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Te H∞ performance of a class of T-S fuzzy systems with Markovian-jump parameters is analyzed. A state feedback controller is
designed for T-S fuzzy systems with Markovian-jump parameters. First, a newmodal-dependent Lyapunov function composed of
closed-loop functions is constructed, which can fully use system status information. Based on this function, the stability conditions
with less conservatism are given by linear matrix inequalities (LMIS). At the same time, a design algorithm for a state feedback
controller is proposed for the Markovian-jump-parameters T-S fuzzy systems, which ensures the system’s stability under the
condition of H∞ − c performance. Simulation results demonstrate that the mentioned method is accurate and practical.

1. Introduction

Takagi–Sugeno (T-S) fuzzy systems can provide an efective
description of complex nonlinear system problems [1]. Te
essence of T-S fuzzy systems is nonlinear systems, but each
corresponding rule is linear, which is convenient for people
to analyze the systems’ stability and study the control
problem. In recent decades, T-S fuzzy systems have become
a research hotspot and an important method for nonlinear
system control.Te stability of a static output controller for a
discrete-time T-S fuzzy system was studied by introducing
relaxation variables and considering multiple Lyapunov
matrices in [2]. Te equivalence of the weight product index
set for fuzzy rules was defned, and a new stability criterion
with less conservatism was proposed to guarantee the sys-
tem’s stability using the equivalence relation in [3]. Two
efcient design methods for fuzzy static output feedback
controllers were proposed by combining Markovian Lya-
punov functions and matrix inequality convexifcation
techniques, and the robust stabilization of a nonlinear hy-
perbolic partial diferential equation (PDE) system repre-
sented by a T-S fuzzy system is successfully solved in [4]. At
the identical time, in order to make the system stable and

ensure its good performance, many scholars have studied
comprehensive control methods such as H2 control and H∞
control. In particular, H∞ control can efectively suppress
interference, so it is widely used in electric ground vehicle
systems [5, 6] and electric train asynchronous motor systems
[7]. A new augmented Lyapunov function was proposed to
ensure the tracking performance of the T-S fuzzy networked
control systems [8]. Te nonlinear systems were trans-
formed into continuous-time T-S fuzzy systems with un-
certain parameters using the Wertinger integral inequality
and the extended inverse convex matrix inequality, and the
asymptotic stability condition with less conservativeness was
proposed in [9]. A new bounded real lemma was constructed
for a class of fuzzy time-delay systems, and a new Lyapu-
nov–Krasovskii functional (LKF) was proposed in [10]. Te
robust output feedback control problem for a class of in-
terval type 2 T-S fuzzy systems with multiple delays and
disturbances was studied, and a delay-dependent dynamic
output feedback controller was designed using the gener-
alized redundancy method to make the closed-loop system
asymptotically stable and obtain the performance in [11]. On
the other side of research, the structure or parameters of
increasingly complex automatic control systems inevitably
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jump randomly after a long period of operation, so sto-
chastic hybrid systems with Markovian-jump parameters
have received extensive attention. Markovian-jump systems
are very efective in describing environmental changes,
system failures, and repairs and therefore are widely used in
circuit systems, aircraft systems, manufacturing systems
[12–16], and networked control systems under cyber-attacks
[17]. In recent years, many scholars are interested in the
Markovian-jump fuzzy systems, and these studies have
yielded a large number of meaningful results [18–20].

Moreover, as digital technology expands rapidly, re-
search on sampled-data control has received high attention.
Te sampled-data control methods only need to use the
instantaneous sampling information of the system, which
greatly reduces the information transmission, so it can
guarantee a better system performance and reduce the
system operating costs. Sampled-data control methods in-
clude input delay method [21], discrete-time system method
[22], and closed-loop function method [23]. It is worth
mentioning that the looped function mentioned in the
closed-loop function method is not necessarily a positive
function that fully utilizes the information on the intervals
x(tk) to x(t). At the jumps, this Lyapunov function does not
increase, and the whole sampling interval is sufciently
considered to yield less conservative conditions. Tese
functionals are suitable for impulsive systems analysis as
they allow one to express the discrete-time stability con-
ditions in an afne manner, thus enabling the consideration
of uncertain and time-varying systems. Te research results
of sampled-data control are numerous and signifcant
[24–28]. However, the application of the looped function
method to Markovian-jump T-S fuzzy systems with sampled
data has been rarely investigated. In [29], a new Lyapunov
function whose time scheme consists of an exponential
closed-loop function was proposed, and linear interpolation
and binning techniques were proposed to obtain criteria for
mean-square exponential stability, but the conclusions were
less conservative. A new input delay-dependent vector
method proposed for fuzzy Markovian systems with sam-
pled data was frst mentioned in [30].

Based on the above discussion, our work is motivated by
the issue of exploring the control of Markovian-jump T-S
fuzzy systems based on sampled data. Some of the topics to

be pondered are, for example, how to construct the Lya-
punov functions to efciently utilize the system information
and how to modify the integral inequality to make the results
less conservative. Te nonfragile controllers [31–37], which
are highly resistant to uncertainty in their parameters, have
been widely used in many practical systems, but how we can
apply them to Markovian-jump T-S fuzzy nonperiodic
sampling control systems.

Te contributions of this work consist of the following
aspects: (1) A new mode-dependent Lyapunov function
consisting of bilateral closed-loop functions is used in the T-
S fuzzy systems with Markovian-jump parameters, this
function fully covers the information on both intervals
[x(tk), x(t)] and [x(t), x(tk+1)], whereas the Lyapunov
function constructed in the literature [38] only contained
􏽒

t

tk
xT(t)ds and does not contained 􏽒

tk+1

t
xT(t)ds, however,

our constructed function V(t) includes both, thus the results
derived in this study are less conservative. And we use a
modifed integral inequality with a free matrix to help deal
with an integral part of the derivative of the closed-loop
function, enabling the systems to be less conservative. (2) A
state feedback controller design algorithm is proposed to
ensure the system’s stability under the H∞ performance
condition and a truck-trailer model is adopted to verify the
efectiveness of the proposed method.

