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In the age of big data, machine learning models are globally used to execute default risk prediction. Imbalanced datasets and
redundant features are two main problems that can reduce the performance of machine learning models. To address these issues,
this study conducts an analysis from the viewpoint of different balance ratios as well as the selection order of feature selection.
Accordingly, we first use data rebalancing and feature selection to obtain 32 derived datasets with varying ratios of balance and
feature combinations for each dataset. Second, we propose a comprehensive metric model based on multimachine learning
algorithms (CMM-MLA) to select the best-derived dataset with the optimal balance ratio and feature combination. Finally, the
convolutional neural network (CNN) is trained on the selected derived dataset to evaluate the performance of our approach in
terms of type-II error, accuracy, G-mean, and AUC. ,ere are two contributions in this study. First, the optimal balance ratio is
found through the classification accuracy, which changes the deficiency of the existing research that samples are imbalanced or the
balance ratio is 1 :1 and ensures the accuracy of the classification model. Second, a comprehensive metric model based on the
machine learning algorithm is proposed, which can simultaneously find the best balance ratio and the optimal feature selection.
,e experimental results show that our method can noticeably improve the performance of CNN, and CNNoutperforms the other
four commonly used machine learning models in the task of default risk prediction on four benchmark datasets.

1. Introduction

Default risk prediction means the prediction of the re-
payment ability of enterprise loans. Default risk pre-
diction can effectively avoid default risk and reduce the
loss of debtors and investors. In the age of big data, deep
learning algorithms, such as convolutional neural net-
works, are widely applied to various fields. In the area of
default risk prediction, there are two main problems: one
is the balance ratio of the dataset, and the other is the
selection of the best feature combination. To address
these two problems, this study proposes a comprehensive
metric model based on multimachine learning algo-
rithms to find the best balance ratio and optimal feature

combination and to improve the performance of the deep
learning model in the default risk prediction.

1.1. *e Best Balance Ratio of the Imbalanced Dataset.
Due to the objective fact that there are far more nondefault
samples than the default samples, the problem of data
imbalance is prevalent. ,e performance of traditional
machine learning methods on unbalanced datasets is poor.
,ere are many studies on rebalancing methods for im-
balanced datasets, but few studies on the optimal balance
ratio. Different balance ratios greatly influence the pre-
diction result of the machine learning model. For the deep
learning model, the training time is too long, and it would
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take a lot of time to find the optimal balance ratio.
,erefore, finding the best balance ratio is a significant
problem.

1.2. *e Best Feature Combination and Selection Order.
Different feature combinations can make the default risk
prediction quite different. Feature selection can improve the
model performance and save computational costs. ,erefore,
feature selection is an essential problem in the task of default
risk prediction. At the same time, with respect to the orders of
rebalancing and feature selection, the datasets with the same
balance ratio have different optimal feature combinations.
,erefore, the order of feature selection and data rebalancing
processing is also a problem worth discussing.

,e differences between our study and existing studies
are mainly reflected in the following two aspects.

Our study on balance ratio is most related to Hou et al.
[1]. Hou et al. applied the method of synthetic minority
sample oversampling and minority sample weighting to
address the imbalance problem [1]. In this study, from the
perspective of searching for the best balance ratio, the score
ranking of the comprehensive metric model based on the
multimachine learning algorithm in a training set with
different balance ratios is used to reverse the optimal balance
ratio and improve the performance of the classifier.

Our study on feature selection is most related to Song
et al., but the research of Song et al. on feature selection does
not consider the influence of data balance processing [2]. In
this study, the feature combination selection is conducted
before and after the data balancing.,en the optimal feature
combination is obtained through the comparative analysis of
multiple groups of experiments.

In recent decades, researchers have introduced many
resampling strategies and imbalance-proof algorithms to
address the data-imbalanced problem for default risk
prediction. Unfortunately, the efficiency of the above-
mentioned methods almost reaches the limit, which
means that we have to find a new facet to push the limit. In
this study, the optimal balance ratio is found through the
classification accuracy, which changes the deficiency of
the existing research that samples are imbalanced or the
balance ratio is 1 : 1 and ensures the accuracy of the
classification model. A comprehensive metric model
based on the machine learning algorithm is proposed,
which can simultaneously find the best balance ratio and
perform the optimal feature selection. Additionally, our
framework is flexible and universal for different resam-
pling methods and machine learning algorithms and
obtain a more satisfactory result than the original algo-
rithms. In conclusion, a framework to explore the best
balance ratio and feature combination is promising and
meaningful. ,is makes the strategy for the data-imbal-
anced problem more systematic.

,is paper left is organized as follows. Section 2 is the
literature review. Section 3 presents the problem statement
and solution idea. Section 4 introduces the methodology.
Section 5 shows the experimental analysis. Section 6 outlines
the conclusion.

2. Literature Review

2.1. Research on Data Imbalance. ,e solution to data im-
balance can be divided into algorithm level, data level, and
the combination of algorithm level and data level.

At the algorithm level, researchers improve the per-
formance of models by making the algorithm focus on the
minority class. Huang et al. evaluated the ability of neural
networks to deal with imbalance problems in the field of
default risk prediction. ,e experimental results show that
the proposed methods can obtain consistently high TP
prediction rates for each class [3]. Huang et al. used three
strategies to construct the hybrid SVM-based credit scoring
models. Compared with other tree classifiers, the SVM
classifier achieved an identical classificatory accuracy [4].
I. Mues and C. Mues used resampling to process imbalanced
credit data and applied LR, DT, and other models to predict
default.,is empirical study indicates that the random forest
and gradient boosting classifiers perform very well in credit
scoring [5]. Kvamme et al. used convolutional neural net-
works to predict mortgage defaults. Experimental results
show that the threshold is essential for accuracy [6]. Yu et al.
proposed an integrated model based on the deep belief
network (DBN) and SVM.,e experimental results indicate
that the proposed model can be a promising tool for credit
risk classification with imbalanced data [7]. Ma et al. applied
LightGBM and XGboost to deal with unbalanced data to
predict the default risk of loans [8]. Li et al. explored the
application of transfer learning in the financial field. ,eir
study highlights the commercial value of the transfer
learning concept and provides practitioners and manage-
ment personnel with a decision basis [9]. M. Lardy and J. P.
Lardy offered a simple, global, and transparent CDS
structural approximation for the energy industry based on
random forest [10]. Zhao et al. constructed a DMDP system
that can capture a company’s historical performance and use
long short-termmemory to dynamically consider news from
social media and public opinion [11]. Fu et al. utilized
BiLSTM to predict the default risk of the platform based on
the extracted keywords of investor comments. Experimental
results show that the proposed model can better capture
semantic features and achieve significant improvement [12].

