
flow of a cell in the next period, so as to improve the load
prediction accuracy of the edge device.

6. Resource Allocation Model Based on QoS

Based on the traffic flow prediction model, the QoS model is
proposed to achieve a certain degree of success rate of the
requesting edge resources by the passing vehicles, according
to actual application requirements.*is section uses the fleet
distribution vector S(t), fleet mobility matrix H(t), vehicle
arriving λn(t), and vehicle leaving μn(t) as input to cell n at
period t, in order to predict the number of covered vehicles,
and to divide the edge resource in each cell at the end of
period t or the beginning of period t + 1.

6.1. Prediction of the Vehicle Traffic Flow. Assuming that
there are Cn(t − 1) available edge resources contained in cell
n at the beginning of period t, the probability of a request
being blocked when the vehicle enters cell n from other cells
is expressed in the following equation:

Complexity 5



P ∅|Cn(t − 1)(  �

0, Cn(t − 1)≥B
⌣

n(t),



B
⌣

n(t)

Cn(t−1)+1
PRn(t)(x), else.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

where ϕ represents a blocking event.
Some of the vehicles appear in cell n at the beginning of

period t, and stay in cell n during the entire period t. *ey
will not make changes to the edge resources of the cell,
because their edge resource requests have already been
provisioned at the beginning of period t. It is demonstrated
that these requests have been supplied by cell n, and
maintain the supplement of edge resources at the beginning
of period t +1. Considering the worst case, if all the entering
vehicles are earlier than all the vehicles leaving in cell n at
period t, the blocking rate of the edge resource request can
be easily increased by directly configuring according to the
edge resource configuration result obtained by equation (9).

6.2. Algorithm Improvement Based on the QoS Model. *e
estimated value of Cn(t − 1) should be determined at the
beginning of t that has passed. In addition, the accuracy rate
of the vehicle transfer prediction for the next period t + 1
based on the vehicle trajectory records in period t is low.
*erefore, the minimum number of edge resources of cell n

at the end of period t or the beginning of period t + 1 is
predicted based on the predicted transfer situation of ve-
hicles in period t and the distribution of the fleet at the
beginning of period t:

P ∅|Cn(t − 1)( ≤ ϵ. (16)

*erefore, the model based on QoS aims at computing
the minimum number of edge resources of cell n at the end
of period t, so that equation (16) is developed, where ϵ is the
user-defined service blocking rate, which represents the
estimated blocking rate of the vehicle requesting edge
resources.

6.3. Optimal Resource Allocation. Due to the fact that it is
impossible to calculate the optimal value one by one in the
case of large data volume, this article uses a grouping and
binary search algorithm (two-stage algorithm) in order to
calculate the minimum number of edge resources in period t

and in cell n. *e corresponding pseudocode is shown in
Algorithm 1.

Using Algorithm 1, the optimal value of edge resources
divided at the beginning of the next period of each cell is
estimated. In addition, the optimal resources are allocated to
each edge server according to the adjustment of load balance
among different edge servers and the allocation of request
redirection, in order to increase the success rate of the
vehicles requesting edge resources.

6.4. Model Improvement Based on Traffic Flow Prediction.
*e result ft,n is first obtained from the traffic flow pre-
diction model in cell n and in period t using equation (12):

C
opti

�
Cmin, ft,n ≤Cmin + Sn−1(t),

ft,n − Sn−1(t), ft,n >Cmin + Sn−1(t).
 (17)

It is then compared with the optimal value of edge re-
source Copti derived from Algorithm 1, in order to improve
the prediction accuracy.

7. RequestAllocation for the Edge System in IoV

Based on the nature of the dynamic connection between the
vehicle and the edge node, this section proposes a request
allocation model between the on-board terminals, edge
servers and Cloudlet, so that the average processing time of
each edge server in the cell is as equal as possible, in order to
improve the performance of the edge system in IoV.

7.1. Model of Request Allocation for the Edge System in IoV.
Assuming that the total amount of messages received by cell
n in period t is λ � λe + λv + λc, it is distributed to edge
servers, on-board units (OBUs), and Cloudlet. *ree dif-
ferent levels of equipment then process the request sent by
the vehicle, and send it back to the vehicle. *e distribution
table is presented in Table 1.

Due to the uncertainty of user demand and fluctuations in
the number of requests received by each RSU in different pe-
riods, based on the study presented in [15, 16], the number of
arriving vehicles follows the Poisson process. *erefore, this
article assumes that the request flow arriving at each RSU from
vehicles follows a Poisson process with an arrival rate of λi.

