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The process of gene expression is affected by many extracellular stimulus signals, and the stochasticity of these signals reshapes
gene expression. To adapt the fluctuation of the extracellular environment, genes have many strategies for augmenting their
survival probability, frequency modulation, and amplitude modulation. However, it is unclear how genes utilize the stochasticity
of signals to regulate gene expression and which strategy will be chosen to maximize cellular function. Here, we analyze a simple
mechanistic model to clarify the effect of extracellular random input on gene expression and burst kinetics at different timescales.
We can see that in different contexts, extracellular noise has different effects on downstream gene expression, effects which include
the following: (1) extracellular noise will make the ON-OFF-state dwell time drift, which will influence the burst frequency and
burst size of downstream gene expression under different modulation paradigms; (2) comparing the burst parameter or gene
expression products under different modulation paradigms, we can see that the amplitude signal is more sensitive in the case of
extracellular noise input, whereas the signal in noiseless conditions is more sensitive when the random input is a fast process,
which indicates that the amplitude signal is a superior and common signal in gene expression; and (3) extracellular random input
will change the bimodality for gene expression, but its influence is different for gene expression products under different
modulation paradigms. These qualitative results reveal that extracellular random input can prompt the gene to achieve its function
quickly under different modulation paradigms.

1. Introduction

Cells live in a very complex environment that sense and
respond to extracellular signals to regulate target gene ex-
pression (Cai et al. [1]; Acar et al. [2]; Hao et al. [3]). The
actual process can be decomposed into two processes: the
signal encoding that senses the transcription factors in the
concentration and localization, and the decoding process
that activates or represses the downstream gene expression
to achieve cellular responses (Cai et al. [1]; Acar et al. [2];
Hao et al. [3, 4]). Moreover, the signal encoding falls into two
distinct categories: amplitude modulation (AM), in which
signal receptors sense the ligand in concentration

continually, and frequency modulation (FM), which senses
the frequency information of ligand peaks (Hao and O’Shea
[4]; Micali et al. [5]). Essentially, processes occurring in cells
sensing ligand signals are stochastic, which leads to sto-
chastic fluctuations in expression product levels, which is
also the main source of noise (Ban-Tabou de-Leon and
Davidson [6]; Komili and Silver [7]). Tracing transient ex-
pression in individual cells with the application of fluo-
rescence microscopy (Locke and Elowitz [8]; Muzzey and
van Oudenaarden [9]) is a possible and important step to
theoretically quantify the molecular mechanism of how
stochastic input signals control intracellular expression and
cell-to-cell variability even in genetically identical cell lines
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(McAdams and Arkin [10]; Thattai and Van Oudenaarden
[11]; Kepler and Elston [12]; Paulsson [13]; Raser and O’Shea
[14]; Sanchez and Kondev [15]; Pedraza and Paulsson [16]).
Upstream transcription factors are signal transducers
whose actual abundance fluctuates according to the extra-
cellular environment and then affects promoter activity and
downstream gene expression (Hao et al. [3]; Hao et al. [4]).
Therefore, the statistics for environmental fluctuation and its
timescale that the receptors detect precisely are an important
basis for adjusting suitable strategies to respond to envi-
ronmental inputs. To adapt to changes in the environment,
stochastic switching is an effective survival strategy in
fluctuating environments (Acar et al. [2]; Hung et al. [17]).
Although the state-switching model classifies gene expres-
sion into models in which the burst size varies, the burst
frequency varies, both vary, or the transcription rate varies, it
is not a versatile law for gene expression (Larson [18]; Chong
et al. [19]). For eukaryotic cells, many genes are expressed in
episodic bursts that are interspersed with periods of qui-
escence (Raj et al. [20]; Munsky and Neuert [21]). Therefore,
it is a hot issue to investigate the internal expression
mechanism in individual cells induced by the transition
between the “ON” and “OFF” states, regulating the burst size
and burst frequency to increase or decrease gene expression
upon simulations. In particular, Dar et al. demonstrated that
transcriptional activators independently regulate the burst
size and burst frequency depending on the specific chro-
mosomal location, indicating that the transcriptional burst
may be the basic expression pattern across the human ge-
nome (Dar et al. [22]). Furthermore, studying the chromatin
environment contributed by different genomic locations and
integrating the large-scale data to quantify mRNA or protein
levels, Dey et al. verified that the mean level and noise of
products are uncorrelated at distinct genomic locations,
which can be achieved by orthogonal control; that is, the
mean expression is controlled by burst size and noise is
controlled by burst frequency (Dey et al. [23]; Larson [18]).
Hence, it is an important issue to clarify the design principles
of the expression network governing time evolution for
better development and elucidate how the extracellular
environment contributes to the regulation of downstream
expression noise and its bursting kinetics, as well as phe-
notype diversity. Similar to microRNAs that are involved in
maintaining expression robustness to gene mutation and
environmental perturbations, external stimuli may perform
similar functions (Dey et al. [23]; Schmiedel et al. [24]).
Gene expression is a multiscale process. Consequently,
there are four timescales involved within even a simple gene
network: (i) the degradation scale, (ii) the switching scale
between different states, (iii) the transcription scale, and (iv)
the dynamic process of extracellular signals (Thomas et al.
[25]; Ge et al. [26]; Qian et al. [27], Raser and O’Shea [28]).
In general, the abundance of gene products could always
reach a certain level if the cell is in an active state, implying
that the time scale (i) is usually much slower than (iii). The
other scenarios are the focus of many researchers, and the
results indicate that if time scale (iii) is much slower than (ii),
it is called fast switching, which leads to the classical Poisson
distribution by approximating the gene states in the quasi-
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steady state (Wang et al. [29]; Zhu et al. [30]). While the time
scale (ii) is much less than (i), called slow switching, the
steady probability distribution is bimodal even without a
positive feedback loop (Thomas et al. [25]; Ge et al. [26];
Ochab-Marcinek and Tabaka [31]). In fact, recent experi-
ments on transcription and translation bursts are ubiqui-
tous, ranging from prokaryotic cells to eukaryotic cells,
especially for eukaryotic cells, and the slow switching rate
dominates, indicating that slow switching may be a universal
phenomenon in gene expression (Raser and O’Shea[28];
Wang et al. [32]). However, not enough attention has been
given to the dynamic process of extracellular signals, in
which the timescale of signals is measured by its autocor-
relation time, also called the memory time, inducing the
stochastic process into a non-Markovian process (Lu et al.
[33]; Hu et al. [34, 35]). Experiments on the transcription
factor Msn2 and its homologue Msn4 under oxidative stress
or glucose limitation and the transcription factor Crzl in
response to a calcium stimulus are at least relevant to the
underexplored scenario (Cai et al. [1]; Hao et al. [3, 4]; Micali
et al. [5]), indicating that stochasticity plays a rather sig-
nificant role in the kinetics of a single molecule.