At the data level, resampling methods are globally used,
including undersampling, oversampling, and hybrid sam-
pling. Among them, the oversampling technique recently
has recently become a research hotspot. ,e synthetic mi-
nority oversampling technique (SMOTE) is the bedrock of
the oversampling method proposed by Chawla et al. [13].
Hernandez et al. presented an empirical study about using
oversampling and undersampling methods to improve the
accuracy of instance selection methods on imbalanced da-
tabases. ,e experimental results show that using over-
sampling and undersampling methods significantly
improves the accuracy for the minority class [14]. I. Lai-
Yuen and S. K. Lai-Yuen presented a novel oversampling
approach called A-SUWO which can avoid sample over-
lapping. ,e experimental results indicate that the proposed
method achieves significantly better than other sampling
methods [15]. Liang et al. presented an oversampling

2 Complexity



technique that unites k-means and SVM to balance the data,
which proves to have a better performance than the SMOTE
algorithm [16]. Jiang et al. formulated an OS-CCD method
based on the classification contribution degree that can
describe the importance of samples. Experimental results
show that OS-CCD outperforms six classical oversampling
methods on twelve benchmark datasets [17]. Zhang et al.
proposed a new hybrid ensemble model with voting-based
outlier detection and balanced sampling. ,e experimental
results indicate superior performance and prove its ro-
bustness and effectiveness [18].

Several studies improved both the algorithm and data.
Hou et al. proposed a new dynamic integrated selection
strategy (DES) for default prediction. Before the candidate
classifier pool is generated, the training set is balanced by
SMOTE, and the importance of minority samples in the
evaluation of classifier capability is increased [1]. Shen et al.
proposed an improved SMOTE technique to balance the
dataset and make use of the integrated deep learning model
for default prediction. ,e experiments show that the
proposed model improves the AUC of seven known and
popular DES algorithms [19].

A common difference between our study and the
abovementioned literature is that different balance ratios are
considered in this study.

2.2. Research on Feature Selection. Feature selection includes
single feature selection and feature combination selection.
Single feature selection only focuses on the function of one
feature but ignores the underlying relationship among
different features, while feature combination selection
considers the influence of multiple features on the results
simultaneously.

Research on single feature selection. Chen and Li pro-
posed four approaches combined with the support vector
machine classifier for feature selection that retains enough
information for classification purposes. ,e result suggests
that the hybrid credit scoring approach is robust and ef-
fective in finding optimal subsets [20]. S. Oreski and
G. Oreski proposed a feature selection method based on
genetic algorithms. ,e preset threshold eliminates the
unqualified features in terms of FDAF-score. Experimental
results show that the proposed classifier is promising for
feature selection and classification [21]. Song et al. calculated
the FDAF-score of each feature to evaluate the feature’s
contribution to classification. Experiments demonstrate that
the proposed FDAF-score algorithm can obtain good results
and deal with the classification problem with noises [2].
Sheikhpour et al. studied the semisupervised feature selec-
tion method to reduce the cost of dataset annotation and
simplify data collection. Based on the literature review, it was
observed that most of the semi-supervised feature selection
methods had been presented for classification problems [22].
Urbanowicz et al. placed Relief-based algorithms in the
context of other feature selection methods and provided an
in-depth introduction to the Relief-algorithm concept [23].
Hu et al. conducted feature selection by calculating the
correlation between features and classification results. ,e

classification results show that the proposed model performs
better than the other five methods [24]. Kozodoi et al.
proposed a profit-driven multiobjective feature selection
method. Experiments demonstrate that the proposed ap-
proach can yield a higher expected profit using fewer fea-
tures [25].

,e above is a single feature selection method, and many
scholars have significantly contributed to feature combi-
nation selection. Luo et al. presented an adaptive unsu-
pervised feature selection method that can generate a picture
of the original feature space and output a reliable feature
combination [26]. Zhang et al. applied the multiobjective
particle swarm optimization to a multiclass dataset that
verifies that the proposed algorithm is a helpful approach to
feature selection for multi-label classification problems [27].
Mafarja et al. presented a wrapper feature selection method
based on the binary dragonfly algorithm. ,e results show
the ability to search the most informative features for
classification tasks [28]. Gu et al. presented a competitive
swarm optimizer that deals with high-dimensional feature
selection. Experiments demonstrate that the proposed fea-
ture selection algorithm can select a much smaller number of
features with better classification performance [29].
M. Mirjalili and S. Mirjalili modified wrapper feature se-
lection by whale algorithm proved efficient in searching for
the optimal feature subsets [30]. Abualigah et al. used the
particle swarm optimization algorithm to perform feature
selection which can eliminate the uninformative features of
the text [31]. Sayed et al. proposed a chaotic crow search
algorithm to improve the convergence rate and find the
optimal feature combination [32]. Zhang et al. proposed a
two-archive multiobjective artificial bee colony algorithm
that is proved to be an efficient and robust optimization
method for solving cost-sensitive feature selection problems
[33]. Ghosh et al. proposed a wrapper-filter combination of
ant colony optimization in feature selection. ,e experi-
mental results clearly show that our method outperforms
most state-of-the-art algorithms used for feature selection
[34]. Zhang et al. proposed a self-learning andmultiobjective
algorithm to balance local and global searching [35].

,e difference between the research on feature selection
in this study and the abovementioned studies is that our
study first uses the feature combination selection method to
select the datasets with different balanced ratios and then
selects the optimal feature combination from the selected
feature combinations. In addition, this paper studies the
selection order.

2.3. Research on Default Risk Prediction Methods. ,ere is
extensive literature on various approaches to credit scoring,
default risk prediction, and fraud detection. Credit risk
prediction indicates the level of the risk in investing with the
company. It represents the likelihood that the company pays
its financial obligations on time.

Credit risk prediction models can be divided into
qualitative and quantitative analysis, machine learning
models, and deep learning models. Standard and Poor’s,
Moody’s, and Fitch use a twofold analysis (qualitative and
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quantitative) to assign a credit score to a company. Quali-
tative analysis is based on different factors such as company
strategy and economic market outlook, while quantitative
analysis is based only on financial statements. However, how
these analyses lead to the final credit score is still unclear
[36].

Many machine learning methods have been extensively
employed to forecast corporate default risk. Linear default
risk prediction models determine which category the new
individual sample belongs to by summarizing a classification
rule with a large number of samples. ,e representative
models include linear discriminant analysis [37], multi-
variate discriminant analysis [38], logistic regression [39],
and probit models [40], among others. Although the linear
models have the advantages of simplicity and ease of use,
they cannot effectively deal with the nonlinear relationship
between variables. ,us there is a significant difference
between the classification results and the actual default
status. With the advent of the big data era, artificial intel-
ligence-based default risk prediction methods are increas-
ingly advantageous. Machine learning models involve
support vector machines [41], decision trees[42], k-nearest
neighbors [43], BP neural networks [44], and so on.
Compared with the linear models, which require strict as-
sumptions and are sensitive to noise data, the artificial in-
telligence models effectively overcome linear models’
limitations with strong robustness and unstructured
characteristics.