*is article assumes that N, R, and M represent the
number of Cloudlets in the targeted area, number of edge
servers covered by each cell, and expected number of ve-
hicles covered in each cell at the beginning of period t +1,
respectively. *e main terms of this section are presented in
Table 2.

In addition, this article first analyzes the network per-
formance in a cell as an example and then continuously
adjusts the request allocation algorithm according to the
experimental results. Afterwards, it is applied to all the other
cells. *e allocation graphic is presented in Figure 3, and the
Cloudlet in cell n accepts the number of requests that fail in
transmitting to edge server or on-board unit sent by vehicle,
in order to relieve, which alleviates the emergency need for
vehicular requests.

7.2. 8e Service Queue Model in IoV. In the edge system of
IoV, the total response time can be obtained by:

P0(λ, μ, l) � 

l−1

k�0

1
k!

λ
μ

 

k

+
1

l!(1 − ρ)

λ
μ

 

l

⎡⎣ ⎤⎦

−1

, (18)

where dup represents the uploading delay for a request from
a vehicle to an RSU, dwait denotes the queueing delay for a
request at the edge server wired to the RSU, dpro is the
processing delay of the request at the edge server, and ddown
represents the feedback delay of the calculation result back to
the vehicle:
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Input: user-defined service blocking rate ϵ, maximum capacity of edge device Cmax
Output: Optimal value of edge resource Cmin satisfied by (16)

(1) CL, CH←1
(2) whileP(ϕ|CH)> ϵ:
(3) CL←CH

(4) CH←2 × CH

(5) if CH >Cmax then
(6) return false
(7) while True:
(8) Cmin←(CL + CH)/2
(9) if P(ϕ|Cmin)≤ ϵ:
(10) CH←Cmin
(11) else:
(12) CL←Cmin
(13) if CH − CL ≤ 1:
(14) return Cmin
(15) else:
(16) return false

ALGORITHM 1: Two-stage algorithm.

Table 1: Distribution table of the vehicular requests.

λi *e amount of vehicular requests received from the coverage by RSUi

λe
i *e amount of vehicular requests allocated to ES connected to RSUi

λv
i *e amount of vehicular requests allocated to on-board units from the coverage of RSUi

λc
i *e amount of vehicular requests allocated to Cloudlet which RSUi belong to

Table 2: Distribution of vehicular requests.

Notation Description
C *e set of clouds, C � c1, c2, . . . , cN 

E *e set of RSU, E � RSU1,RSU2, . . . ,RSUR 

V *e set of vehicles, V � v1, v2, . . . , vM 

f(i, j) Representing the number of requests redirected from RSUi, i ∈ R to RSUj, j ∈ R

Edge Server

iCloudlet

On-board unit

RSUi

RSUj

Edge ServerOn-board unit

λj

λi

λvi λei

λj+f (i, j)-λvi–λei

λi–f (i, j)–λvi–λei

∑Ri=1λi–∑Ri=1 λei–∑Ri=1λvi

f (i, j)

λvi λei

Figure 3: Distribution diagram of the vehicular requests.
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E dwait(  � f(λ, μ, l)

�
(lρ)

lρ
λl!(1 − ρ)

2P0.

(19)

*e edge system in IoV can be modeled as a queueing
network. *e idle probability in the queueing system with l

homogeneous servers is expressed in equation (18), where λ
represents the request flow waiting for a server to process,
and μ denotes the fixed service rate so that the service in-
tensity meets ρ � λ/lμ< 1 with an average queueing delay
expressed in equation (19).

7.2.1. Queueing Model at Cloudlet. *eCloudlet in cell n can
be modeled as aM/M/b queue, with b homogeneous servers
and fixed service rate μc. Based on the previous assumption,
the service intensity at Cloudlet in cell n is ρc � λc/bμc, where
λc represents the number of requests to Cloudlet in the unit
interval, and the average calculation delay per request is
E(dpro) � 1/μc. A network delay dv⟶Cloudlet is incurred by a
unit request sent by a vehicle transfer from RSU to Cloudlet,
with an ignored feedback delay. *e average response delay
dc
stol of unit request at Cloudlet can then be computed as

E d
c
stol(  � f λc

, μc, b(  +
1
μc

+ dv⟶Cloudlet. (20)