Generally, we model gene expression into two common
types: the conservative gene model in which the gene is in
continuous expression and the so-called two-state gene
models in which two adjacent expressions are separated by a
long refractory period (Larson et al. [18, 36]; Raj et al. [20]).
Here, we focus on the latter model in that it has general
results that the larger the burst size is, the higher the ex-
pression noise is, whereas the larger the burst frequency is,
the lower the expression noise is (Carey et al. [20]; Dar et al.
[22]; Hansen and O’Shea[37]). However, extracellular
stimuli have multiple roles in gene expression and have been
identified as controlling signals in many expression modules,
including prokaryotic or eukaryotic genes (Munsky et al.
[38]; Munsky et al. [21]). Recently, experiments had illus-
trated that some transcription factor signals have dual roles
in gene expression; that is, they are activators or repressors
according to the extracellular environment. For example, the
type-specific DNA protein AP-2 regulates the tumour
marker gene in dual roles, that is, activator or suppressor,
depending on the detected signal characteristics, including
the stages of cancer progression or specific tissues (Allouche
et al. [39]; Delacroix et al. [40]; Hilger-Eversheim et al. [41];
Matsumoto et al. [42]). Therefore, when the transcription
factors fluctuate and the role changes due to extracellular
environment input, the conventional two-state gene model
must adjust the transition rate of gene switching, which will
lead to a nonequilibrium state (Cai et al. [1]; Ge et al. [26];
Hu et al. [34, 35]). In this stable state, the burst kinetics of
downstream gene expression are influenced by extracellular
stimuli, which further impacts gene expression.

In summary, extracellular stimuli or random signal input
is an inevitable event in gene expression that has been
confirmed by large numbers of biological experiments;
however, the mechanisms by which random input controls
bursting are not clear. Here, we employ a mechanistic model
to elucidate how the extracellular stimuli signal contributes
to the burst kinetics of downstream gene expression even in
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a population of genetically identical cells when the tran-
scription factor is an activator and repressor on different
timescales, that is, under two modulation cases: AM and FM,
respectively. Without losing generality, our model is simple
but still representative, including the process of random
synthesis, random degradation, and stochastic switching
between the so-called active state (“ON” state) and inactive
state (“OFF” state), as well as extracellular stimuli and
multiple timescales. By theoretical analysis, we focus mainly
on the roles of random noise input in regulating burst ki-
netics, including the following: (1) the random noise input
will induce the mean of ON-OFF dwell time focus, which
will further affect the burst frequency and burst size of the
downstream expression process; (2) if the modulation of the
downstream gene expression is FM, the activators need the
extracellular random input to be a fast process to maximize
the cellular function, that is, maximal mean gene expression
product. In contrast to activators, a repressed signal requires
the extracellular stimulus to be an amplitude signal to
minimize the downstream gene expression product.
Meanwhile, if the modulation of the downstream gene ex-
pression is AM, the amplitude signal will activate and make
the downstream gene expression optimum. However, the
extracellular signal to repress downstream gene expression
requires that the extracellular stimulus is a fast process, and
its strength is greater than a certain threshold to accomplish
cellular functions most quickly. The results reveal that the
amplitude modulation signal is superior in the gene ex-
pression process. (3) The upstream signal will affect the
distribution of downstream gene expression. It will induce
the bimodality to be more obvious when the transcription
factor is an activator, while it will suppress the bimodality if
the transcription factor is a repressor. The sensitivity of the
peak of high expression in the gene product distribution
further reveals the relationship between the dynamic
decoding process and gene function. These results are
qualitative because they are independent of the choice of
system parameters, revealing that the extracellular random
input would control the bursting gene expression.

2. Gene Model and Analytical Distribution

2.1. Model Formula. In the following, we investigate the
effect of extracellular stimuli on gene expression as well as
burst kinetics. Without the loss of generality, we focus on the
transcriptional level process in gene expression and ignore
the other processes, for example, the translation process, to
emphasize the regulation of the extracellular random input.
Here, we also assume that there are two activity states in the
gene promoter, called the active state (“ON”) and the in-
active state (“OFF”), and the ON state is much more efficient
than the OFF state (i.e., there is a small leakage in the OFF
state) (Baler et al. [43]; Reed et al. [43]; Huang et al. [44]).
Additionally, the gene switches between these two promoter
states, leading to the burst transcription of mRNA (Pedraza
and Paulsson [16]; Chong et al. [19]), which is also the main
source of cell heterogeneity (Paulsson [13]; Raser and O’Shea
[14]; Sanchez and Kondev [15]). Moreover, we also assume
that the degradation process is linear; that is, it is a first-order
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FIGURE 1: Schematic illustration of the two-state gene model
stimulated by the extracellular signals (OU process whose sta-
tionary distribution obeys a gamma distribution, red or grey
distribution) regulating the activity of the promoter through
transfer function under different modulation paradigms, and the
transcription rate is much larger than the leakage of transcription
rate (A, > ).

process, although the results regarding multistep processes
in gene expression experiments have been verified in many
cases (Pedraza and Paulsson [16]; Chong et al. [19]).

We also consider the extracellular random stimulus in
our model. Generally, cell sensing is achieved depending on
whether the transmembrane receptors can bind and unbind
the ligand signal molecules in a fluctuating environment.
From the viewpoint of statistics, the signal dynamics mainly
tend to infer the statistical characteristics of the information
contents or its dynamical features, such as the amplitude or
frequency of the signal, which will lead to different mod-
ulation paradigms on signals, that is, AM or FM (Behar and
Hoftmann [45]; Aquino et al. [46]). Therefore, encoding the
stimulus signals into the information that the cell can detect
in different paradigms will form the so-called receptor-as-
sociated signalling network mechanisms, such as linear
pathways and the Hill function. Here, we assume that the
transfer function is the Hill function (Behar and Hoffmann
[45]; Ochab-Marcinek and Tabaka [31]). Without the loss of
generality, we denote the input signal as the Orn-
stein-Uhlenbeck (OU) process by X (t), representing the
concentration of ligand molecules at time, which can directly
govern the switching rates between the ON and OFF states
by the transfer method. In fact, the OU process is a rep-
resentative stochastic process in gene expression due to its
analytical simplicity and mean-reverting property (Hu et al.
[35]; Gardiner [47]; Van Kampen [48]), as shown in
Figure 1.