In addition to standard neural networks, some re-
searchers focus on deep learning models in many financial
fields. Compared with an artificial neural network (ANN), a
deep neural network (DNN) is a model with more than one
hidden layer between the input and output layers [45]. Deep
learning models such as Convolutional Neural Networks
(CNN) [46], Generative Adversarial Networks (GAN) [47],
and Recurrent Neural Networks (RNN) [48] have been
proven to significantly improve the accuracy of classification
in various financial problems [49]. Previous applications of
CNN include their use in image processing, sequence, and
time-series [50, 51], while in financial problems, they are
mainly used in the stock market analysis [52]. Tsantekidis
et al. used CNN to predict mid-price movements of the limit
order book; their empirical evidence reveals that CNN can
obtain more accurate results than the multilayer perceptron
model [53]. Chung and Shin applied one of the represen-
tative deep learning techniques, multichannel convolutional
neural networks, to predict the fluctuation of the stock
index.,e experimental results show that CNN outperforms
the comparative models, which demonstrates the effec-
tiveness of CNN [54]. Chen et al. proposed a novel method
for stock trend prediction using a graph convolutional
feature based convolutional neural network model, in which
both stock market information and individual stock infor-
mation are considered [55]. Some studies have tried ap-
plying CNN to the default risk prediction field. Kvamme
et al. predict mortgage default by applying CNN to con-
sumer transaction data [6]. Carrasco and Sicilia-Urbán used
DNN to measure their ability to detect false positives by
processing alerts triggered by a fraud detection system [56].

J. I. Z. Lai and K. L. Lai proposed the deep convolution
neural network scheme based on a financial fraud detection
scheme using a deep learning algorithm. Over a time du-
ration of 45 s, the detection accuracy of 99% was obtained
using the proposed model, as observed in the experimental
results [57].

In our study, CNN is used to predict the default risk of
the enterprises, and the experimental results show that CNN
outperforms KNN, DT, SVM, and LR. As a deep learning
model, CNN can accurately predict enterprises’ credit risk.

3. Problem Description and Solution Ideas

3.1. *e Determination of the Best Balance Ratio of Data.
In order to solve the problem that the default samples are far
fewer than the nondefault samples, the dataset is often
rebalanced before constructing the default risk prediction
model. As an excellent sampling method, the synthetic
minority oversampling technique (SMOTE) is widely used
to process imbalanced datasets. In this study, the SMOTE
algorithm is used to balance the dataset. In the oversampling
process, the difference in balance ratios between default and
nondefault samples will affect the model performance.

In this study, the approach to solve the problem is to use
default and nondefault samples with different balance ratios
to establish a prediction model. ,e best balance ratio is
obtained through the comprehensive ranking of multiple
metrics of the prediction model.

,e approach to constructing the balance ratio is as
follows. Assume that A represents the majority (nondefault)
samples in the training set and B represents the minority
(default) samples. It is clear that the proportion of the
majority class and minority class of the training set is A :B.
,e SMOTE algorithm is used to perform the oversampling
operation on default samples. It is assumed that every round
of sampling is performed on all minority samples, i.e., re-
peated B times.,en, themaximum sampling roundNmax is:

nmax � ⌈
A − B

B
⌉. (1)

,e abovementioned formula means round-up, which
means the number of times required to apply the SMOTE
algorithm to the minority samples when the dataset is
balanced to 1 :1. ,en, the sampling round Nα required to
achieve is shown as follows.

nα �
A/α − B

B
. (2)

,e abovementioned formula indicates the times re-
quired to apply the SMOTE algorithm when the dataset is
balanced to α : 1, where α is the balanced ratio and set to 1,
2, 3, 4, 5, 6, 7, 8, 9, and 10. ,e datasets with different
balance ratios are put into support vector machine (SVM),
logical regression (LR), decision tree (DT), and k-nearest
neighbor (KNN). ,e optimal balance ratio can be ob-
tained by comparing the comprehensive ranking of
multiple metrics of the four models with different balance
ratios.
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3.2. *e Determination of the Best Feature Combination and
the Selection Order. In the task of enterprise default risk
prediction, enterprise data often have many features, which
creates the problem of feature redundancy. Selecting the best
feature combination can optimize the performance of ma-
chine learning models and reduce the calculation cost.

Different feature combinations significantly influence
the results, and there are always several feature combinations
that can make the models have higher prediction accuracy.
Feature selection can be divided into single feature selection
and feature combination selection. Feature combination
selection refers to the selection of multiple different feature
combinations simultaneously. In this study, feature selection
technology based on the genetic algorithm is a feature
combination selection method. In the feature selection
process, we often face the problem of the order of feature
selection treatment and rebalancing treatment.,e selection
order is also studied in this work.

4. Methodology

4.1. Synthetic Minority Oversampling Technique. Chawla
et al. proposed the synthetic minority samples oversampling
technique (SMOTE), which is a type of oversampling
method to solve the problem of data imbalance [13]. ,e
basic principle is based on the distance between the samples
in the sample space, using the existing minority samples to
synthesize new samples. Given an imbalanced dataset, for
each sample xi of the minority class, we calculate the Eu-
clidean distance between xi and other minority samples.
SMOTE finds K neighbors of xi, selects a random point xj
from these K points, and then synthesizes a new sample
point xnew. ,e calculation formula of the new sample is as
follows.

xnew � xi + xi − xj􏼐 􏼑 × δ, (3)

where δ is a random number between 0 and 1. ,e
abovementioned formula indicates that a new sample is
synthesized between two minority samples, and the coor-
dinate value of the new sample point is calculated.

In Figure 1, the circles represent the minority samples,
the rectangles represent the majority samples, and the
crosses represent the synthesized samples.

4.2.GeneticAlgorithm. In this study, the genetic algorithm is
used to implement the operation of feature selection, which
is a kind of feature combination selection. ,e introduction
of the genetic algorithm is as follows.

A genetic algorithm is an optimization algorithm that
simulates natural evolution. In nature, organisms evolve
through natural selection. In genetic algorithms, computer-
generated “creatures” are selected and evolved by fitness
functions. ,e basic process of the genetic algorithm is
shown in Figure 2.

(1) ,e population is generated randomly, and nu-
merical arrays represent the individuals. Addi-
tionally, an individual represents a combination

of features. ,e elements in the array are called
genes, which are values of 0 or 1. In the feature
selection task, 0 represents that the feature cor-
responding to the position is removed, and 1
represents that the feature corresponding to the
position is selected.

(2) ,e fitness function is used to calculate the fitness of
individuals. In our study, the fitness function is the
average F1-score of the fivefold cross-validation
results of the SVM on the training set. ,e details of
the SVM are described in Section 4.3.3. ,e F1-score
is introduced in Section 4.5.