7.2.2. Queueing Model at the Edge Server. Borrowing ideas
from Reference [18], it is assumed that cell n contains a number
of RSU clusters RS � RSUs1,RSUs2, . . . ,RSUsRS , where RS
represents the number of RSU clusters, and each cluster contains
bi, i ∈ R edge servers. A cluster of RSU base stations with close
distances is developed to queue up and process the requests sent
by the vehicles. Similarly, the cluster can bemodeled as aM/M/b
queue, and fixed service rate μe, with a service intensity
ρe � λe/bμe, where λe represents the number of requests to an
edge server in a unit interval, and the average calculation delay
per request is E(dpro) � 1/μe. *e delay dv⟶RSU is incurred by
a unit request transfer from a vehicle to RSU, connected to a
corresponding edge server. Afterwards, the average response
delay de

stol of unit request on the edge server can be computed as

E d
e
stol(  � f λe

, μe, b(  +
1
μe

+ dv⟶RSU. (21)

7.2.3. Queueing Model of the Mobile Vehicle Network.
*is article assumes that each vehicle has an independent
computational capacity to share processing requests. Given the
number of requests arriving at RSUi with arrival rate λi, the
request flow in the waiting queue of moving on-board units
covered by RSUi can be considered a subprocess of the request
flow arriving at RSUi, with an arrival rate λv

i ≤ λ
v. When a

vehicle comes into the wireless communication range of RSUi, it
picks up a request at the front of the waiting queue based on the
on-board units and finishes processing before leaving the
communication range of RSUi. Based on [10], the request flow

in the waiting queue of moving on-board units can be modeled
as a Markov chain, and the model can be considered a M/M/1
queue. *e service intensity on the queue is computed as
ρv

i � λv
i /μ

v
i , where the total vehicle capacity is μ

v
i � 

a
j�1 μj with

a vehicles covered by RSUi. *e average response delay dv
stol of

unit request on the on-board unit is only related to λv
i and μv

i . Its
value is calculated using the following equation:

E d
v
stol(  �

1
μv

i − λv
i

+ dv⟶v. (22)

Here, the delay dv⟶v is incurred by a unit request
transfer from a vehicle to another.

7.3. Allocation of Requests Based on Average Delay
Minimization. Due to the uncertainty of the trajectory pre-
diction method based on the historical trajectories, the base
stations that the vehicle may be connected to at the beginning of
the next period form a cluster in order to alleviate the error
caused by the vehicle entering different cells with different
probabilities in the next period. Assuming that a vehicle submits
requests λi, i ∈M in period t, the average response delay is then
calculated using equation (23). *is indicates that the request λi

sent by the vehicle can be divided into three different requests
λi � λv

i + λe
i + λv

i that are calculated and integrated by the on-
board unit, the edge server and the Cloudlet, respectively. *e
values of average response delay E(dt,c

i,stol), E(dt,e
i,stol), and

E(dt,v
i,stol) depend on the service intensity on different equip-

ment, calculated using equations (20)–(22):

E d
t
i,stol  � max E d

t,c
i,stol , E d

t,e
i,stol , E d

t,v
i,stol  . (23)

*erefore, the optimal edge resource allocation problem
in IoV is defined as follows. Under the premise that the
minimal value of edge resources Cmin in cell n and 

RS
i�1bi

edge servers is deployed, allocating a certain volume of
resources of each edge server so that the average response
delay in cell n is minimized. *e optimization formula is
shown in equation (24), where M � 

N
i�1 Hi,c(t − 1) repre-

sents the expected number of vehicles covered by cell n in
period t, and MF � 

N
i�1 HFi,c(t − 1) denotes the expected

total vehicular capacity covered by cell n in period t:

argmin
λe

i ,λv
j

1
M



M

i�0
E d

t
i,stol ,

s.t.

λc
+ 

RS

i�1
λe

i + 

M

i�1
λv

j ≤ 

M

i�1
λi,

λe
i ≤ biμe, i ∈ RS,



M

j�1
λv

j ≤MF,

μe �
Cmin − MF


RS
i�0bi

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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Since multiple variables in the optimal allocation
problem are tightly coupled, it is complicated to solve the
response time and request allocation and redirection
problems. *erefore, in this article, two subprocesses of
request allocation optimization and request redirection are
used to approximate the optimal allocation problem.