For both mathematical convenience and biophysical
constraints, the OU process X (t) encapsulates a square-root
diffusion process for modeling chemical concentrations
without negative values (Hu et al. [35]; Gardiner [47]; Van
Kampen [48]):

dX(t) =Au—-X()]dt + oV X (t)dW,, (1)
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TaBLE 1: Transfer function of gene expression.

Transcription factors’ role

Transfer function

Modulation paradigm

Activator

TF, (X) = X"/ (K} + X")
TF, (X) = K3/ (K + X")

k,, modulation
k g modulation

Repressor

TF, (X) = X"/ (K} + X")
TF, (X) = K3/ (k" + X")

kg modulation
k., modulation

where A represents the rate of the process reverting to its
mean value u, ¢ is the noise intensity, and W, denotes the
standard Brownian motion.

Transforming equation (1) into the equivalent Fokker-
Planck equation for solving, we can obtain the stationary
probability distribution of the input signal (for more details,
see Appendix 1):

1 (a-1) —xIp
BT (‘x)x e ", (2)

which is a gamma distribution with parametric values
« = 2u/0?, 1/ = 2A/d*, with mean value {x) = u = aff and
variance 02 = af’.

Of note, the molecular signal illustrated by the OU
process can often be fitted by a gamma distribution in many
biological experiments, which is another fascinating aspect
of the OU process (Friedman et al. [49]), with the parametric
value « representing the burst frequency (the mean number
of bursts per cell cycle) and 3 denoting the burst size (the
mean number of molecules produced per burst). Defining
the noise strength as the ratio of the variance over the square
of the mean, the noise strength of the input signal is equal to
1/a, indicating that the extracellular noise is only affected by
the burst frequency but independent of other factors.
Therefore, the OU process is also a gene product that can
regulate downstream gene expression, as shown in Figure 1.
When the concentration of the ligand molecule changes, the
upstream gene product can be an activator or repressor,
which will promote or suppress downstream gene expres-
sion. This phenomenon can be observed in AP-2 tumori-
genesis modulation proteins (Allouche et al. [39]; Delacroix
et al. [40]; Hilger-Eversheim et al. [41]; Matsumoto et al.
[42]). It increases the transition rate k., or decreases the
transition rate k¢ to promote downstream gene expression,
while it decreases the transition rate k., or increases the
transition rate kg to suppress downstream gene expression,
as shown in Figure 1. Additionally, we define the

P (X=x)=

0P, (m;t)
ot
OP, (m;t)
ot

corresponding transfer function listed in Table 1, in which n
is the Hill coefficient.

For a>1, it is guaranteed that the zero point is inac-
cessible for the OU process X(t). Using Ito calculus
(Gardiner [47]; Oksendal [50]) and letting the time tend to
infinity, we have lim cov[X (t), x(t +s)] = c2e ! for the
steady-state covafifaﬁoé)e; that is, the OU process X () is a
stationary stochastic process with correlation time A",

2.2. Analysis Method and Some Analytic Distributions.
Furthermore, we denote the two factorial probabilities
P,(m;t) and P, (m;t), representing the copy number of
gene products (mRNA) at time ¢, and the gene is in inactive
and active states, respectively; that is, P = P, + P, denotes
the total probability of gene products. The transcription rate
is denoted as A, and A, (A; > A;); that is, the gene has a
leakage of transcription rate A,. The degradation rate of
products is denoted as J. To obtain further insight into how
random input signals regulate downstream gene expression,
we focus on the two cases when the transcription factor is an
activator under the k., modulation paradigm, that is, two
timescales. One case is called the “slow switch” limit, in
which the timescale of the input signal is far less than that of
the downstream expression system, that is, A~' < T,. Here,
T, = (k,,TF, () + k.g)"" is also the correlation time for
the noiseless input model (Lu et al. [33]; Hu et al. [34, 35]).
When the upstream process fluctuates rapidly, the tran-
scription factor will reach the quasi-steady state first com-
pared with the downstream gene expression; that is, the
transcription factor concentration is approximately a con-
stant (Friedman [49]; Ochab-Marcinek [31]; Lu [33]), called
a constant stimulus or noiseless input, whose value is equal
to the mean value {x) =u = af}. Therefore, the chemical
master equation (CME) of the reaction network illustrated
in Figure 1 can be rewritten as follows:

= koo TF, (u)Py (m;t) + ko Py (m; 8) + Ag(E~" = 1) [Py (ms; )] + 8 (E — I) [mP, (m; 1)),

(3)

= kon TF; ()P, (m; ) — ke Py (m;t) + A, (E™" = 1) [P, (m; )] + 8 (E = I) [mP, (m; 1)),
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where I represents the unity operator and E with the inverse
E™! is the common step operator, defined as
Ef(m)=f(m+1) for any function f. Setting
kfm =k, TF;(u) and kf)ff =kgTF;(u), (i=1,2,3,4), we
also obtain the CME under other modulation paradigms by
revising the transition rate in (3); for more details, see
Appendix 2.

Another case is called the “fast switch” limit, where
extracellular stimulus signal X (t) fluctuates so slowly that
A>T, where T, = (k,, TF, (u) + k)™ '; that is, the
input signals will affect the downstream switching rate by a
stochastic process (Friedman [49]; Ochab-Marcinek [31]; Lu
[33]). In this case, the transcription factor concentration is
essentially a random variable or random input, with the
noise strength also equal to 1/« and the steady-state dis-
tribution being a gamma distribution with mean value {(x) =
u = af and variance 02 = af’ (reference to Figure 1, the red
or grey signal distribution).