Te rest of the article is organized as follows: some
necessary lemmas and systems depiction are presented in
Section 2; the stochastic stability condition for Markovian-
jump T-S fuzzy nonperiodic sampling control systems is
given under the H∞ − c condition and a sampled-data
controller with state feedback is designed in Section 3; and
the efectiveness of our proposed method is verifed with a
truck-trailer model in Section 4; fnally, we conclude this
work with a summary in Section 5.

2. Preliminaries

2.1. Two Useful Lemmas

Lemma 1 (see [23]). Let x be a diferentiable function:
[α, β]⟶ Rn. If there is a vector η ∈ Rm, matrix
U � UT > 0, U ∈ Rn×n, and M1, M2 ∈ Rn×n, then the
following inequality holds:

− 􏽚
β

α
_x(s)

T
U _x(s)ds≤ ληT

M
T
1 U

− 1
M1 +

λ2

3
M2U

− 1
M1􏼢 􏼣η + 2ληT⌊MT

2 + 2ηT
M

T
1 υ − 2M

T
2 􏽚

β

α
x(s)ds􏼢 􏼣, (1)

where λ � β − α, υ � x(β) − x(α), and ϱ � x(β) + x(α).

Remark 1. Tis inequality is based on the free weight matrix
inequality and is improved based on the inequality in [39].
Te inequality contains 􏽒

β
α x(s)ds instead of

1/β − α􏽒
β
α x(s)ds, and this will facilitate the deduction of the

main results and degrade the conservatism of the main
results.

Lemma 2 ((Schur complement lemma) [40]). If there are
symmetric matrixes A, B, and C, then the following three
conditions are equivalent:

2 Complexity



A B

B
T

C
􏼢 􏼣< 0,

A< 0, B − C
T
A

− 1
C< 0,

B< 0, A − CB
− 1

C
T < 0.

(2)

2.2. Depiction of T-S Fuzzy Systems with Markovian-Jump
Parameters. Concerning the continuous-time T-S fuzzy
systems with Markovian-jump parameters as follows, whose
IF-THEN rules are described:

(1) Rule i: IF φ1(t) is ζ i1, φ2(t) is ζ i2,. . ., φp(t) is ζ ip,
THEN

_x(t) � Ai(r(t))x(t) + B1,i(r(t))u(t) + D1,i(r(t))w(t),

z(t) � Ci(r(t))x(t) + B2,i(r(t))u(t) + D2,i(r(t))w(t),
􏼨

(3)

where i ∈R � (1, 2, . . . , r), r is the number of IF-
THEN rules, φ1(t), φ2(t), · · ·, φp(t) are premise

variables, ζ i1, ζ i2, . . . , ζ ip are fuzzy sets, x(t) is the
vector describing status of system, u(t) is the vector
indicates the control input, w(t) is the perturbation
input taking value in range L2[0, +∞), z(t) is the
vector of control output, r(t) is a Markovian process
in continuous time taking value in a fnite set N �

1, 2, . . . , s, and r(t) with switching transition prob-
ability matrix Π � [πικ]s×s is described as follows:

Pr r(t + Δ) � κ|r(t) � ι{ } �
πικΔ + o(Δ), ι≠ κ,

1 + πικΔ + o(Δ), ι � κ,
􏼨

(4)

where Δ> 0, limΔ⟶0(o(Δ)/Δ) � 0. When ι≠ κ,
πικ(> 0) indicate the rate of mode transition from
mode ι at time t to mode κ at time t + Δ, and πιι �

− 􏽐
s
κ�1,κ≠ ι πικ.

According to fuzzy logic inference method, system
(3) can be reconstructed as follows:

_x(t) � 􏽘
r

i�1
hi(φ(t)) Ai(r(t))x(t) + B1,i(r(t))u(t) + D1,i(r(t))w(t)􏽮 􏽯,

z(t) � 􏽘
r

i�1
hi(φ(t)) Ci(r(t))x(t) + B2,i(r(t))u(t) + D2,i(r(t))w(t)􏽮 􏽯,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where φ(t) � [φ1(t)φ2(t) . . .φp(t)],
hi(φ(t)) � (ϑi(φ(t))/􏽐

r
j�1 ϑj(φ(t))), and ϑi(φ(t)) �

􏽑
p

j�1 ζ ij(φj(t)), ζ ij(φj(t)) denote the membership
degree of φj(t) in ζ ij(j � 1, 2, . . . , p), we can easily
fnd out that for all t, ϑi(φ(t))≥ 0, 􏽐

r
i�1 ϑi(φ(t))≥ 0,

hi(φ(t))≥ 0, and 􏽐
r
i�1 hi(φ(t)) � 1. For all the pos-

sible r(t) � ι, we can simplify fuzzy system (5) as
follows:

_x(t) � Aι(t)x(t) + B1ι(t)u(t) + D1ι(t)w(t),

z(t) � Cι(t)x(t) + B2ι(t)u(t) + D2ι(t)w(t),
􏼨 (6)

where

Aι(t) � 􏽘
r

i�1
hi(φ(t))Aιi, B1ι(t) � 􏽘

r

i�1
hi(φ(t))B1ιi,

B2ι(t) � 􏽘
r

i�1
hi(φ(t))B2ιi, Cι(t) � 􏽘

r

i�1
hi(φ(t))Cιi,

D1ι(t) � 􏽘
r

i�1
hi(φ(t))D1ιi, D2ι(t) � 􏽘

r

i�1
hi(φ(t))D2ιi.