8. Load Balancing of the Edge Computing
System in IoV

It can be deduced that equation (24) is a nonlinear opti-
mization problem, which is difficult to promptly solve in
period t. *erefore, the general idea of the load balancing of
the edge computing system in IoV is as follows. (1)
According to the requests received in the next period t +1
and in cell n, the amount of requests allocated to on-board
units and the amount of requests allocated to edge servers
are calculated using the incremental cost method. (2) *is
article first computes the amount of redirected requests at
each RSUs in the next period t +1 in cell t, making these
average response delays among all the clusters in cell n

similar to dave
c,t . (3) According to the actual trajectory of the

vehicle, the vehicle decides to select and unload one of the
optimal edge servers set, which is configured with the op-
timal number of edge resources, or to Cloudlet if the
unloading fails. (4) *e actual blocking rate of requests for
edge resources by vehicle will be calculated, and the mini-
mum number of servers required in Cloudlet is determined.

8.1. Minimization of the Average Response Delay. Based on
the previous assumption, cell n contains RS RSU clusters and
the total capacity of M vehicles covered expectantly in
period t. *erefore, the total requests add up to λ � 

M
i�1 λi

generated at cell n in the beginning of period t. *ese overall
requests are allocated through the incremental cost method
with the following objective:

min E d
t,e
stol  + E d

t,v
stol  ,

s.t.



RS

i�1
λe

i + 
M

j�1
λv

j ≤ λ,



M

j�1
λv

j ≤ 
M

j�1
μv

j.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

According to equation (25), the condition that the
number of requests allocated to the on-board units can be
completed within a period is satisfied. In addition, the ve-
hicle then unloads the rest of the requests to the Cloudlet, if
the unloading at edge server is in failure, using the cost
incremental method expressed in the following equation:
λ − w

d
ave
c,t � arg

w

min f (λ − w), μe, 
RS

i�1
bi

⎡⎣ ⎤⎦ +
1
μe +

1


M
j�1 μ

v
j − w

⎧⎨

⎩

⎫⎬

⎭.

(26)

Here, w is the number of requests unloaded to the on-
board units, and the remaining λ − w is the number of
requests unloaded to edge servers.

According to the calculation result, the allocation plan
is stored in each RSU in cell n, and the edge resource
request sent by the vehicle is given as a reference according
to the actual vehicle trajectory. *e remaining requests λ −

w are allocated to RSUsi, i ∈ RS according to the GPS
historical trajectory. In other words, the vehicle will be the
most likely to submit a resource request to the optimal
RSU.

8.2. Load Balance among Edge Servers. *e number of re-
quests unloaded from vehicles in RSUsi, i ∈ RS in different
periods is unstable, due to the driving randomness, and the
states of idleness or busyness are inevitable. *erefore, it is
assumed that the RSUs can access each other. Even RSUs

redirect a part of requests contained to another RSUs. *e
average response delay for each RSUs in cell n is defined as
E(tstol(λ

e
i )):

E tstol λe
i( (  � f λe

i , μe, bi(  +
1
μe

+ dv⟶RSU. (27)

In order to obtain the number of requests from the
overloaded cluster to unloaded cluster between
RSUsi, i ∈ RS, the transmission delay caused by request
redirection is ignored. *is article assumes that the expected
minimum average response delay D in cell n is first cal-
culated, and the number of redirected requests generated
from an overloaded RSUs to an unloaded RSUs is then
determined, so that the average response time in cell n is
close to D. Finally, the value of D is adjusted according to the
difference between the outgoing requests from the total
overloaded clusters, and the incoming requests to the total
unloaded clusters.

*e initial value of D is estimated by
D � (Tmax + Tmin)/2, where Tmax � tstol(λ

e
i ))|i ∈ RS  and

Tmin � tstol(λ
e
i ))|i ∈ RS . All the RSUs cluster are then

partitioned in two disjoint sets: the set of overloaded clusters
Vo � i|tstol(λ

e
i ))>D  and the set of unloaded clusters

Vu � i|tstol(λ
e
i ))<D . *erefore, the definition of the load

balancing problem in IoV is provided in the following
equation:

E tstol λe
i − ϕ( i(  − D


≤ δ, i ∈ Vo,

E tstol λe
j + ϕj   − D



≤ δ, j ∈ Vu,

s.t. 
i∈Vo

ϕi � 
j∈Vu

ϕj.