(3) According to the preset threshold, the unqualified
individuals in terms of fitness are removed.

(4) ,e remaining individuals are “hybrid” to produce a
new individual, and the offspring’s genes are the
binary sum of the same locus of its parents’ genes.
For example, an individual with a genome of [1, 0, 1,
1, 0] crosses with that of [0, 1, 1, 1, 1] to obtain [1, 1,
0, 0, 1]. ,en, some individuals are randomly se-
lected for gene mutation at a random locus; the gene
is changed from 0 to 1 or from 1 to 0. ,en, the
population is updated.

(5) ,e fitness function is used to calculate the fitness of
the individuals in the new population, and the un-
qualified individuals are eliminated.

Figure 1: Schematic diagram of SMOTE.

Initialize population

Fitness calculation

Generate new population

Select individuals

OutputStop?

Fitness calculation

yes

no

Figure 2: Flowchart of genetic algorithm.

Complexity 5



(6) Judge whether the stop condition is met. If it is, the
individual with the highest fitness in the evolutionary
process is output. If not, it is returned to step (4).

,e genetic algorithm is a heuristic search and opti-
mization technique that mimics the process of natural
evolution. ,e algorithm is easy to understand, good for
noisy environments, and robust with respect to local
maxima/minima. However, the genetic algorithm may fall
into the local optimum when dealing with a complex op-
timization problem, and the result of the solution strongly
depends on the initial value.

,e genetic algorithm jumping out of local optimization
to obtain global optimization is based on crossover and
mutation in the algorithm. Compared with the standard
genetic algorithm, this study makes the following two
improvements.

4.2.1. *e Improved Crossover. First, according to the
matching principle, the parents are queued, i.e., sorted by the
fitness function. Individuals with small objective function
values are paired, and individuals with large objective
function values are paired. ,en, the position of the
crossover point is determined using the logistic chaotic
sequence x(n+ 1)� 4x(n) (1− x(n)). Finally, the determined
crossover is performed.

For example, paired individuals (Ω1, Ω2), Ω1 =w1
1 w1

2,
. . ., w1

k, Ω2 =w2
1 w2

2, . . ., w2
k. First, an initial value between 0

and 1 is taken, and x(n+ 1) = 4x(n) (1− x(n)) is used to
generate one chaotic value on (0, 1) at a time; multiply this
value by k, and finally round it.

4.2.2. *e Improved Mutation. ,emutation is also a means
to achieve group diversity and is an essential guarantee for
jumping out of local optimization. ,e improved mutation
in this study is designed as follows. According to the given
mutation rate, two integers between 2 and k are randomly
selected to mutate the genes at the corresponding positions
of these two numbers. ,e mutation takes the current gene
value as the initial value, and the chaotic sequence x(n+ 1)�

4x(n) (1− x(n)) is used to perform a number of iterations to
obtain the new gene after mutation; thereby, a new chro-
mosome is obtained.

4.3. Machine Learning Model. ,e following four well-
known machine learning models are not the focus of this
article; thus, they are briefly described.

4.3.1. K-Nearest Neighbor. K-nearest neighbor (KNN) is a
classification algorithm based on the distance between
samples in space. ,e basic idea of the KNN algorithm is as
follows. Given a test sample, k training samples closest to it
are obtained, and the prediction based on the information of
these k neighbors is made. Generally, the voting method can
be used for the prediction. ,e prediction result is the class
label that appears most in the k samples. ,e schematic
diagram of KNN algorithm is shown in Figure 3.

,e steps of KNN are as follows.

(1) ,e distances between every test sample and training
samples are calculated.

(2) ,e distances are sorted by ascending order.
(3) k training samples with the smallest distances are

selected.
(4) ,e frequencies of the k samples in different classes

are obtained.
(5) ,e class with the highest frequency is the predicted

class of the test sample.

4.3.2. Decision Tree. Decision tree is a tree-like structure
that can classify a sample through multiple levels of nodes.
Among them, each internal node represents the judgment
of a feature, and the classification result is finally output by
the leaf node. ,e decision tree usually divides the sample
attributes according to the purity of the dataset. ,e de-
cision tree used in our paper uses the Gini index to measure
the purity of the dataset. ,e Gini index formula is as
follows.

Gini(X) � 􏽘
n

k�1
􏽘
i≠ k

pkpi, (4)

where Gini(X) is the Gini index of dataset X, n is the number
of samples in the dataset, and Pk is the probability that the
sample belongs to class K. ,e above formula means the sum
of the probabilities of two samples randomly selected from
the dataset in different classes. ,e smaller the Gini index,
the higher the purity of the dataset.

,e generation process of a decision tree is mainly di-
vided into the following three parts.

(1) Feature selection
A feature is chosen from many features in the
training data as the split criterion of the current
node. Different feature selection methods derive
different decision tree algorithms. ,is article uses
information gain to divide nodes.

(2) Decision tree generation
According to the selected feature evaluation criteria,
child nodes are generated recursively from top to
bottom, and the decision tree stops growing until the
data set is indivisible.

-

+

+

-

-+

k=1
Predicted as +

k=4
Predicted as -

k=7
Predicted as +

+

Figure 3: Schematic diagram of K-nearest neighbor algorithm.

6 Complexity



(3) Pruning
,e decision tree has been over-fitting, and it is
necessary to reduce the size of the tree structure
through pruning.,ere are two commonly used pre-
pruning and backward pruning.

Figure 4 is a schematic diagram of a decision tree.
Rectangles represent the internal nodes, and ellipses rep-
resent the leaf nodes.

4.3.3. Support Vector Machine. Support vector machine
(SVM) is an algorithm that can classify samples by maxi-
mally spaced hyperplanes. Its goal is to find a support vector
that is the most distant from the samples. ,e maximal
interval hyperplane is found by solving the optimization
problem in (5). ,e objective function of the support vector
machine is shown as follows.

min
1
2
‖ω‖

2
+ C 􏽘

l

i�1
ξi,

s.t. yi w · xi + b( 􏼁􏼂 􏼃≥ 1 − ξi,

(5)

where w is the weight vector, b is the displacement term, ξ is
the slack variable, and C> 0 is the penalty factor. In (4), the
first expression is the optimization goal, and the second
expression is the constraint condition. (4) means minimizing
the square of the modulus of the weight matrix under con-
straint conditions. Figure 5 is a schematic diagram of SVM.

4.3.4. Logistic Regression. ,e basic idea of logistic regres-
sion (LR) is to judge the classification by finding the rela-
tionship between the classification probability and the input
vector. Firstly, it is assumed that the data obey a certain
distribution, and then the maximum likelihood estimation is
used for parameter estimation.

ln
p

1 − p
� α + β1x1 + · · · + βhxh. (6)

Where p is the default probability, 1− p is the nondefault
probability, α is the constant in the model, βh is the logistic
regression coefficient, xh is the hth independent variable.