(7)

Consider the zero-order hold function, which gets a
set of hold times 0 � t0 < t1 < · · · < tk < · · · lim

k⟶∞
tk �

+∞, and for any k> 0, tk+1 − tk � hk ∈ [hm, hM], hm

indicate the lower boundary of the sampling periods,
and hM indicate the upper bound of the sampling
periods, then, the state feedback controller for sys-
tem (3) is designed as follows.

(2) Rule j：IF φ1(t) is ζj1, φ2(t) is ζj2,. . ., φp(t) is ζjp,
THEN

u(t) � Kjx tk( 􏼁, i � 1, 2, . . . , r. (8)

Based on the fuzzy logic inference method, the state
feedback controller u(t) is reconstructed as follows:

u(t) � K(t)x tk( 􏼁, (9)

where K(t) � 􏽐
r
j�1 hj(φ(t))Kj.

Substituting the u(t) into system (6), the closed-loop
system is as follows:

_x(t) � Aι(t)x(t) + B1ι(t)K(t)x tk( 􏼁 + D1ι(t)w(t),

z(t) � Cι(t)x(t) + B2ι(t)K(t)x tk( 􏼁 + D2ι(t)w(t), tk ≤ t< tk+1.
􏼨 (10)
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3. Main Results

We propose a sufcient condition to solve the control
problem formulated in the previous section.

First, two defnitions are necessary.

Defnition 1 (see [41]). When u(t) � 0, the system (10) is
stochastic stable, if the continuous function Φ(t) ∈ Rn de-
fned on the interval [− τ, 0], and the initial mode r0 ∈ N,
then the following inequality holds:

limt⟶∞ε 􏽚
t

0
x

T
s,Φ, r0( 􏼁x s,Φ, r0( 􏼁ds􏼨 􏼩<∞, (11)

where ε ·{ } denotes the mathematical expectation and
x(s, Φ, r0) indicates the solution of system (10) at the in-
stant t under the initial condition Φ(t) and r0.

Defnition 2. For a control law that any w(t)≠ 0,
w(t) ∈ L2[0,∞), system (10) is stochastic stable under the
H∞ − c condition. Tat is to say, for some scalar c> 0,
system (10) is stochastic stable if the inequality

ε 􏽚
∞

0
z

T
(t)z(t)dt􏼚 􏼛< c

2
􏽚
∞

0
w

T
(t)w(t)dt, (12)

holds under zero initial condition.
Next, we focus on the following system:

_x(t) � Aι(t)x(t) + B1ι(t)K(t)x tk( 􏼁, tk ≤ t< tk+1. (13)

If the controller is a constant, we will give the stochastic
stability conditions as follows:

Theorem 1. Given a scalar ρ> 0, T-S fuzzy system (13) is
stochastic stable if there are matrices Pi > 0, U1 > 0, U2 > 0,
H1 � HT

1 , H2, H3 � HT
3 , and H4, and arbitrary matrices Y1,

Y2, Y3, M1(t, tk), M2(t, tk), N1(t, tk), and N2(t, tk) with
appropriate dimensions such that the following inequation is
true for each i ∈ R, ι ∈ N, hk ∈ hm, hM􏼈 􏼉:

Ξq < 0, q � 1, 2, (14)

where Ξ1 �
Δ1(t, tk)

��
hk

􏽰
M

T
1 (t, tk)

��
hk

􏽰
hMM

T
2 (t, tk)

∗ − U2 0
∗ ∗ − 3U2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

Ξ2 �
Δ2(t, tk)

��
hk

􏽰
N

T
1 (t, tk)

��
hk

􏽰
hMN

T
2 (t, tk)

∗ − U1 0
∗ ∗ − 3U1

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

Δ1(t, tk) � Θ1(t, tk) + Θ2(t, tk) + hkΘ3(t, tk), Δ2(t, tk)

� Θ1(t, tk) + Θ2(t, tk) + hkΘ4(t, tk), Θ1(t, tk) � Sym
eT
1 Pie6 − ΠT

1 H2Π2 +ΠT
4 H4Π2􏼈 +MT

1 (t, tk)Π6 − 2MT
2

(t, tk)e4 − NT
1 (t, tk)Π7 − 2NT

2 (t, tk)e5} + eT
1 􏽐

s
j�1 πijPje1 −

ΠT
1 H1Π2 + ΠT

4 H3Π4, Θ2(t, tk) � Sym ΠT
10Φ1(t, tk)􏼈 􏼉,

Θ3(t, tk) � Sym ΠT
1 H1Π3 + ΠT

3 H2Π2 + NT
2 (t, tk)Π9􏼈 􏼉

+eT
6 U1e6, Θ4(t, tk) � Sym ΠT

4 H3Π5 + ΠT
5 H2Π2 + MT

2 (t, tk)􏼈

Π8} + eT
6 U2e6, ej � 0n×(j− 1)n In 0n×(6− j)n􏽨 􏽩, j � 1, 2, . . . , 6,

Π1 � [eT
1 − eT

2 eT
4 ]T,Π2 � [eT

2 eT
3 ]T, Π3 � [eT

6 eT
1 ]T,Π4

� [eT
1 − eT

3 eT
5 ]T,Π5 � [eT

6 − eT
1 ]TΠ6 � [eT

1 − eT
2 ]T,Π7 �

[eT
1 − eT

3 ]T, Π8 � e1 + e2,Π9 � e1 + e3,Π10 � [eT
1 Y1 + eT

2 Y2
+eT

6 Y3]
T, and Φ1(t, tk) � Aι(t)e1 + B1ι(t)K(tk)e2 − e6.

Proof. Let us take the Lyapunov function for system (13) as
follows:

W rt, t( 􏼁 � V rt, t( 􏼁 + V0(t), t ∈ tk, tk+1􏼂 􏼁, k ∈ N, (15)

where V(rt, t) is a quadratic Lyapunov function defned as
V(rt, t) � xT(t)P(r(t))x(t), and V0(t) � 􏽐

2
p�1 Vp(t) with

V1(t) � (tk+1 − t)ηT
1 [H1η1(t) + 2H2η3(t)] + (t − tk)ηT

2

[H3η2(t) + 2H4η3(t)], V2(t) � (tk+1 − t) 􏽒
t

tk

_xT(s)U1 _x

(s)ds − (t − tk) 􏽒
tk+1

t
_xT(s)U2 _x(s)ds, where ζ1(t) �

􏽒
t

tk
x(s)ds, ζ2(t) � 􏽒

tk+1

t
x(s)ds, ζ3(t) � x(t) − x(tk), ζ4(t) �

x(t) − x(tk+1), η1(t) � col ζ3(t), ζ1(t)􏼈 􏼉, η2(t) � col ζ4(t),􏼈

ζ2(t)}, η3(t) � col xtk
, xtk+1

􏽮 􏽯, and η(t) � col x(t), η3􏼈

(t), ζ1(t), ζ2(t), _x(t)}.
Ten, for each r(t) � ι, ι ∈ S, we say that L is a weak

infnitesimal generator of W(rt, t), it follows that LVi(t) �

2ηT(t)eT
1 Pie6η(t) + ηT(t)eT

1 􏽐
s
j�1 πijPje1η(t), LV1(t)

� ηT(t) − ΠT
1 (H1Π2 + 2H2􏼈 Π2) − 2(tk+1 − t)[ΠT

1 H1Π3
+ΠT

3 H2Π2] + ΠT
4 (H3Π4 + 2H4Π2) + 2(t− tk)[ΠT

4 H3Π5
+ΠT

5 H4Π2]}η(t), LV2(t) � (tk+1 − t)η(t)TeT
6 U1e6η(t)−

􏽒
t

tk

_xT(s)U1 _x(s)ds + (t − tk)η(t)TeT
6 U2e6η(t) − 􏽒

tk+1

t
_xT(s)

U2 _x(s)ds,
By Lemma 1, the following two inequalities hold:

− 􏽚
t

tk

_x
T
(s)U1 _x(s)ds≤ ηT

(t) t − tk( 􏼁 M
T
1 t, tk( 􏼁U

− 1
1 M1 t, tk( 􏼁 +

h
2

3
M

T
2 t, tk( 􏼁U

− 1
1 M2 t, tk( 􏼁􏼢 􏼣􏼨

+ Sym M
T
1 t, tk( 􏼁Π6 − 2M

T
2 t, tk( 􏼁e3 + t − tk( 􏼁M

T
2 t, tk( 􏼁Π8􏽨 􏽩􏽯η(t),

(16)

− 􏽚
tk+1

t
_x
T
(s)U2 _x(s)ds≤ ηT

(t) tk+1 − t( 􏼁 N
T
1 t, tk( 􏼁U

− 1
2 N1 t, tk( 􏼁 +

h
2

3
N

T
2 t, tk( 􏼁U

− 1
2 N2 t, tk( 􏼁􏼢 􏼣􏼨

+ Sym N
T
1 t, tk( 􏼁Π7 − 2N

T
2 t, tk( 􏼁e5 + tk+1 − t( 􏼁N

T
2 t, tk( 􏼁Π9􏽨 􏽩􏽯η(t),

(17)
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where M1(t, tk) � 􏽐
r
i�1 􏽐

r
j�1 hi(φ(t))hj(φ(tk))[M11,ij,

M12,ij, . . . , M1k,ij], M2(t, tk) �

􏽐
r
i�1 􏽐

r
j�1 hi(φ(t))hj(φ(tk))[M21,ij, M22,ij, . . . , M2k,ij],

N1(t, tk) �

􏽐
r
i�1 􏽐

r
j�1 hi(φ(t))hj(φ(tk))[N11,ij, N12,ij, . . . , N1k,ij],

andN2(t, tk) � 􏽐
r
i�1 􏽐

r
j�1 hi(φ(t))hj(φ(tk))[N21,ij,

N22,ij, . . . , N2k,ij].
Moreover, based on the system (13), for arbitrary ma-

trices Y1, Y2, and Y3 with appropriate dimensions, the
following equation is true:

2 x(t)
T
Y1 + x tk( 􏼁

T
Y2 + _x(t)

T
Y3􏽨 􏽩 − _x(t) + Aι(t)x(t) + B1ι(t)K(t)x tk( 􏼁􏼂 􏼃 � 0. (18)

Observing the two inequalities (16) and (17), let’s add
LWι(t) to the right side of the equation (18), thus, for any
t ∈ [tk, tk+1), there is the following conclusion:

LWι(t)≤ η(t)
T tk+1 − t

hk

Ξ1 +
t − tk

hk

Ξ2􏼢 􏼣η(t). (19)

where Ξ1 � Δ1(t, tk) + hk[NT
1 (t, tk)U− 1

2 N1
(t, tk) + (h2

M/3)NT
2 (t, tk)U− 1

2 N2(t, tk)] and Ξ2 � Δ2(t, tk) +

hk[MT
1 (t, tk)U− 1

1 M1(t, tk) + (h2
M/3)MT

2 (t, tk)U− 1
1 M2(t, tk)].