(28)

Here, ϕj is the number of the requests redirected from
RSUsi, i ∈ Vo, ϕj represents the number of requests redir-
ected into RSUsj, j ∈ Vu, and δ denotes a given threshold,
which indicates the allowable difference between the average
response delay after redirection and the value of D. *e
values of ϕi, i ∈ Vo and ϕj, j ∈ Vu are approximately cal-
culated using the iterative algorithm.
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8.3. 8e Request Redirection between Edge Servers. Based on
the previous results of request redirection, the problem of
the number of requests generated from RSUsi, i ∈ V0 to
RSUsj, i ∈ Vu is transformed into a problem of finding
the minimum cost and maximum flow in terms of
network delay. *us, the optimization objective is
expressed as

argmin
r(i,j)



RS

i�1


RS

j�1
max r(i, j), 0  · cij





s.t.

r(i, j) �
−r(i, j), i≠ j,

0, i � j,

⎧⎨

⎩


i∈Vo

r(i, j) � ϕj, j ∈ Vu,


j∈Vu

r(i, j) � ϕi, i ∈ Vo,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

where r(i, j) represents the number of requests redirected
from RSUsi, i ∈ RS to RSUsj, j ∈ RS, cij is the transmission
delay among different clusters, cij � cdij, c is the propor-
tional coefficient between transmission and distance, and dij

is the Euclidean distance between RSUsi and RSUsj. *is
article uses the Vogel algorithm to calculate a suitable value
of r(i, j) in time, in a limited period t, based on equation
(29), and adjust the optimal volume of edge resource at each
RSU according to the optimal value of edge resources Copti in
cell n.

Under the precondition that the amount of deployed
edge resources remains unchanged, the virtual amount of
resources of each edge server can be adjusted according to
the redirection result. Especially when the maximum
resource amount of an edge server does not meet the
requests issued by the surrounding vehicles, a part of the
requests can be redirected to another edge server, so that
passing vehicles can increase the success rate of unloading
to the RSU, within the limited wireless communication
range.

9. Dynamic Selection of Edge Nodes by Vehicles

For each edge server, the amount of available resource is in
a dynamic change in different period t, with resources
continuously occupied and released as the vehicles move.
For each connected vehicle, the selection of edge server
mainly considers the following factors: the amount of
available resource of the edge server, representing the
maximum amount of requests that can be offloaded to the
edge server, the distance between the vehicle and the edge
server, usually affecting the transmission delay of a request,
and whether the response delay of the vehicular requests
proceeded by the edge server and on-board unit of the
vehicle itself can be met within a limited time. *is is
usually jointly determined by the amount of requests sent
by the vehicle and the available resources of the edge server.
*erefore it assumes that vehicle v (with vehicular capacity
μv) decides to offload itself requests (the amount of the

requests is λq) to the edge server e (the amount of available
resources of edge server e is μe) at a time point, the delay
return function satisfies:

arg
x

minR(v, e) �
x

μv

,

E

0<
λq − x

μe

+ dv⟶RSU <
x

μv

,

x ∈ 0, λq .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

Here, R(v, e) represents the delay result when vehicle v

selects edge server e. *e constraint condition indicates that
the response delay at the on-board unit is slightly higher
than the selected edge server in the actual offload process
during driving.

*e main thought of dynamic selection for a vehicle to
RSU is to first determine the selectable RSU list within a
radius of rd, sorted by distance in ascending order, and then
in each iteration selection to determine the delay result
R(v, ei) such that R(v, ei)<Tthreshold, where Tthreshold usually
represents the length of period t, and finally confirms to the
offload to the selected RSU or to the Cloudlet. *e pseu-
docode of algorithm 2 for dynamic selection for vehicle v in
period t is also provided.

10. Experimental Evaluation

*is article uses the vehicle historical trajectory data to
conduct experiments and analysis on the proposed edge
resource allocation and selection method, and verify its
efficiency based on the proposed vehicle trajectory
prediction.

10.1. Visualization of Vehicle Historical Trajectory Data.
In this article, the trajectory data are extracted from the
vehicle trajectory data in Chengdu in November 2016 ap-
plied by the Didi platform.*e data format of each trajectory
record information in the dataset is a four-tuple (id, Tstamp,
longitude, and latitude) while recording a GPS vehicle
trajectory positioning data every 3 s. Among them, id rep-
resents the order ID and Tstamp denotes the timestamp.

*e records of order trajectories are first preprocessed,
and the boundary is then determined. *e final trajectory
map is presented in Figure 4, which represents the trajectory
of each vehicle from the beginning of the order to its end.

*e line represents the trajectory of the vehicle, and the
dot denotes the intervals of approximately 1min. By ob-
serving a part of the records, it is deduced that the vehicle
trajectory has some common characteristics. For instance, a
slow vehicle is more likely to change direction and turn
around, while a fast vehicle is more likely to maintain a
relatively straight driving state. Based on these trajectory
characteristics, geometric methods are used to predict the
future trajectory with reference to the historical trajectory of
the vehicle.
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10.2. Statistics of Historical TrafficVolume. By preprocessing
the historical trajectory data of vehicles, the traffic flow is
calculated in each cell and in each period. *e results are
shown in Figure 5 representing the traffic flow on the 15th,
22nd, and 23rd of November 2016.