,e maximum likelihood method is used to estimate the
parameters α and β. Given the data set (xi, yi)􏼈 􏼉

N

i�1, the
logarithmic likelihood function can be expressed as

ln L(β) � 􏽘
N

i�1
yi ln pi( 􏼁 + 1 − yi( 􏼁ln 1 − pi( 􏼁􏼁. (7)

,emaximum likelihood function of (5) is equivalent to
the following minimum cost function:

J(β) � InL(β) −
1
N

􏽘

N

i�1
yi ln si( 􏼁 + 1 − yi( 􏼁ln 1 − si( 􏼁􏼁. (8)

In this paper, the logistic regression parameters are
estimated using gradient descent. ,e main goal of pa-
rameter optimization is to find a direction in which the value

of the cost function can be reduced after the parameters
move in this direction.

4.4. Convolutional Neural Network. To explore the appli-
cation of deep learning algorithms to default risk prediction,
we choose the convolutional neural network (CNN), a well-
known model in computer vision, to compare it with the
abovementioned four traditional machine learning
algorithms.

As a representative algorithm of deep learning, CNN is
widely used in the field of image and audio in the era of big
data. In recent years, convolutional neural networks have
also produced many research results in the area of default
prediction. ,e CNN constructed in this study includes the
convolutional layer (CONV), linear rectified function
(ReLU), and full-connection layer (FC) for extracting fea-
tures, as shown in Figure 6.

4.4.1. Convolutional Layer. ,e Convolutional layer is a
unique structure of CNN, which can be used to extract data
features. ,e convolution layer contains multiple convolu-
tion kernels. Since the object of study in this paper is one-
dimensional data, the one-dimensional convolution kernel
is used. ,e convolution layer uses the convolution kernel to

age

gender

<30

YES credit rating

30-40 >40

NO YES

male female

NO YES

good bad

Figure 4: Schematic diagram of decision tree.

Figure 5: Schematic diagram of SVM.
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perform the convolution operation on the input matrix and
convert the input matrix to the output matrix. ,e con-
volution operation process shown in Figure 7 is illustrated by
taking one-dimensional convolution as an example.

,e weight matrix of the convolution kernel starts from
the initial position of the input matrix, calculates the sum of
the product of the weight matrix and the corresponding
position elements of the input matrix, and fills the result into
the output matrix.,emodel self-adjusted the weight matrix
through the backpropagation (BP) algorithm. After each
calculation, the convolution kernel would move on to cal-
culate the value of the next element of the output matrix
until all calculations are completed.

A 10-dimensional vector shown in Figure 8 represents
the input matrix. Moreover, the weight matrix of the con-
volution kernel is represented by a three-dimensional vector
shown in Figure 9, and the size of the convolution kernel is
1× 3. ,en the first element of the output matrix is as
follows.

3 × 7 + 6 × 4 + 9 × 2 � 63. (9)

,e second element of the output matrix is

6 × 7 + 9 × 4 + 10 × 2 � 98. (10)

,e output matrix is finally obtained by analogy, as
shown in Figure 10.

Let the dimension of the output vector of the con-
volutional layer be nout (in the one-dimensional case), then
the size of the output matrix of the convolutional layer can
be calculated by the following formula.

nout �
nin + 2p − k

s
+ 1, (11)

where nin is the dimension of the input vector, p is the
padding, k is the size of the convolution kernel, and s is the
step. Padding� 0 and s� 1 in this paper.

4.4.2. Linear Rectifying Function. ,e linear rectifier func-
tion is a commonly used activation function, which is the
slope function in this paper, and its expression is

f(x) � max(0, x). (12)

Where f(x) is a linear rectifying function and x is an input
matrix. ,e meaning of the above equation is that for each

element value in the input matrix, if greater than 0, it re-
mains unchanged; otherwise, it becomes 0.

4.4.3. Full-Connected Layer. ,e full-connected layer lies
behind the convolution layer and acts as a feed-forward
neural network. After the output matrix of the convolution
layer is input to FC, the Softmax function can calculate the
default probability. ,e expression of the Softmax function is

P(y � k|x)
exp x

T
wk􏼐 􏼑

􏽐
m
i�1 exp x

T
wi􏼐 􏼑

. (13)

Feature Vector

Convolutional Layer Max Pooling Layer

Flattening Full Connected Layer

Figure 6: Convolutional neural network architecture.

1
2

3

3
1

2

11

Figure 7: Schematic diagram of the convolution operation.

3 6 9 10 1 2 4 7 3 5

Figure 8: Input vector.

7 4 2

Figure 9: Weight matrix.

63 98 105 78 23 44 62 71

Figure 10: Output matrix.
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Where xT is the transpose of the input matrix, P is the
probability that the sample belongs to class k, and wk is the
weight vector under class k. ,e above equation means that
for each input x, Softmax calculates the probability P of its
being divided into each classification k. When the proba-
bility of default exceeds the threshold, the sample would be
predicted as a default sample.

4.5. Model Testing. ,e model evaluations adopted in this
paper are as follows.

(1) F1-score is the harmonic mean of precision and
recall and is shown in.

% F1 − Score �
2 × TP/(TP + FP) × TP/(TP + FN)

TP/(TP + FP) + TP/(TP + FN)
.

(14)

(2) ,e ratio of default samples wrongly predicted to the
nondefault sample, namely Type-II error is

Type − II error �
FN

TP + FN
. (15)

(3) Accuracy is the ratio of the number of correctly
classified samples to the total number of samples.

Accuracy �
TP + TN

TP + FP + FN + TN
. (16)

(4) ,e G-mean is the geometric mean of the correct
rates of nondefault and default samples and is shown
as follows.

G − mean �
TN

FP + TN
−

TP

TP + FN
􏼒 􏼓

1/2
. (17)

(5) ,e AUC value is equivalent to the probability that a
randomly chosen positive example is ranked higher
than a randomly chosen negative example[58].

,e confusion matrix of prediction results is shown in
Table 1.

4.6. Comprehensive Metric Model Based on Multi-Machine
Learning Algorithms. ,e training of CNN is a time-con-
suming task. Compared with the convolutional neural
network, the four machine learning models mentioned
above can be easily trained and are simpler to debug.
,erefore, before training the CNN, we first use the machine
learning models to evaluate the datasets with different
balance ratios and feature combinations. ,e average
ranking of multiple metrics determines the best balance ratio
and feature combination. ,is result is applied to CNN to
improve the performance of the deep learning model. ,e
basic process of our approach is as follows.

(1) An unprocessed copy of the original training set is
denoted by T. ,e copy of the original training set
processed by feature selection is denoted as T0, and

its corresponding feature combination is denoted as
F0.