We can conclude from Lemma 2 and (14) that

Ξ1 < −
ρI

2
,Ξ2 < −

ρI

2
. (20)

Tis means

LWι(t)≤ − ρx tk( 􏼁
2
. (21)

By Dynkin formula, for any t≥ 0, we get the following
equation:

ε W rt, t( 􏼁􏼈 􏼉 − ε W r0, t0( 􏼁􏼈 􏼉≤ − ρε 􏽚
t

0
x(s)

2ds􏼨 􏼩. (22)

Hence,

ε 􏽚
t

0
x(s)

2ds􏼨 􏼩≤ ρ− 1ε W r0, t0( 􏼁􏼈 􏼉. (23)

After the analysis above, we fnally reach the conclusion.

limt⟶∞ε 􏽚
t

0
x(s)

2ds􏼨 􏼩≤ d sup− ∞<s≤0 |Φ(s)|{ }. (24)

Ten, we can conclude from Defnition 1 that system
(13) is stochastically stable. □

Remark 2. Inspired by literature [38], we propose a new
Markovian modal-dependent Lyapunov function, this
function fully utilizes the system sampled-date information
from both intervals [x(tk), x(t)] and [x(t), x(tk+1)], which
satisfes the closed-loop function condition
(V0(tk) � V0(tk+1) � 0). However, the Lyapunov function
constructed in the literature [38] only contained 􏽒

t

tk
xT(t)ds

and does not contain 􏽒
tk+1

t
xT(t)ds whereas our constructed

function V(t) includes both, thus the results derived in this
study are less conservative.

Next, based onTeorem 1, we give the stochastic stability
condition of system (10) under the H∞ − c condition.

Theorem 2. For a given scalar c> 0, T-S fuzzy system (10) is
stochastic stable under the H∞ − c condition, if there are
matrices Pi > 0, U1 > 0, U2 > 0, H1 � HT

1 , H2, H3 � HT
3 , and

H4, and arbitrary matrices Y1, Y2, Y3, M1,ij, M2,ij, N1,ij,
N2,ij such that inequation (25) is true for each i ∈ R, ι ∈ N,
and hk ∈ hm, hM􏼈 􏼉:

Ξq,ij < 0, q � 1, 2, (25)

where Ξ1,ij �

Δ1,ij

��
hk

􏽰
M

T
1,ij

��
hk

􏽰
hMM

T
2,ij Φ

T
2,j

∗ − U2 0 0
∗ ∗ − 3U2 0
∗ ∗ ∗ − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ξ2,ij �

Δ2,ij

��
hk

􏽰
N

T
1,ij

��
hk

􏽰
hMN

T
2,ij Φ

T
2,j

∗ − U1 0 0
∗ ∗ − 3U1 0
∗ ∗ ∗ − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Δ1,ij � Θ1,ij + Θ2,ij + hkΘ3,ij, Δ2,ij � Θ1,ij + Θ2,ij + hkΘ4,ij,

Θ1,ij � Sym 􏽢eT
1 Pi􏽢e6−􏽮 􏽢ΠT

1 H2
􏽢Π2 + 􏽢ΠT

4 H4
􏽢Π2 + MT

1,ij
􏽢Π6−

2MT
2,ij􏽢e4 − NT

1,ij
􏽢Π7 − 2NT

2,ij􏽢e5} + 􏽢eT
1 􏽐

s
j�1 πijPj􏽢e1 −

􏽢ΠT

1 H1
􏽢Π2 + 􏽢ΠT

4 H3
􏽢Π4, Θ2,ij � Sym 􏽢ΠT

10Φ1,ij􏼚 􏼛 − c2􏽢eT
7􏽢e7,

Θ3,ij � Sym 􏽢ΠT

1 H1
􏽢Π3 + 􏽢ΠT

3 H2
􏽢Π2 + NT

2,ij
􏽢Π9􏼚 􏼛 + 􏽢eT

6 U1􏽢e6,

Θ4,ij � Sym 􏽢ΠT

4 H3
􏽢Π5 + 􏽢ΠT

5 H2
􏽢Π2 + MT

2,ij
􏽢Π8􏼚 􏼛 + 􏽢eT

6 U2􏽢e6, 􏽢ej �

0n×(j− 1)n In 0n×(6− j)n 0n×q􏽨 􏽩, j � 1, 2, . . . , 6, 􏽢e7 �

0q×6n Iq􏽨 􏽩, 􏽢Π1 � [􏽢eT
1 − 􏽢eT

2 􏽢eT
4 ]T, 􏽢Π2 � [􏽢eT

2 􏽢eT
3 ]T, 􏽢Π3 �

[􏽢eT
6 􏽢eT

1 ]T, 􏽢Π4 � [􏽢eT
1 − 􏽢eT

3 􏽢eT
5 ]T, 􏽢Π5 � [􏽢eT

6 − 􏽢eT
1 ]T, 􏽢Π6 � [􏽢eT

1 −

􏽢eT
2 ]T, 􏽢Π7 � [􏽢eT

1 − 􏽢eT
3 ]T, 􏽢Π8 � 􏽢e1 + 􏽢e, 􏽢Π9 � 􏽢e1 + 􏽢e3, 􏽢Π10 � [􏽢eT

1 Y1
+􏽢eT

2 Y2 + 􏽢eT
6 Y3]

T, andΦ1,j � Aι􏽢e1 + B1ιKj􏽢e2 − 􏽢e6 + D1ι􏽢e7,
Φ2,j � Cι􏽢e1 + B2ιKj􏽢e2 + D2ι􏽢e7, and the defnitions of M1,ij,
M2,ij, N1,ij, N2,ij are similar to that in Teorem 1.