Then, we can also establish our mathematical model in
the form of discrete CME based on conditional probability:

w = —koy TFy (X)Py (m3 £]X) + ke P, (m; £]X)
+ Ag(E™" = 1) [Py (m; £1X)]
+ 8 (E - I)[mP, (m; 1|X)],

W = kow TF, (X)Py (5 1]X) — kP, (m; £1X)

+ Al(E_l - 1)[P1 (m; t|X)]

+8(E - I)[mP, (m;t|X)],
(4)

where E represents the step operator, I represents the
identity operator, and P;(m;t|X), (i=0,1) is the condi-
tional probability. That is, P;(m;t) = I «Pi
(m; t|X)P,(X)dX, (i =0,1) is also factorial probability,
representing the probability of the expression system being
in active and inactive states and having m molecules at time
t. Obviously, when the transcription factor role and mod-
ulation paradigm change, the CME for downstream gene
expression can also be established according to the two
timescales. Setting k! =k, TF;(X), ki ;=kyTF;(X),
(i=1,2,3,4), we also obtain the CME under other mod-
ulation paradigms by revising the transition rate in (4); for
more details, see Appendix 3.

Next, we focus on how to solve the CME for its steady-state
solution under the above two cases when the transcription
factor is an activator. In the case of the “slow switch” limit, we
first introduce the so-called probability-generating functions
(Zhang and Zhou [51]; Shahrezaei and Swain [52]) to transfer
the CME into a coupled set of ordinary differential equations
with respect to different transfer functions. If we set all the
parameters to be normalized by the degradation rate §, that is,
kon!8 — kg, kog/ 8 — kg, 1116 — A1, 1o/8 — Ay, and

y1 = koo TF, (1), Yo = kog» the analytic solution for steady-
state probability distribution can be expressed as (Appendix 2)

_gA < m m-n n(a_l)n
o WZ( y )A‘) L=, "

c(a+n-1,b+n-1;-Q),

(5)

where | F, is the confluent hypergeometric function, with
A=A -4, Q=X g=A+y +yly,—My, a=1+y,
b=1+(yy+y,). and A=eh[gF (a-1b-1;0)]"
(¢), is the Pochhammer symbol defined by
(¢), =T(c+mn)/T(c);and (m n) is a combination number
of choosing #n molecules from m molecules.

The above analytical distribution contains nearly all
information of the downstream expression system, includ-
ing the mean and variance, as well as the noise strength
defined the same as before. The mean and the variance under
the case of noiseless input are calculated according to

(my, =G (1),d%,. =G" (1) +G' (1) - [G' (D], (6)

where G (z) = G, (2) + G, (2) represents the total generating
function (its analytical formulas and two factorial functions
G, (z) and G, (2) are given in Appendix 2). Hence, we have

G' (1) = Aé" [ghy,F, (a—1,b-1,0) + \,F, (a,b,0)],
G"(1) = Ae" [gA§,F, (a - 1,b—1,0) + 2AAy, F, (a,b,0)

A2 1
+M1F1(a+ 1,b+1,0) |,
Yi+Yt+1

(7)

where 4, g, Q, a, and b are all compounded parameters given
as above. Thus, the square of the noise intensity under the
case of noiseless input is calculated according to the fol-
lowing formula:

O _ G ()+G (1) -[G (V)]

(m)? G’ ()]

In contrast to the “slow switching” limit, we consider the
“fast switching” limit based on the conditional probability
(Friedman et al. [49]; Thomas et al. [25]; Ochab-Marcinek
and Tabaka [31]). For eukaryotic cells, the promoter switches
more slowly than the cell cycle (defined by degradation rate
scale) (Raj et al. [20]; Munsky [21]; Raser [28]), and then, the
stationary solution of the discrete CME can be decomposed
into two decoupled equations for the condition probability
of two active states at the steady state, which are identical
modulo, a factor of A, and A:

Ao(E™" = I)Py(m,t) + 8(E - I) [mP, (m, 1)] = 0,

2

(8)

2 _
Mime =

9
M(E' = 1)P, (m,t) + 8(E—I)[mP, (m,t)] = 0. ®

The above equations have been solved exactly in Ap-
pendix (A24), which means that the distribution of mRNA is
Poissonian with the parameters 1,/6 and A,/6. Note that the



ON-OFF transition of the promoter is independent of
mRNA levels, even if the transition rate is controlled by the
extracellular random input. Therefore, we must deduce the
time evolution of the two promoter states, that is, the ON-
OFF dwell time distribution.

Generally, we consider the distribution of dwell time of
the OFF state when the transcription factor is an activator
under the k,, modulation paradigm. Considering the first
passage time problem in the rigour of mathematics (Ge et al.
[26]; Hu et al. [35]; Van Kampen [48]), we suppose the initial
system is in the OFF state with input signal X(0) = x.
Denoting 7 as the first escape time from the OFF state
(Figure 1), the survival probability Q¥ (7, x) that the system
never switches to the ON state up to time ¢ is given by

QO (1,x) = P(r>]X (0) = x) = joo QY (t]x)py, (x)dx
0

= J exp (—k,, )Py, (x)dx
0

= E* [exp (—ki)n‘f)] 2 exp ((Ex (_k;n‘[))’
(10)

where ki, = ko, TF; (x) = ko, x"/K"} + x", the last inequality is
obtained by Jensen’s inequality, and the above inequality tells
us that the extracellular input signal will induce the dwell time
in the OFF state to be a nonexponential distribution (which is
different from the classical Markov assumption), independent
of other factors, including noise strength or the correlation
time. For our model, if A, > A, then the downstream gene
expression has the following approximation:

1
burst frequency = — and burstsize = 1,7, (11)
Toff

where 7., and 74 are the dwell times of the ON-OFF state
(Larson [18].; Dar et al. [22]; Huang et al. [32]). These results
illustrate that the downstream gene will only adjust the OFF-
state time or burst frequency to adapt to the upstream stimulus,
which is the frequency modulation (FM) strategy (Hao and
O’Shea [4]; Micali et al. [5]), meaning that the k,, modulation
paradigm is essentially the frequency modulation (FM) para-
digm. Similarly, we can say that the k& modulation paradigm
is essentially the amplitude modulation (AM) paradigm be-
cause the extracellular signal will only change the ON-state
dwell time and the burst size of downstream gene expression.