(2) Rebalancing T, the balance ratios are set to 1 :1, 2 :1,
. . ., 10 :1, and ten training sets are denoted as T1, T2,
. . ., T10.

(3) ,e ten training sets are processed by feature se-
lection to obtain T11, T12, . . ., T20 and their corre-
sponding feature combinations are F1, F2, . . ., F10.

(4) Applying the same rebalancing process as above to
T0, the ten training sets obtained are denoted as T21,
T22, . . ., T30. Ultimately, we get 32 different training
sets and 11 different feature combinations. Namely,
T is a dataset without rebalancing and feature se-
lection (a copy of the original dataset), T0 is a feature
selected dataset without rebalancing, T1–T10 are
balanced in different balance ratios, but no feature
section, T11–T20 are rebalanced followed by feature
section, T21–T30 are feature selected followed by
rebalancing. In addition, we call these 32 training sets
derivative datasets of the original dataset.

(5) We input the 32 derived datasets into KNN, DT,
SVM, and LR and calculate the accuracy, G-mean,
Type-II error, and AUC of the four models tested on
the same test set after training the derived datasets.

(6) ,e four metrics of a machine learning algorithm in
different training sets are ranked, and the compre-
hensive ranking of the performance of the machine
learning algorithm in different training sets is obtained
by averaging the rankings of the four evaluations.

(7) Averaging the comprehensive ranking of the four
machine learning algorithms on the derived training set
can obtain the score of the comprehensivemetricmodel
of multimachine learning algorithms. ,e derivative
datasets with the highest rank can be found, and their
balanced ratio and feature combination are the best.

(8) Training the CNN with the selected derivative
dataset and testing it on the same test set.

,e flowchart of our approach is shown in Figure 11.

5. Empirical Analysis

5.1. *e Empirical Research. In this section, the dataset
(China Dataset) is collected from the credit database of a
regional commercial bank in China. ,e data contain 80
features, which can be divided into three levels (i.e., internal
financial, nonfinancial, and external macro factors) and nine
second-level criterion layers, including solvency,

Table 1: Confusion matrix.

Actual default
status

Prediction
Total

1 (default) 0 (nondefault)

1 (default) True positive
(TP)

False negative
(FN) TP+ FN

0 (non-default) False positive
(FP)

Ture negative
(TN) TN+ FP

Total TP + FP FN+TN T
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profitability, and operating capability, among others. ,is
dataset contains 2,995 nondefault enterprises and 50 default
enterprises, with a default rate of 0.0164. ,e details of the
China Dataset are shown in Table 2.

Table 3 shows the parameters we used for the algorithms.
In this study, the random search method [59] is used to
select the best hyperparameters of CNN.

,e original training set of the China Dataset is denoted
by C. C0 is obtained by feature selection of C. After the
balance treatment of C, ten training sets are obtained, which
are denoted as C1, C2, . . ., C10. By performing feature se-
lection on the ten datasets, we can obtain C11, C12, . . ., C20.
,en, the ten datasets obtained by balancing C0 are denoted
as C21, C22, . . ., C30. ,ese 32 derived datasets are input into
our proposed approach. Table 4 shows the rank of the
comprehensive metric model based on multimachine
learning algorithms on the 32 derived datasets.

Table 4 shows that through the results of our proposed
method on different datasets, we can conclude that the
optimal balance ratio of default data of small enterprises is 2 :
1, and the optimal feature combination includes 31 features
shown in Table 5.

,e research results in Table 5 show that, for the default
prediction of Chinese small enterprises, the best feature com-
bination includes 31 features. Next, we train the CNN with the
C12 dataset. In this experiment, the CNN has two convolutional
layers and four fully connected layers. ,e first convolution
layer consists of two one-by-five convolution kernels. ,e
second convolution layer is the same as the first one. Because the
C12 dataset contains only 35 features, the padding for the
convolution operation is 0, and the step size is 1, which means
that the size of the output matrix is 1× 27 after processing by
two convolution layers.,enumber of input neurons in the first
FC is 27, and the number of output neurons is 15. ,e number

of output neurons in the second FC is 9. Additionally, the third
and fourth output neurons are 3 and 1, respectively. ,e
performance of the CNN and its ranking with the other four
models are shown in Table 6.

It can be concluded from Table 6 that it is feasible to use
our method to find the best balance ratio and the optimal
feature combination. ,e bold value means that the method
ranks first in some evaluation criterion. CNN ranks first in
terms of G-mean, accuracy, and AUC, which indicates that
its comprehensive ranking also ranks first. CNN shows
excellent predictive ability on the selected dataset.

5.2. Robustness Test

5.2.1. *e Comparison of Different Datasets. In this section,
three datasets are collected from the UCI Machine Learning
Repository to evaluate the robustness of our method. Table 7
shows the details of the datasets.

To verify the generalization ability of our method, we
apply it to the Japan Dataset, Australia Dataset, and Chile
Dataset to perform research. ,e three datasets are denoted
as J, A, and CH, respectively. We pretreated the above-
mentioned three datasets in the same way as in Section 5.1.
,e experimental results are shown in Table 8.

,e abovementioned results show that the best balance ratio
of the Japanese dataset is 3 :1, the Australian dataset is 1 :1, and
the Chilean dataset is 3 :1. Next, we bring the experimental
results into the CNN. Because these three datasets have few
features in this experiment, the CNN only contains one con-
volutional kernel and three fully connected layers. Due to the
different numbers of features in the three datasets, the number
of neurons in the FC is slightly different, but the structures of the
three networks for the three datasets are the same. ,e ex-
perimental results are shown in Tables 9–11.

Original Dataset

Dataset Duplicate: T Feature-selected 
Dataset : T0

1:1 2:1 … 10:1 1:1 2:1 … 10:1

Balance Ratio Balance Ratio

No-feature 
Selection

Feature 
Selection

T1 T11

…

…

No-feature 
Selection

Feature 
Selection

T10 T20 T21 T22 … T30

KNN DT SVM LR

Result

Figure 11: Flowchart of the comprehensive metric model based on multimachine learning algorithms.
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For the Japanese dataset, the CNN’s G-mean, Type II
error, and AUC rank first. Although DT obtains the highest
accuracy, Type-II error is 3.3 times higher than that of CNN.
Although the accuracy of CNN is not the first for the Aus-
tralian dataset, it is close to first place, while the other three
metrics are all ranked first.With regard to the Chilean dataset,
the G-mean of SVM is 0; although Type-II error ranks first, it
is worthless. ,e AUC of the CNN is very close to first place,
while theG-mean and accuracy rank first. It can be considered
that the comprehensive performance of the convolutional

neural network is the best. We can conclude that the con-
volutional neural network performs well on the three public
datasets processed by our method and is superior to the other
three machine learning models. ,us far, we have discovered
that our proposed comprehensive metric model based on
multimachine learning algorithms has good robustness.