Next, we give the proof of Teorem 2.

Proof. Observe the statement in Teorem 2, assume that
there is a scalar ρ> 0 satisfying

Ξq,ij < 0, q � 1, 2, (26)

where Ξ1,ij �
Δ1,ij

��
hk

􏽰
M

T
1,ij

��
hk

􏽰
hMM

T
2,ij

∗ − U2 0
∗ ∗ − 3U2

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

Ξ2,ij �
Δ2,ij

��
hk

􏽰
N

T
1,ij

��
hk

􏽰
hMN

T
2,ij

∗ − U1 0
∗ ∗ − 3U1

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,
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Δ1,ij � Θ1,ij + Θ2,ij + hkΘ3,ij, Δ2,ij � Θ1,ij + Θ2,ij + hkΘ4,ij,
Θ1,ij � Sym eT

1 Pie6 − ΠT
1 H2Π2 + ΠT

4 HΠ2􏼈 +MT
1,ijΠ6

− 2MT
2,ije4 − NT

1,ijΠ7 − 2NT
2,ije5} + eT

1 􏽐
s
j�1 πijPje1 −

ΠT
1 H1Π2 +ΠT

4 H3Π4, Θ2,ij � Sym ΠT
10Φ1,j􏽮 􏽯, Θ3,ij � Sym

ΠT
1 H1Π3 +ΠT

3 H2Π2 + NT
2,ijΠ9􏽮 􏽯 + eT

6 U1e6, and Θ4,ij �

Sym ΠT
4 H3Π5 +ΠT

5 H2Π2 + MT
2,ijΠ8􏽮 􏽯 + eT

6 U2e6,
Φ1,j � Aιe1 + B1ιKje2 − e6.

Even more, the terms Ξ1 and Ξ2 in inequation (14) can
be described as follows:

Ξq � 􏽘
r

i�1
hi(φ(t)) 􏽘

r

j�1
hj(φ(t))Ξq,ij, q � 1, 2. (27)

Hence, we can conclude from inequation (26) that
inequation (14) is true, that is to say, Ξq < 0, (q � 1, 2), then
we know by Teorem 1 that system (10) is stochastically
stable when w(t) � 0.

Next, we will prove that the system (10) is stochastic
stable under the H∞ − c condition.

Let

Jzw � LWι(t) + z
T
(t)z(t) − c

2
w

T
(t)w(t). (28)

Using the same proof as in Teorem 1, for any
t ∈ [tk, tk+1), the following inequation holds:

Jzw ≤
η(t)

w(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

T

tk+1 − t

hk

Ξ1 +
t − tk

hk

Ξ2􏼢 􏼣

η(t)

w(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (29)

where

Ξ1(t, tk) �

Δ1(t, tk)
��
hk

􏽰
M

T
1 (t, tk)

��
hk

􏽰
hMM

T
2 (t, tk) ΦT

2 (t, tk)

∗ − U2 0 0
∗ ∗ − 3U2 0
∗ ∗ ∗ − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ξ2(t, tk) �

Δ2(t, tk)
��
hk

􏽰
N

T
1 (t, tk)

��
hk

􏽰
hMN

T
2 (t, tk) ΦT

2 (t, tk)

∗ − U1 0 0
∗ ∗ − 3U1 0
∗ ∗ ∗ − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Δ1(t, tk) � Θ1(t, tk) +Θ2(t, tk) + hkΘ3(t, tk), Δ2(t, tk)

� Θ1(t, tk) + Θ2(t, tk) + hkΘ4(t, tk), Θ1(t, tk) � Sym

􏽢eT
1 Pi􏽢e6 − 􏽢ΠT

1 H2􏼚 􏽢Π2 + 􏽢ΠT

4 H4
􏽢Π2 + MT

1 (t, tk) 􏽢Π6 − 2MT
2

(t, tk)􏽢e4 − NT
1 (t, tk) 􏽢Π7 − 2NT

2 (t, tk)􏽢e}5 + 􏽢eT
1 􏽐

s
j�1 πijPj􏽢e1−

􏽢ΠT

1 H1
􏽢Π2 + 􏽢ΠT

4 H3
􏽢Π4,

Θ2(t, tk) � Sym 􏽢ΠT

10Φ1(t, tk)􏼚 􏼛 − c2􏽢eT
7􏽢e7, Θ3(t, tk)

� Sym 􏽢ΠT

1 H1
􏽢Π3 + 􏽢ΠT

3 H2
􏽢Π2 + NT

2 (t, tk) 􏽢Π9􏼚 􏼛 + 􏽢eT
6 U1􏽢e6,

Θ4(t, tk) � Sym 􏽢ΠT

4 H3
􏽢Π5 + 􏽢ΠT

5 H2
􏽢Π2 + MT

2 (t, tk) 􏽢Π8􏼚 􏼛 +

􏽢eT
6 U2􏽢e6, Φ1(t, tk) � Aι(t)􏽢e1 + B1ι(t)K(t)􏽢e2 − 􏽢e6 + D1ι(t)􏽢e7,
andΦ2(t, tk) � Cι(t)􏽢e1 + B1ι(t)K(t)􏽢e2 + D2ι(t)􏽢e7.