It can be seen from Figure 5 that the traffic flow presents
the characteristics of cycle similarity, correlation, and self-
organization. It can be deduced that the traffic flow of one
period of the day is related to the traffic flow of the same
period of the previous week, which is also the same period of

Figure 4: Map of the vehicle trajectory.

Input: Distance threshold rd

Output: offloading decision rd

(1) Initialize xd � 0, i � 1
(2) Get connectable RSU set RSUs � e1, e2, . . . , eL  according to rd, sort by distance in ascending order SR � e1, e2, . . . , eL , where

L is the number of SR

(3) while xd � 0 do:
(4) select ei ∈ SR:

(5) if
(6) xd � i, break
(7) else i + +

(8) else
(9) else while
(10) if xd � 0:
(11) Offload to Cloud in cell n

(12) end if

ALGORITHM 2: Dynamic selection for vehicles to edge servers.
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Figure 5: Results of the traffic flow statistics method.
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the previous day. It is convenient to predict the future traffic
flow, based on the historical data of the traffic flow, to a
certain extent.

10.3.ExperimentalResultsBasedon theTrafficFlowPrediction
Model. *e traffic flow prediction method proposed in 5.3 is
used to predict the traffic flow in the last three weeks of
November and compare it with the actual traffic flow sta-
tistics. In order to verify the accuracy of the developed traffic
flow prediction model, the mean absolute percentage error
(MAPE) (cf. equation (31)) and the root mean square error
(RMSE) (cf. equation (32)) are used to calculate the actual
error of the prediction model:

MAPE � 
N

i�1


T

t�1

yt,i − ft,i

ft,i




×
100
NT

, (31)

RMSE �

�������������������

1
NT



N

i�1


T

t�1
ft,i − yt,i 

2
.




(32)

*e obtained results are shown in Table 3.

10.4. Experimental Evaluation Method of Edge Server Load.
In order to verify the efficiency of the proposed edge re-
source allocation method (Method-3) based on vehicle
historical trajectory data, two benchmark methods are used
for comparison:

(a) Complete configuration method (Method-1):
according to the exact trajectory, the edge resources
are deployed in all the cells along the trajectory

(b) Method based on motion estimation (Method-2):
based on the vehicle’s current motion state (speed,
direction, and position), it predicts which cluster the
vehicle is most likely to appear in the next period,
and configure edge resources for the cluster in
advance

10.5. Experimental Process. *is experiment first prepro-
cesses the historical trajectory data of vehicle orders from the
Chengdu Didi platform in November 2016.*is includes the
normalizing data values that are conducive to simplifying
the input, deleting the orders with too short time, and
supplementing the missing values in the middle. *e total
number of periods in the time and the total number of cells
in the space are then calculated. Afterwards, based on the
vehicle density distribution obtained from the GPS trajec-
tory data of the vehicle, RSU base stations are randomly set
up at different locations in different cells. *is article as-
sumes that the network delay between the RSU and the
vehicle is proportional to the physical distance, as in [7]. Due
to the randomness of the distance between the RSU and the
vehicle, a network delay is assigned according to the normal
distribution: 0.05≤N(0.05, 0.02)≤ 0.25. *e two bench-
mark methods and the proposed method are used to allocate
optimal edge resource on each edge server, and then, the

three methods are tested using the dynamic selection al-
gorithm. Similarly, the network delay is distributed among
other nodes according to the normal distribution, except
that the Euclidean distance between each pair of RSUs is
used as the transmission delay reference standard in the
solution of request redirection. *e detailed information
about the dataset and the parameter settings are provided in
Table 4. *e experimental environment is presented in
Table 5.

For each RSUs cluster, the expected number of covered
vehicles and the total expected vehicle capacity are first
calculated in the next period t +1, based on the GPS his-
torical trajectory data. *e number of requests for each
passing vehicle in the next period t + 1 is then randomly
generated according to normal distribution. Afterwards, the
optimal value of edge resource in each RSU is predicted and
adjusted using the request allocation algorithm and load
balancing algorithm. Finally, the actual success rate of re-
quest offloading and blocking rate are calculated using the
dynamic selection of surrounding RSU, based on the actual
vehicular trajectory.