5.2.2. *e Comparison of Different Resampling Methods.
To evaluate the performance of our proposed method, we
perform comparison experiments on the China Dataset in
terms of undersampling and oversampling [14]. In this
section, the SMOTE method is replaced by two methods to
evaluate the robustness of our method.

For undersampling, the CNN’s accuracy and G-mean
rank first, DT’s AUC ranks first, and SVM’s Type-II error
ranks first. For oversampling, the CNN’s G-mean and AUC
rank first, DT’s Type-II error ranks first, and SVM’s accuracy
ranks first. It can be seen from the comparison in Table 12
that CNN has better classification performance than the
other four models in both undersampling and oversampling,
which verifies the robustness of the model proposed in this
study from the aspect of sample processing.

5.2.3. *e Comparison of Different Feature Selection
Methods. To evaluate the performance of our proposed
method, we perform comparison experiments on the China
Dataset in terms of FDAF-score [2], correlation coefficient

Table 3: ,e parameters of algorithms.

Algorithm Parameter Value
KNN K-neighbors 5

DT Max depth 12
Split criterion Gini

SVM Kernel function Rbf
Kernel scale 2

LR
Objective function minimization SGD

Learning rate 10–3

Iteration 104

CNN

Epoch 10–100
Initial learning rate(AdaGrad) 2×10−6

Batch size 32–256
Padding mode Same
Kernel size 1× 7

SMOTE K-neighbors 5

Table 2: ,e feature data of China dataset.

Serial
number

First-level
criterion layer

Second-level criterion
layer Feature

3,111 original data 3,045 standardization
data

Sample 1 . . . Sample 3,111 Sample
1 . . .

Sample
3,045

1

Financial factors

Solvency
Asset-liability

ratio 6.923 . . . 0.556 0.328 . . . 0.419

. . . . . . . . . . . . . . . . . . . . . . . .

9 Profitability Return on equity 0 . . . 0.003 0.053 . . . 0.003
. . . . . . . . . . . . . . . . . . . . . . . .

35 Operation ability
Inventory

turnover rate 3 . . . 8.580 0.005 . . . 0.01462

. . . . . . . . . . . . . . . . . . . . . . . .

45 Growth ability Profit growth rate 0 . . . 1.695 0.494 . . . 0.530
. . . . . . . . . . . . . . . . . . . . . . . .

52

Nonfinancial
factors

Nonfinancial factors
within the enterprise

Patent status NA . . . NA 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

58 Basic information of
legal representative

Education
background Bachelor . . . Bachelor 0 . . . 0.663

. . . . . . . . . . . . . . . . . . . . . . . .

69 Basic credit status of
the enterprise

Type of registered
capital in place

Capital type
registered
capital

. . .

Capital type
registered
capital

0.685 . . . 1

. . . . . . . . . . . . . . . . . . . . . . . .

71 Business reputation
of the enterprise

Corporate tax
records

No record of
tax arrears . . .

No record of
tax arrears 0.669 . . . 0.669

. . . . . . . . . . . . . . . . . . . . . . . .

75 External macro
factors

External macro
conditions of
enterprises

Industry climate
index 127.960 . . . 139.500 0.626 . . . 0.742

. . . . . . . . . . . . . . . . . . . . . . . .

80 Engel coefficient 39.400 . . . 37.000 0.651 . . . 0.755
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Table 5: Optimal feature combination system for small business default risk prediction.
1 2 3 4 5 6 7 8

Asset liability
ratio Quick ratio Current ratio Equity ratio Super-quick

ratio

Net assets to
year-end loan
balance ratio

Cash ratio Long-term asset
suitability ratio

9 10 11 12 13 14 15 16
Outstanding
loans to total
asset ratio

Net cash ratio f
operating non-
current liability

Gross profit
rate Cost margin

Net cash flow
from operating

activities

Current assets
turnover
speed

Working
capital ratio

Return on
investment

17 18 19 20 21 22 23 24

Account payable
turnover rate Cash cycle Revenue

growth rate

Capital
accumulation

ratio

Years of
working in
related

industries

Patent status

Account
opening

status with
the bank

Credit card
records of the legal
representative

25 26 27 28 29 30 31

Marital status Dwelling
condition

Duration of
holding the
position

Type of
registered
capital

Enterprise
credit granting
in recent three

years

GDP growth
rate

Per capita disposable income of
urban residents

,e bold value means that the method ranks first in some evaluation criterion. For example, CNN ranks first in terms of G-mean, accuracy, and AUC, which
indicates that its comprehensive ranking also ranks first.

Table 6: ,e rank of performance of CNN and other four models onC12.

Method G-mean Accuracy Type-II error AUC
CNN 0.917 0.931 0.101 0.917
KNN 0.853 0.822 0.179 0.853
DT 0.853 0.822 0.182 0.853
SVM 0.903 0.874 0.063 0.904
LR 0.819 0.722 0.044 0.829

Table 7: Information of datasets.

Dataset Non-default Default Attribute Default rate
Japan dataset 383 307 15 0.4449
Australia dataset 383 307 14 0.4449
Chile dataset 8000 2000 21 0.2

Table 8: ,e rank of four models on different datasets.

ID Dataset Rank Dataset Rank Dataset Rank
1 J 31 A 32 Ch 27
2 J 0 32 A 0 29 Ch 0 31
3 J 1 5 A 1 15 Ch 1 6
4 J 2 10 A 2 18 Ch 2 9
5 J 3 11 A 3 20 Ch 3 6
6 J 4 20 A 4 16 Ch 4 19
7 J 5 18 A 5 26 Ch 5 15
8 J 6 28 A 6 28 Ch 6 11
9 J 7 22 A 7 24 Ch 7 22
10 J 8 26 A 8 31 Ch 8 15
11 J 9 26 A 9 27 Ch 9 13
12 J 10 29 A 10 29 Ch 10 17
13 J 11 16 A 11 1 Ch 11 4
14 J 12 4 A 12 7 Ch 12 10
15 J 13 1 A 13 4 Ch 13 1
16 J 14 12 A 14 11 Ch 14 6
17 J 15 7 A 15 2 Ch 15 3
18 J 16 15 A 16 9 Ch 16 2
19 J 17 23 A 17 22 Ch 17 13
20 J 18 12 A 18 22 Ch 18 20
21 J 19 18 A 19 13 Ch 19 21
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Table 8: Continued.