We will elaborate on the regulation effect of random input
in an analytical way. In particular, if the switching rate of the
promoter is slower than the cell cycle, the gene expression is
equal to the combination of two on-state gene expression
models; that is, the distribution of mRNA is the combination of
two Poisson distributions weighted by the mean dwell time of
the ON-OFF state (Hao [4]; Thomas et al. [25]; Qian et al. [27]):

<Ton> h <T0ff> /1_0
oo + <ty P< 6) t oo + o) P( 5 )
RS M e {Toft? M s
Tty oy ml&™ (Tony +{Togey m&™

(M =m) =

(12)
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Here, P(®) is a Poisson distribution, and {7,,) and
(7. represent the mean dwell time of the ON-OFF states;
for more details, see Appendix 3.

Thereby, we can also calculate the mean and variance
under the case of random input according to equation (12):

<Ton> /\1 <Toff> AO

= oy + oy 8 oy + oy &0 Y

And,

o = j T (m)dm — m)? = (c = N2 +(d - d)R2
+(cAy +dAy = 2cdAgh,),

(14)
where ¢ = (1, )/{Ton) + {Tog)> A= {Topg)/{Ton) + {Top)
and A, = A,/8,4 = Ay/6.

The noise strength is calculated as follows:

2
(o

s (15)

Comparing the noiseless with the random input, we can
see the difference in the downstream expression noise or
variance:

Ad® =0, = 0 =(c = AT +(d = d*)AG + (cA, +dA — 2cdAohy),

2 _
Mims =

A?YOYI + Ay (Yo +y1) (L +yo +11)
(Yo +V1)2(1 + Y0+ 1)

(17)

This is a function of the burst frequency («) and burst
size () of the upstream input signal, as well as the relevant
parameters of downstream gene expression.

The above results and explicit formulas make it possible
to systemically analyze the regulatory mechanism of how the
interaction of extracellular random input controls and
regulates both gene expression and bursting kinetics.

3. Results

Stochastic switching between the different promoter states,
as an effective survival strategy, often leads to the burst
expression of gene products, which is characterized by two
kinetic indices, burst size and burst frequency, which are also
two different strategies of the gene to cope with extracellular
stimuli, that is, AM and FM. We will demonstrate how
extracellular random input controls the correlation between
gene expression and bursting kinetics.

3.1. The Extracellular Fluctuations Prompt the Dwell Time
Drift. When extracellular random input affects gene ex-
pression by the transfer function under different modulation
paradigms (see Table 1), it will affect the ON-OFF dwell
time. Essentially, it only changes the OFF-state dwell
time under the k,, modulation paradigm; that is, the k_,
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FIGURE 2: The input signal induces dwell time drift with an activator. The first row represents the upstream input as noise, whereas the
second row represents the difference in the dwell time between the noise and noiseless signals. (a) The OFF-state dwell time under the FM
paradigm with the extracellular stimulus increasing its burst frequency or burst size; (b) the ON-state dwell time under the AM paradigm
when the extracellular stimulus strength increases, and the means of the coloured lines are similar to (a). Other parameters are set as
kon =0.01, ko = 0.1, k; =10, n =2, 1) =1, A, =50, « =2, and § = 2 (as the standard of comparison).

modulation paradigm is a FM paradigm in terms of burst
kinetics (Hao and O’Shea [4]; Micali et al. [5]; Dar et al.
[22]). Similarly, we say that the k.4 modulation paradigm is
essentially the AM paradigm. In this case, equation (10) tells
us that the extracellular random input causes the survival
probability or dwell time distribution not to satisfy the
assumption of exponential distribution, that is, the ON-
OFF-state dwell time has some memory (Pedraza and
Paulsson [16]; Lu et al. [33]). Indeed, memory is a strategy
that cells have evolved and is also beneficial for the gene to
cope with extracellular environment fluctuations (Perkins
and Swain [53]). Specifically, when the transcription factor is
an activator, it will reduce the OFF-state dwell time or
amplify the ON-state dwell time to activate the downstream
expression, and the influence of extracellular random input
under different modulation paradigms can be found in
Figure 2.

Of note, the extracellular stimulus strength is always the
same in the corresponding level, but to regulate the up-
stream signal burst size (left of the first row, burst fre-
quency « =2, the burst size varies) or burst frequency
(right of the first row, burst size § = 2, the burst frequency
varies) to achieve the effective control for downstream
expression (the coloured lines from blue to purple in
Figure 2(a), and the situations later are the exact same as
Figure 2(a)). Exactly, Figure 2(a) illustrates the OFF-state
survival probability or dwell time distribution changes
under the FM paradigm with increasing extracellular
stimulus strength (from the blue to purple lines). The OFF-
state dwell time will extracellular stimulus increasing, with

the burst size (left) or burst frequency (right) of the ex-
tracellular stimulus signal varying. However, the reduced
amplitude has a significant difference. Comparing the first
and second columns of the first row and considering the
different characters of the upstream noise, we can see that
the downstream gene expression is more sensitive to the
upstream frequency signal than the amplitude signal; that
is, it will make the OFF-state dwell time decrease faster
when the burst frequency varies. Second, comparing the
blue line (noise input) with red dotted line (noiseless input)
in the second line also shows that the OFF-state dwell time
distribution does not obey an exponential distribution
when the extracellular input is noise, revealing that the
OFF-state dwell time distribution has some memory in-
duced by random input and extracellular noise will make
the OFF-state dwell time drift positively or focus.
Similarly, Figure 2(b) represents the ON-state dwell time
distribution changes under the AM paradigm. The obvious
difference between (A) and (B) is that the ON-state dwell
time will increase when the extracellular stimulus strength
keeps the same value and increases from 2 to 8 by increasing
its burst size (left) or burst frequency (right) (see the first row
of (B), from blue line to purple line). It indicates that the
downstream gene expression is more sensitive to the burst
size of the upstream signal than its burst frequency. In other
words, the extracellular fluctuations will prompt the OFF-
state dwell time drift when comparing the noiseless input,
and there will be an obvious difference between the AM and
FM paradigms, which also demonstrates that gene expres-
sion is indeed affected by extracellular stimulus signals.
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FIGURE 3: The extracellular fluctuations make the dwell time drift with a repressor, and the first row represents the upstream input as noise,
whereas the second row represents the difference in the dwell time between the noise and noiseless signal. (a) The OFF-state dwell time
under the FM paradigm with the extracellular stimulus increasing its burst frequency or burst size; (b) the ON-state dwell time under the
AM paradigm when the extracellular stimulus strength increases. The means of the coloured lines are similar to (a). The other parameters are

the same as in Figure 2.