10.6. Experimental Results. *e experimental comparison
results between the proposed method and the benchmark
methods are shown in Figure 6, with 1169 edge servers. *e
complete configuration method achieves a 100% success rate
of vehicle requesting edge resources. *e method based on
motion estimation achieves 83.86%, and ϵ of 0.01, 0.05, and
0.1 achieves success rates of 90.97%, 88.85%, and 87.61%,
respectively. It can be seen from Figure 6 that the complete
configuration method can achieve a rate of 100%; however,
the rate is achieved based on the cost of more edge resources.

In order to study the relationship between the actual
success rate and ϵ, experiments on continuous values of ϵ for
different numbers of edge servers are performed. *e ob-
tained results are shown in Figure 7. It can be seen that, as ϵ
decreases, all the values slowly increase, and the actual
success rate of edge resource maintains more than 90%when
ϵ≤ 0.02. In addition, the increase in the number of edge
servers alleviates the blocking rate of vehicle requests for
edge resources to a certain extent, making the experimental
results more averaged.

In order to further study the performance of the pro-
posed edge resource allocation method, its stability is ob-
served from the three perspectives of time, area, and number
of vehicles.

In order to observe the experimental performance in
different periods, vehicle trajectory data from the 17th (the
number of edge servers is 1169) are considered, and the
actual request success rate in different periods is observed.
*e experimental results are shown in Figure 8, where the
horizontal line represents the average for the whole day, the
value of which is 90.97%. It can be seen that the actual

Table 3: Error calculation results.

Error index MAPE (%) RMSE
Calculation result 23.68 11.21
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request success rate is low during the period of 17 : 00–19 : 00
and high during the period of 23 : 00–03 : 00 (+1). *is is due
to the fact that the increase in the number of vehicles and the
complex traffic conditions during the peak traffic hours in
the evening lead to a low efficiency of actual resource al-
location. Moreover, the proposed method has a better
performance than that of the reference method of motion
estimation in terms of edge resource allocation. In addition,
the actual edge resource request success rate gradually in-
creases with the decrease in ϵ.

In order to observe the impact of different numbers of
vehicles on the utilization performance of edge resources, a
different number of vehicle subsets from the trajectory
datasets on the 17th are randomly selected. *e edge re-
sources are allocated to different subsets, under the con-
ditions of different values of ϵ with 1169 servers. *e
obtained results are shown in Figure 9.
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Figure 7: Relationship between the actual success rate and ϵ.

Table 4: Settings of the dataset and parameters.

Parameters Value
*e length of a cell a 1.5 km
*e length of T 3min
*e length of time window k 10
*e amount of request per vehicle and per period λi U(1.6, 3.2)

*e number of RSU clusters in each cell b 9
*e number of edge servers in each RSU cluster [1 − 9]

*e service rate an on-board unit μv U(0.5, 1.0)

*e service rate on Cloudlet μc 5
*e transmission delay between vehicle and RSU dv⟶RSU N(0.05, 0.02)

*e transmission delay between each RSU dRSU⟶RSU N(0.15, 0.05)

*e transmission delay between each vehicle dv⟶v N(0.1, 0.05)

*e transmission delay between vehicle and Cloudlet dv⟶Cloudlet N(0.3, 0.05)

δ 0.05
c 0.3
Destination threshold rd 0.5 km

Table 5: *e experimental environment.

Setting Description
CPU Intel(R) Core(TM) i7-5500U CPU @2.40GHz 2.40GHz
RAM 16GB
Operating system Windows 10, 64-bit
Development Python 3.9.7
Operating platform PyCharm 2019.2.1

100.00%

90.97%
88.85% 87.61%

83.86%

Comparison Between the Proposed and Benchmark Methods
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Figure 6: Comparison between the proposed and benchmark
methods.
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Figure 9 demonstrates that, with the increase in the
user’s predefined blocking rate, the actual success rate of
different vehicle numbers gradually decreases. When
ϵ � 0.01, the experimental results of different numbers
are the most similar. In addition, with the increase in ϵ,
the difference between the actual edge resource request
success rates of different numbers gradually increases,
and the experimental results are more unstable. *is is
mainly due to the high mobility of driving behavior,
which is prone to the idle state of edge resources and the

blocking of actual resource requests. As the value of ϵ
decreases, the deviation caused by high mobility can be
better alleviated.

In order to evaluate the performance of the proposed
edge configuration method in different cells, 5 cells are
randomly selected on the 17th, and the relation between the
actual request success rate and ϵ is assessed. *e experi-
mental results are shown in Figure 10.