We take

Ξq � 􏽘
R

i�1
hi(φ(t)) 􏽘

R

j�1
hj(φ(t))Ξq,ij, q � 1, 2, (30)

where Ξq,ij < 0(q � 1, 2); then, we know that

Ξq < 0, q � 1, 2. (31)

Observing inequation (29), we conclude that

Jzw ≤ 0. (32)

Terefore, for any τ ≥ 0, there must be a non-negative
integer α such that tα ≤ τ < tα; then let us observe formula
(28) and inequation (32), and we obtain that

􏽚
τ

0
z

T
(t)z(t)dt − c

2
􏽚
τ

0
w

T
(t)w(t)dt ≤ − Wι(τ)≤ 0. (33)

By the Dynkin formula, for any t≥ 0, the following
inequation holds:

ε 􏽚
∞

0
z

T
(t)z(t)dt􏼚 􏼛< − c

2
􏽚
∞

0
w

T
(t)w(t)dt. (34)

As stated in Defnition 2, we know that system (10) is
stochastic stable under the H∞ − c condition.

Next, let’s give the sufcient condition for the existence
of state feedback controllers for sampled-data follows
according to Teorem 2. □

Theorem 3. 3.For a given scalar c> 0, the T-S fuzzy system
(10) is stochastic stable under the H∞ − c condition, if there
are matrices 􏽥Pi > 0, 􏽥U1 > 0, 􏽥U2 > 0, 􏽥H1 � 􏽥H

T

1 , 􏽥H2, 􏽥H3 � 􏽥H
T

3 ,
􏽥H4, 􏽥Y, and Lι, and arbitrary matrices 􏽥M1,ij, 􏽥M2,ij, 􏽥N1,ij, and
􏽥N2,ij such that inequations (30) are true for each i, j ∈ R,
ι ∈ N, hk ∈ hm, hM􏼈 􏼉, and

􏽥Ξq,ij < 0, q � 1, 2, (35)

where 􏽥Ξ1,ij �

􏽥Δ1,ij

��
hk

􏽰
􏽥M

T

1,ij

��
hk

􏽰
hM

􏽥M
T

2,ij
􏽥ΦT

2,j

∗ − 􏽥U2 0 0
∗ ∗ − 3􏽥U2 0
∗ ∗ ∗ − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

􏽥Ξ2,ij �

􏽥Δ2,ij

��
hk

􏽰
􏽥N

T

1,ij

��
hk

􏽰
hM

􏽥N
T

2,ij
􏽥ΦT

2,j

∗ − 􏽥U1 0 0
∗ ∗ − 3􏽥U1 0
∗ ∗ ∗ − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

􏽥Δ1,ij � 􏽥Θ1,ij + 􏽥Θ2,ij + hk
􏽥Θ3,ij, 􏽥Δ2,ij � 􏽥Θ1,ij + 􏽥Θ2,ij + hk

􏽥Θ4,ij,
􏽥Θ1,ij � Sym 􏽢eT

1
􏽥Pi􏽢e6 − 􏽢ΠT

1􏼚 􏽥H2
􏽢Π2 + 􏽢ΠT

4
􏽥H4

􏽢Π2 + 􏽢ΠT

6
􏽥X􏽢e6

− 2 􏽥M
T

2,ij􏽢e4 − 􏽥N
T

1,ij
􏽢Π7 − 2 􏽥N

T

2,ij􏽢e5} + 􏽢eT
1 􏽐

s
j�1 πij

􏽥Pj􏽢e1 − 􏽢ΠT

1
􏽥H1

􏽢Π2 + 􏽢ΠT

4
􏽥H3

􏽢Π4, 􏽥Θ2,ij � Sym 􏽢ΠT

10
􏽥Φ1,j􏼚 􏼛 − c2􏽢eT

7􏽢e7,

􏽥Θ3,ij � Sym 􏽢ΠT

1
􏽥H1

􏽢Π3 + 􏽢ΠT

3
􏽥H2

􏽢Π2 + 􏽥N
T

2,ij
􏽢Π9􏼚 􏼛 + 􏽢eT

6
􏽥U1􏽢e6,
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􏽥Θ4,ij � Sym 􏽢ΠT

4
􏽥H3

􏽢Π5 + 􏽢ΠT

5
􏽥H2

􏽢Π2 + 􏽥M
T

2,ij
􏽢Π8􏼚 􏼛 + 􏽢eT

6
􏽥U2􏽢e6,

􏽥Π10 � [􏽢eT
1 + ϵ1􏽢e

T
2 + ϵ2􏽢e

T
6 ]T, 􏽥Φ1,j � Aι

􏽥Y
T
􏽢e1 + B1ιLj􏽢e2 − 􏽥Y

T
􏽢e6 +

D1ι􏽢e7, 􏽥Φ2,j � Cι
􏽥Y

T
􏽢e1 + B1ιLj􏽢e2 + D2ι(t)􏽢e7, and

􏽢Πθ(θ � 1, 2, . . . , 9) are the same defnitions as in Teorem 2;
in this case, we give the expected controller gains as follows:

Ki � LiY
− T

, i � 1, 2, . . . , r. (36)

Proof. .Let 􏽥Y � Y− 1
1 , L � K􏽥Y

T, Y2 � ϵ1Y1, Y3 � ϵ2Y1, 􏽥Pi �
􏽥YPi

􏽥Y
T, 􏽥U1 � 􏽥YU1

􏽥Y
T, 􏽥U2 � 􏽥YU2

􏽥Y
T, 􏽥H1 � 􏽥YH1

􏽥Y
T,

􏽥H2 � 􏽥YH2
􏽥Y

T, 􏽥H3 � 􏽥YH3
􏽥Y

T, 􏽥H4 � 􏽥YH4
􏽥Y

T,
􏽥M1,ij � 􏽥YM1,ij

􏽥Y
T, 􏽥M2,ij � 􏽥YM2,ij

􏽥Y
T, 􏽥N1,ij � 􏽥YN1,ij

􏽥Y
T,

􏽥N2,ij � 􏽥YN2,ij
􏽥Y

T, and

Γ � diag 􏽥Y, 􏽥Y, 􏽥Y, 􏽥Y, 􏽥Y, 􏽥Y, I, 􏽥Y, 􏽥Y, I􏼈 􏼉. (37)

By the statements in Teorem 2, we know that
Ξ1,ij < 0,Ξ2,ij < 0, let’s pre-multiply Ξ1,ij by Γ, and post-
multiply Ξ2,ij by ΓT, we can conclude that inequations (35)
are accurate. Tis concludes the proof process. □

4. Numerical Simulation Example

We provide an example in this work to verify that the
proposed approach is efective.