Figure 3 illustrates the difference between random input
and noiseless input under different modulation paradigms
when the transcription factor is a repressor.

In contrast to the activator, the repressor always in-
creases the OFF-state dwell time or decrease the ON-state
dwell time to achieve its biology function under the different
decoding paradigms. Figure 3(a) demonstrates that the OFF-
state dwell time increases with extracellular stimulus
strengthening under the FM paradigm in the first row.
However, the characteristics of the upstream signal change
the downstream gene OFF-state dwell time, as shown in the
first row of Figure 3(a). Specifically, the left of the first row
shows the OFF-state dwell time will have the typical focusing
effect stimulated by the random input with the upstream
signal burst size varying (left) or burst frequency varying
(right). Moreover, the second row shows us the difference
between the noise input (blue line) and noiseless input (red
dotted line), illustrating that the extracellular noise makes
the OFF-state dwell time drift positively compared with the
noiseless input. However, the amplitude of drift has an obvious
difference even if the stimulus strength remains the same. In
contrast to (A), Figure 3(b) illustrates that the ON-state dwell
time decreases with extracellular stimulus strengthening.

Comparing Figure 2 with Figure 3, we can see that
extracellular noise will induce the ON- or OFF-state dwell
time to be nonexponentially distributed, indicating that the
ON or OFF state will have some memory and that the gene
state involves multiple steps instead of one-step biochemical
reactions (Pedraza and Paulsson [16]; Lu et al. [33]). Thisis a

common phenomenon in the process of biochemical re-
actions (Perkins and Swain [54]). Although the modulation
paradigm and extracellular stimulus strength are the same,
the different characters of the upstream signal will lead the
ON or OFF dwell times to be significantly different (com-
pared with Figure 2(a) with Figure 3(a), and Figure 2(b) with
Figure 3(b)). This difference tells us that gene expression not
only relies on the modulation paradigm but is also de-
pendent on specific signalling pathways.

3.2. Extracellular Fluctuations Affect Burst Kinetics. To il-
lustrate the characteristics of the downstream gene burst
kinetics, we investigate two indices, burst frequency and
burst size, under two different modulation paradigms, that
is, the FM and AM paradigms. In general, the burst fre-
quency is defined by the OFF-state dwell time, while the
burst size is defined by the ON-state time (Larson [18]; Dar
et al. [22]). Additionally, equation (12) indicates the rela-
tionship between burst kinetics and dwell time.

We first investigate the burst kinetics with extracellular
random input under the FM paradigm. Obviously, when the
transcription factors are activators, the extracellular stimulus
will reduce the OFF-state dwell time, as shown in
Figure 2(a), resulting in the increase in the burst frequency of
downstream gene expression as the stimulus strength in-
creases (see Figure 4).

Figure 4(a) shows that the burst frequency of down-
stream gene expression monotonically increases with an
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set as k,, = 0.01, kg = 0.1, k; =10, n =2, A; = 1, and A, = 50.

increase in extracellular strength and then reaches the stable
limit value. However, there is a significant difference be-
tween the different stimulus signals. Considering that the
upstream signal has different characteristics, that is,
noiseless signal (red line), frequency signal (green line), and
amplitude signal (blue line), we can evaluate their advantage
on regulating burst kinetics by the paired comparison
method.

First, comparing the green with blue lines, we can see
that the burst frequency of downstream gene expression will
increase faster when the upstream signal is a frequency
signal and the burst size is equal to 2; that is, regulating
upstream frequency signal is the most effective way to
modify downstream gene expression. Second, when the
upstream stimulus is random input, the burst frequency of
downstream gene expression increases more slowly than the
case that the upstream signal is noiseless (comparing the red,
green, and blue lines), indicating that the lower the extra-
cellular noise strength is, the greater the mean burst fre-
quency is. This means that the extracellular noise will make
the burst frequency of downstream gene expression drift in
the negative direction. In fact, the burst frequency and burst
size can control the downstream expression product, that is,
the mean of gene products is equal to the mean burst fre-
quency multiplied by the mean burst size, that is,
(M) = (BF){BS) (Dar et al. [22]; Huang et al. [53]).
Therefore, if the mean burst size of downstream gene ex-
pression is a constant, the downstream gene product
numbers will increase with the same trend; that is, the mean
mRNA will also increase monotonically (refer to Figure S1 in
Appendix 4). Figure S1 tells us that the noiseless input will
make the gene expression process more efficient than the
random input, and the frequency signal stimulus is also

more efficient than the amplitude signal stimulus for
downstream gene expression.

Third, similar to the mean burst frequency, the down-
stream gene expression noise also depends heavily on up-
stream stimulus, as shown in Figure 4(b). Comparing the red
line with the blue and green lines, we can see that the ex-
pression noise in the noiseless input paradigm is less than
that in the random input paradigm, meaning that the ex-
tracellular noise will increase the expression noise. In par-
ticular, amplitude signal stimulus will make the downstream
expression noise maximal among the three signal stimulus
paradigms when the stimulus strength is the same, as rep-
resented by the blue line in Figure 4(b). Fourth, the ex-
tracellular random input prompts the expression noise to
have a weak peak value, indicating that there may exist a
critical value for upstream noise strength to regulate bi-
directionally the expression stability of downstream gene.
From Figures 4(a) and 4(b), we can observe that an in-
creasing upstream random signal will reduce the mean burst
frequency or the mean number of mRNAs but amplify the
expression noise. This shows that the randomness of up-
stream active signal is destructive for downstream gene
expression under the FM paradigm.

Similarly, when the transcription factors are repressors
under the FM paradigm, the burst frequency of downstream
gene expression has some differences, as shown in Figure 5.