ID Dataset Rank Dataset Rank Dataset Rank
22 J 20 6 A 20 16 Ch 20 24
23 J 21 9 A 21 13 Ch 21 11
24 J 22 17 A 22 10 Ch 22 24
25 J 23 3 A 23 7 Ch 23 4
26 J 24 2 A 24 5 Ch 24 18
27 J 25 12 A 25 3 Ch 25 26
28 J 26 23 A 26 12 Ch 26 23
29 J 27 21 A 27 21 Ch 27 27
30 J 28 8 A 28 19 Ch 28 29
31 J 29 25 A 29 6 Ch 29 30
32 J 30 30 A 30 25 Ch 30 31
,e bold value means that the method ranks first in some evaluation criterion. For example, CNN ranks first in terms of G-mean, accuracy, and AUC, which
indicates that its comprehensive ranking also ranks first.

Table 9: ,e performance of CNN and other four models on J13.

Method G-mean Accuracy Type-II error AUC
CNN 0.775 0.727 0.143 0.779
KNN 0.663 0.785 0.476 0.682
DT 0.679 0.818 0.476 0.702
SVM 0.741 0.678 0.143 0.749
LR 0.735 0.719 0.238 0.736
,e bold value means that the method ranks first in some evaluation criterion. For example, CNN ranks first in terms of G-mean, accuracy, and AUC, which
indicates that its comprehensive ranking also ranks first.

Table 10: ,e performance of CNN and other four models on A11.

Method G-mean Accuracy Type-II error AUC
CNN 0.889 0.883 0.113 0.890
KNN 0.849 0.883 0.221 0.851
DT 0.858 0.900 0.231 0.863
SVM 0.880 0.867 0.110 0.881
LR 0.880 0.867 0.110 0.881
,e bold value means that the method ranks first in some evaluation criterion. For example, CNN ranks first in terms of G-mean, accuracy, and AUC, which
indicates that its comprehensive ranking also ranks first.

Table 11: ,e performance of CNN and other four models on CH13.

Method G-mean Accuracy Type-II error AUC
CNN 0.655 0.507 0.082 0.693
KNN 0.553 0.376 0.043 0.639
DT 0.411 0.245 1.000 0.576
SVM 0.000 0.091 0.000 0.500
LR 0.652 0.496 0.061 0.696
,e bold value means that the method ranks first in some evaluation criterion. For example, CNN ranks first in terms of G-mean, accuracy, and AUC, which
indicates that its comprehensive ranking also ranks first.

Table 12: ,e comparison experiments of undersampling and oversampling on China dataset.

Method G-mean Accuracy Type-II error AUC
Undersampling
CNN 0.935 0.924 0.171 0.910
KNN 0.875 0.867 0.224 0.893
DT 0.884 0.872 0.195 0.911
SVM 0.932 0.905 0.108 0.907
LR 0.872 0.731 0.151 0.836
Oversampling
CNN 0.912 0.935 0.117 0.920
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[24], particle swarm optimization algorithm [31], and ar-
tificial bee colony algorithm [33]. In this section, the GA
method is replaced by four methods to evaluate the ro-
bustness of our method.

In this study, four feature selection methods (i.e., the
FDAF-score, correlation coefficient, particle swarm opti-
mization algorithm, and artificial bee colony algorithm) are
used to verify the robustness of the model proposed in this
study from the aspect of feature selection. For the FDAF-
score, correlation coefficient, and particle swarm optimi-
zation algorithm, the CNN ranks first in terms of G-mean,
accuracy, and AUC. For the artificial bee colony algorithm,
the CNN ranks first in terms of G-mean, Type-II error. ,e
empirical results in Table 13 show that CNN performs better
than the other four classification models.

6. Conclusion and Future Research

,e main conclusions of this study are as follows.
(1) ,e performance of models with different balance

ratios and feature combinations is different for an

enterprise credit dataset. ,ere is always the best
balance ratio and its corresponding optimal feature
combination for each dataset. Based on our proposed
method, we can find the best results among the 32
derived datasets.

(2) Overall, the dataset whose selection order is data
rebalancing followed by feature selection always
achieves a better result, which means that it is the
best selection order.

(3) ,e best balance ratio and our method’s corre-
sponding optimal feature combination are also
suitable for the convolutional neural network. In
addition, the performance of CNN is better than that
of traditional machine learning models in the task of
default risk prediction.

,e primary contributions of this study are as follows.

(1) Different balance ratios will result in different clas-
sification accuracies, and there is bound to be an
optimal balance ratio. In this study, the optimal

Table 12: Continued.

Method G-mean Accuracy Type-II error AUC
KNN 0.873 0.842 0.195 0.913
DT 0.903 0.892 0.107 0.885
SVM 0.914 0.940 0.119 0.912
LR 0.819 0.722 0.118 0.893
,e bold value means that the method ranks first in some evaluation criterion. For example, CNN ranks first in terms of G-mean, accuracy, and AUC, which
indicates that its comprehensive ranking also ranks first.

Table 13: ,e comparison experiments of feature selection methods on China dataset.

Method G-mean Accuracy Type-II error AUC
FDAF-score
CNN 0.904 0.927 0.124 0.921
KNN 0.868 0.845 0.177 0.891
DT 0.895 0.900 0.121 0.899
SVM 0.900 0.914 0.116 0.904
LR 0.857 0.876 0.145 0.884
Correlation coefficient
CNN 0.920 0.912 0.102 0.931
KNN 0.894 0.882 0.178 0.921
DT 0.903 0.904 0.131 0.864
SVM 0.923 0.900 0.115 0.922
LR 0.891 0.895 0.097 0.924
Particle swarm optimization algorithm
CNN 0.929 0.935 0.101 0.935
KNN 0.867 0.852 0.203 0.908
DT 0.907 0.912 0.147 0.879
SVM 0.924 0.934 0.119 0.921
LR 0.921 0.927 0.093 0.893
Artificial bee colony algorithm
CNN 0.941 0.925 0.067 0.935
KNN 0.888 0.929 0.178 0.894
DT 0.915 0.878 0.187 0.917
SVM 0.921 0.930 0.075 0.942
LR 0.845 0.884 0.238 0.876
,e bold value means that the method ranks first in some evaluation criterion. For example, CNN ranks first in terms of G-mean, accuracy, and AUC, which
indicates that its comprehensive ranking also ranks first.
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balance ratio is found through the classification
accuracy, which changes the deficiency of the
existing research that samples are imbalanced or the
balance ratio is 1 :1 and ensures the accuracy of the
classification model.

(2) ,e order of data balance and feature selection affects
the model accuracy. ,is study proposes a com-
prehensive metric model based on the machine
learning algorithm, which can simultaneously find
the best balance ratio and perform the optimal
feature selection.

Further studies may include the use of a new feature
selection method. Although we make two improvements to
the GA to avoid falling into the local optimization, it cannot
guarantee that the results are globally optimal. As a heuristic
algorithm, GA relies on the initial condition that makes it
unstable.,us, a robust and effective optimizationmethod is
our next goal. In the future, feature selection methods such
as principal component analysis, rough set, or lasso re-
gression may be an option for redundant features.
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