It can be seen from Figure 10 that the results of the
actual request success rate calculated from different cells
are similar. In addition, they increase as the user pre-
defined blocking rate decreases. *is is mainly due to the
difference in traffic flow in different cells. For cells with
less traffic flow, such as the actual resource request
success rate in cell 33, the success rate of the actual
resource request greatly varies. Moreover, the traffic flow
of cell 2 is relatively large, so that the calculation result is
relatively stable and less affected by the change in the
user’s predefined blocking rate.

In order to study the influence of different numbers of
edge servers on the utilization performance of edge re-
sources, the proposed algorithm is implemented for different
numbers of edge servers. *e obtained results are shown in
Figure 11.

Figure 11 shows that the results of the success rate of
edge resource requests calculated by different numbers of
edge servers are similar. In addition, they increase with the
increase in the number of edge servers. *e proposed
method proposed is better than the mobile estimation, in
terms of the actual success rate of edge resource requests.
*is is due to the fact that with the increase in the number of
edge servers, the deployment is relatively balanced, which
alleviates the prediction error caused by the high mobility of
the driving, to a certain extent.

�e Actual Success Rate of Edge Resource Requests in
Different Periods
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Figure 8: *e actual success rate of edge resource requests in
different periods.
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Figure 9: Actual success rate for different numbers of vehicles.

�e Success Rate of Edge Resource Requests on Different Cells
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Based on the experimental results obtained from the
three perspectives of user’s predefined blocking rate, number
of vehicles, and region, the proposed method allows to
obtain the minimum number of cloud servers in different
cells and alleviate the emergency needs of the request after
failing to offload to edge devices.

In order to study the relationship between the number of
servers in Cloudlet and different edge resource allocation

methods, experiments on continuous values of ϵ under the
condition of different numbers of edge servers are per-
formed. *e obtained results are shown in Figure 12. It can
be seen that, as the value of ϵ decreases, the number of cloud
servers slowly increases, and the average value becomes close
to 11. *e resultant value based on the motion estimation
method is almost 12.

In order to evaluate the influence of different numbers of
vehicles on the minimum number of servers in Cloudlet,
subsets with different numbers of vehicles are randomly
selected from the trajectory dataset on the 17th, and edge
resource allocation is performed on different subsets under
different values of ϵ and motion estimation methods, with
1169 servers. *e obtained results are shown in Figure 13.

Figure 13 shows that, as the number of vehicles increases,
the minimum number of servers in Cloudlet that need to be
deployed gradually increases, and the gap between the
different values of ϵ gradually increases.*is is mainly due to
the fact that, when the value of ϵ is determined, the more the
number of vehicles is, the more requests blocked are sent by
vehicles, and the more cloud servers are required.

*e main conclusions are summarized based on the
experimental results. (1) *e motion estimation method
seemingly fail to be applied in practice, and the method
proposed in this article not only reduces the redundant cost
of resource allocation but also approaches the result of the
complete configuration method. (2) *e method proposed
in this article can effectively improve the actual use efficiency
of edge servers, thereby reducing the deployment cost of
servers in Cloudlet. (3) *e method proposed in this article
conducts the optimization in resource provisioning in each
period while ensuring QoS service quality.

�e Minimum Number of Servers in Cloudlet using
Different Methods
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Figure 12: *e minimum number of servers in Cloudlet using
different methods.
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11. Conclusion

In this article, starting from the demand for edge resources
of connected vehicles and the resource allocation benefits of
the entire edge system, an edge resource allocation and
selection method based on vehicle trajectory prediction is
proposed. *e proposed algorithm fully considers the high
mobility of vehicles and the characteristics of historical
traffic flow. It divides the minimum number of edge re-
sources and deploys minimum servers in Cloudlet on the
premise of not being higher than the user’s predefined
blocking rate. *e experimental results demonstrate that the
proposed algorithm has a high performance in edge resource
utilization and a high prediction accuracy.

*e future work should include the upgrading of mo-
bility estimation strategy and requests allocation method
between on-board-unit, edge server and cloud. *e
upgrading of mobility estimation strategy is replacing the
cell in which a connected vehicle most likely appear with
k(k> 2) cells and weight these different cells. Another
possible future goal consists in improving the success rate of
edge resource requests using the proposed method by dy-
namic allocation of edge server clusters, according to the
driving conditions of connected vehicles and the load
conditions of edge servers.

Data Availability

Gaia Data Open is only open to universities and scientific
research institutions in China. *e dataset is for scientific
research use only and is strictly prohibited from being
disseminated or used by others. Data have been desensitized.
Please contact gaia@didiglobal.com using your school/re-
search institution email for further.
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