Of note, the stimulus strength is the same for the three
different signals. We can see that the downstream burst
frequency will monotonically decrease as the upstream
stimulus increases, as shown in Figure 5(a). Specifically, the
extracellular noise will induce the downstream burst fre-
quency to be less than that in the noiseless input (comparing
the red, blue with green lines); that is, the noise input will
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are the same as in Figure 4.

promote the functions of the gene components to be
maximal, for example, the repressors will repress the
downstream gene expression as much as possible. This in-
dicates that extracellular noise is beneficial for gene ex-
pression. Meanwhile, the difference between the blue and
green lines tells us that downstream expression is more
sensitive to amplitude signals than to frequency signals.
Figure 5(b) illustrates that the downstream gene expression
noise first increases and then monotonically decreases, and
there is a threshold value of stimulus strength for expression
stability. Obviously, the amplitude signal minimizes the gene
expression noise when the extracellular signal strength is
greater than a fixed value (see the blue line in Figure 5(b)).
From Figures 5(a) and 5(b), we can determine that the mean
burst frequency or mRNA number (Figure S2 in Appendix
4) will be the lowest and the expression noise will also be the
lowest when the upstream signal is the amplitude signal and
represses the downstream expression under the FM para-
digm (refer to the blue line in Figures 5(a) and 5(b)). This is
counterintuitive because the traditional theory indicates that
a smaller burst frequency will result in higher expression
noise or that a smaller mean mRNA number will lead to
larger expression noise (Paulsson [13]; Raser and O’Shea
[14]); that is, the extracellular stimulus will reshape the gene
expression mode because the gene expression system will
form a coherent resonance under the interference of an
extracellular stimulus (Qian et al. [27]; Hu et al. [34]). From
the viewpoint of biology, this means that the upstream
amplitude signal will be optimal for repressing downstream
gene expression to achieve its cellular function.

In contrast to the FM paradigm, there is an obvious
difference in the AM paradigm. In fact, the AM paradigm is
modulated to achieve the ON-to-OFF transition rate or the

ON-state time dwell time. However, if the upstream signal is
a repressor and the stimulus strength is very large or greater
than some fixed value, it will lead to the gene state ap-
proximately dwelling on the ON state; that is, the gene
expression is approximately constitutive gene expression. In
this case, the burst expression will disappear; that is, the
extracellular stimulus will repress the burst gene expression.
Considering that the OFF-state dwell time is a constant in
the AM paradigm, we will directly investigate the down-
stream mRNA expression mean and the expression noise, as
shown in Figure 6.

Figures 6(a) and 6(c) show that the activator prompts
gene expression, while the repressor suppresses gene ex-
pression as stimulus strength increases. The case in which
the upstream signal is in amplitude makes the downstream
transcription more efficient than the other two cases (the
frequency signal and the noiseless signal) (comparing the
blue line with the green line and red line in Figure 6(a)). If
the extracellular stimulus suppresses downstream gene ex-
pression, the upstream noiseless signal is the most efficient
(comparing the red line with the green and blue lines in
Figure 6(c)), revealing that the upstream signal will have a
different function for the downstream expression. Specifi-
cally, if the upstream signal activates gene expression, genes
will use extracellular noise to optimize the efficiency of
downstream expression, meaning that noise is beneficial for
gene expression. However, when the upstream signal is a
repressor, extracellular noise is harmful to downstream gene
expression, which will reduce the efficiency of gene
expression.

Furthermore, the expression noise also exhibits the tight
relationship with the upstream stimulus. For the upstream
active signal, the expression noise decreases monotonically
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FIGURE 6: The mean mRNA number (a, ¢) and expression noise (b, d) of downstream gene expression under the AM paradigm. (a, b)
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upstream stimulus signal as noiseless, and the green line represents the upstream stimulus signal as random with the burst frequency («)
changing and the burst size (f8) being equal to 2, while the blue line represents the upstream stimulus signal as also random with the burst
frequency () being equal to 2 and the burst size () changing. The other parameters are the same as in Figure 2.

with stimulus increasing (refer to Figure 6(b)); that is, the
greater the extracellular noise, the less the gene expression
noise (see the blue or green line in Figure 6(b)), and the
upstream amplitude signal will make the expression noise be
least (see the blue line in Figure 6(b)), which further reveals
that the extracellular noise is beneficial for the gene ex-
pression because the extracellular noise makes the mean
mRNA number maximal and the expression noise minimal.
But the expression noise has different characteristics, as
shown in Figure 6(d). It will monotonically increase as the
stimulus increases under noiseless input (see the red line in
Figure 6(d)) and frequency signal stimulus (see the green
line in Figure 6(d)), and it will increase monotonically first
and then decrease monotonically under the amplitude signal
stimulus mode (see the blue line in Figure 6(d)). Comparing
the coloured lines, we can see that the noiseless input will

minimize the expression noise when the stimulus strength is
greater than some value. And, the expression noise under the
frequency signal mode is less than that under the amplitude
signal mode (comparing the green line with the blue line in
Figure 6(d)), indicating that the frequency signal stimulus is
better than the amplitude signal stimulus mode for cell
stability. Figures 6(c) and 6(d) indicate that the noiseless
input will minimize the mean and noise of mRNA when the
stimulus strength is greater than some value. That is, when
the extracellular stimulus affects downstream gene expres-
sion in the AM paradigm, noiseless input will make the gene
achieve its function as soon as possible. In this case, noise is
harmful to gene expression.

Therefore, Figures 5 and 6 show that extracellular noise
has a selective function for downstream gene expression.
This phenomenon has been discovered in the yeast



12

Saccharomyces cerevisiae (Sanchez and Golding [55]) and
the transcription protein AP-2 in tumorigenesis (Allouche
et al. [39]; Delacroix et al. [40]; Hilger-Eversheim et al. [41];
Matsumoto et al. [42]), which indicates that the gene
sometimes uses noise to activate gene expression but
sometimes uses noise to suppress gene expression (Paulsson
[13]; Wang et al. [32]; Elowitz et al. [56]; Paulsson [57]),
depending on the specific extracellular environment.

3.3. Extracellular Fluctuations Induce Phenotypic Diversity.
It has been proven by many biological experiments that
phenotype switching is an effective method for cells to adapt
fluctuating environments, and it is also specific forms for cell
decisions to survive better in complex environments (Acar
et al. [2]), in which noise may be a potential factor for
inducing phenotypic heterogeneity (McAdams [10]; Kaern
et al. [58]; Sanchez et al. [59]). Currently, cell phenotype
switching is the core issue of epigenetics that determines cell
fitness by many factors, including cell adaptation, robustness
and growth rate, and noise (also called phenotypic varia-
tion). Among these factors, noise is the focus of attention in
biology (Wang et al. [32]; Kussell and Leibler [60]). It may be
beneficial for the cells to live in the fluctuation environment,
at least for population diversity, and it can supply more
alternate ways to adjust its survival strategy when the cell
encounters sudden changes, such as changes in temperature,
illumination by sensing, or the concentrations of ligand
molecules (Hung et al. [17]; Lehner [61]). In addition, the
number of peaks of steady-state product distribution and its
change process are important measures of phenotypic di-
versity in constant or fluctuating environments (Kaern et al.
(58]).