Example: Te Truck-Trailer model is mentioned in the
literature [42, 43]. Here, we take it as an example to verify the
results. Te Truck-Trailer model is shown as follows:

_x1(t) � −
wpt

Lt0
x1(t) +

wpt

l0t0
u(t) + 0.1w1(t) + 0.1w2(t),

_x2(t) �
wpt

Lt0
x1(t) + 0.1w1(t) + 0.1w2(t),

_x3(t) �
wpt

t0
sin x2(t) +

wpt

2L
x1(t)􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

where x1(t) is the angle diference between the trailer and
the truck, x3(t) is the vertical position of the rear of the
trailer, x2(t) is the angle of the trailer, w1(t) and w2(t) are
disturbance input, and the model parameters can be set as
t � 2, w1 � − 1, w2 � − 1.05, w3 � − 0.95, t0 � 0.5, l � 2.8, L �

5.5. Assume that the switching process between the three
modes follows a Markov process, and the transfer proba-

bility matrix is Π: Π �

− 0.3 0.1 0.2
0.4 − 0.6 0.2
0.8 0.1 − 0.9

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

Let Θ(t) � x2(t) + (wt/2L)x1(t), the membership
function is defned as follows:

h1(Θ(t)) �

(sin(Θ(t)) − gΘ(t)/Θ(t)(1 − g)), ifΘ(t)≠ 0,

1, ifΘ(t) � 0􏼨 where

g � (10− 2/π), and let h2(Θ(t)) � 1 − h1(Θ(t)).

Te T-S fuzzy systems of the model (38) can be described
as follows:

_x(t) � 􏽘
3

i�1
hι x1(t)( 􏼁 Ai,ιx(t) + B1i,ιu(t) + D1i,ιw(t)􏽨 􏽩. (39)

Te parameters of which we refer to the literature
[42, 43] are defned as follows:

A1,ι �

− (wpt/Lt0) 0 0
(wpt/Lt0) 0 0

(w
2
pt

2/2Lt0) (wpt/t0) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, A2,ι �

− (wpt/Lt0) 0 0
(wpt/Lt0) 0 0

(gw
2
pt

2/2Lt0) (gwpt/t0) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B11,ι � B12,ι �

(wpt/lt0)
0
0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, D11,ι � D12,ι �

0.1 0.1
0.1 0.1
0 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

Ten, the output vector z(t) is reconstructed as follows:

z(t) � 􏽘
3

i�1
hι x1(t)( 􏼁 Ci,ιx(t) + B2i,ιu(t) + D2i,ιw(t)􏽨 􏽩, (40)

where C1,ι � C2,ι �
0.1 0.2 0.2
0.3 0.2 0.1􏼢 􏼣, B21,ι � B22,ι �

1.2
1.1􏼢 􏼣,

andD21,ι � D22,ι �
0.15 0
0 0.2􏼢 􏼣.

First of all, the uncertain sampling period is considered.
Based on Teorem 3, let ε1 � ε2 � 0.5, and hm � 0, cmin with
diferent largest sampling periods hM are given in Table 1. It
i’s easy to fnd that a larger hM corresponds to a larger cmin.

Next, the situation of a specifc sampling period is an-
alyzed. In other words, hm � hM � h, the H∞ performances
cmin with diferent h are given in Table 2. It is easy to fnd that
a larger h corresponds to a larger cmin.

From the two tables above, we can see that when the
sampling period increases, the corresponding performance
cmin also increases. Tis phenomenon inspires us to improve
the H∞ performance of the system by increasing the
sampling frequency.

In addition, we select sampling period hm � 0.1, hM �

0.3 to verify Teorem 3, and we can obtain the following
controller: K1 � 12.1392 − 22.3714 4.0967􏼂 􏼃 and
K2 � 11.7478 − 20.2820 4.1563􏼂 􏼃.

Based on the above controller, the initial value of the
system is selected as x0 � − 0.5π − 0.75π − 4􏼂 􏼃. Based on the
nonperiodic sampled-data controller obtained from Teo-
rem 3, the state response curve and Markovian-jump signals
of the closed-loop system in Figure 1 show that the system
state response is approaching zero. Figure 2 shows the
sampled-data control input and the system aperiodic
sampling intervals, as we see that the synchronization error
of the Truck-Trailer model is approaching zero. Further-
more, each stem represents the sampling time tk, and the
value of each stem indicates the range of the sampling in-
terval hk. We can thus conclude that the closed-loop system
is stable under the action of our proposed nonperiodic
sampled-data controller, which shows the efectiveness of
our proposed method.
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5. Conclusion

In this paper, a design algorithm of the state feedback
controller is proposed, which ensures the stability of the T-S
fuzzy systems with Markovian-jump parameters under H∞
performance condition, and the stability condition with less
conservative is given in linear matrix inequality form. At the
same time, a Truck-Trailer model is used to simulate the T-S
fuzzy systems with Markovian-jump parameters, and the
simulation results also prove that our presented method is
real and efective.
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