The bimodal distribution as a common result has been
verified in many single-cell experiments in vivo (Thomas
etal. [25]; To and Maheshri [62]), demonstrating that the cell
indeed can encode a distinct signal at different expression
levels even in isogenic cells. In fact, many researchers have
reported that if promoter switching is a slow process relative
to the expression process, it will result in a distribution
characterized by different expression levels, such as bimodal
distributions (Thomas et al. [25]; Qian et al. [27]) or some
mixed exponential distributions (Raser [28]) and multi-
modal distributions (Thomas et al. [25]). Despite these
findings, it is unclear how extracellular random signal input
regulates the steady-state distribution of gene products.

Therefore, we first investigate the mechanism of how
extracellular random input can regulate the dynamic fea-
tures of the mRNA steady-state distribution, as shown in
Figure 7. Figure 7 indicates that the activator will prompt the
bimodal distribution, while the repressor will make the
distribution change from bimodal to unimodal; that is, the
activator (repressor) increases (decreases) the number of
gene products by modulating the peak value of the ex-
pression distribution. Specifically, when the transcription
factors are activators, the high expression peak will be higher
to increase the mRNA number under the FM paradigm (see
Figure 7(a)), meaning that the extracellular stimulus will not
change the bimodal but change the high expression peak.

Complexity

However, under the AM paradigm, the extracellular stim-
ulus will not only change the high expression peak but also
make the distribution change into bimodal (refer to
Figure 7(c)); that is, the AM paradigm affects downstream
gene expression by binary channels. The reason behind this
situation may be that the AM paradigm focuses on the
information of promoter dwell time at ON or OFF states,
while the FM paradigm only emphasizes when the promoter
switches from the OFF states into ON states; that is, the AM
paradigm is the realization of classic results of Berg and
Purcell that the ligand concentration is estimated by time
averaging (Micali et al. [5]). Second, when the transcription
factors are repressors, the high expression peak will be
smaller to decrease the mRNA number (see Figures 7(b) and
7(d)), indicating that the extracellular noise will suppress the
bimodal as the stimulus increasing. Specifically, the stimulus
signal will induce the expression distribution change from
bimodal to unimodal under the FM paradigm, but the case is
nearly opposite under the AM paradigm (see the green and
blue drawing in Figure 7(d)). Moreover, the distribution will
almost not change to unimodal under the noiseless para-
digm (see the red drawing in Figure 7(d)). This difference
indicates the effect of extracellular noise on gene expression.
Although the stimulus strength is the same, the extracellular
noise source and the decoding paradigm will affect the
downstream gene expression together.

Finally, we investigate the effect of extracellular noise on
the peak of stationary distribution, especially on the high
expression peak, to uncover the sensitivity of noise regu-
lation, as shown in Figure 8. The upstream frequency signal
as activators promotes the high expression to be larger than
amplitude signal stimulus under the FM paradigm (com-
paring the green and blue drawings in Figure 8(a)); that is,
the coherent resonance indeed has advantages. However, the
noiseless input induces the higher expression peak to the
stable value fastest, indicating that the extracellular noise is
harmful for gene expression under the FM paradigm.
Similarly, the amplitude signal will suppress the higher peak
value more severely than the frequency signal and noiseless
input under the FM paradigm (see Figure 8(b)); that is, the
gene uses extracellular noise to survive and that the am-
plitude fluctuation is more sensitive to downstream gene
expression.

In contrast to the FM paradigm, the situation will be
different under the AM paradigm. Specifically, when the
transcription factors are activators, the amplitude signal is
more sensitive to the higher expression peak (see the second
column in Figure 8(c)), indicating the superiority of co-
herent resonance. However, when the transcription factors
are repressors, the noiseless input will make the gene achieve
its goal fastest (see the red histogram in Figure 8(d)).

4. Discussion

The cell encodes the extracellular stimuli (normally a fast
process) by sensing the concentration or frequency changes
of ligand molecules and then responds to the stimulus signal
by decoding the information of ligand molecules at different
levels (slow process). In general, these decoding processes
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have two strategies, AM and FM, focusing on the different
kinetic features of signals. Here, we employ a simple
mechanistic gene expression model with signal stimuli,
including three kinds of sources of noise: the promoter
switching process, the generation and degradation process,
and the signal stimulus process induced by transcription
factor fluctuation. By analysis, we have shown that under
different timescales and modulation paradigms, the extra-
cellular stimulus has different functions for downstream
gene expression. If the transcription factors are activators,
the noiseless input will be best for downstream gene ex-
pression under the FM paradigm, while the amplitude signal
is the best choice to suppress downstream burst expression.
Meanwhile, under the AM paradigm, the amplitude signal
will be optimal to activate downstream burst expression, and
the noiseless signal that suppresses downstream gene ex-
pression will be more efficient (Figures 4-6). Furthermore,

the activator will induce bimodality, and the repressor will
attenuate bimodality. The number of peaks and their value of
distribution further illustrate this feature (Figures 7-8).
Moreover, there often exists feedback loop module in the
actual expression process due to the complexity of gene
expression; however, the feedback loop would reduce into
the upstream stimulus signal by an open-loop approach and
then unify in the stimulus-response framework (Maleki et al.
[63]; Niraj et al. [64]), which will not change the quantitative
relationship in our model.

The biological function to achieve often submits to some
restraints locally or globally, coming from the design
principles of the network from one aspect and optimal
evolutionary fitness from another (Perkins and Swain [54];
Schwanhiusser et al. [65]). First, the cell will always seek
high efficiency for each process in gene expression. Here, it
indicates that, under the FM paradigm, the noiseless input as
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FIGUre 8: The changing trends of higher expression peaks under different paradigms: (a, b) FM paradigm; (¢, d) AM paradigm; (a, ¢)
activator; (b, d) repressor. The green drawing represents the upstream input as the frequency signal, the blue drawing represents the
upstream input as the amplitude signal, and the red drawing represents the noiseless input. Other parameter values are set as k., = 0.01,

kog = 0.1, k; =10, n=2, Ay = 1, and A, = 50.

an activator signal will prompt the downstream product to
be larger than in other cases, while the gene products are the
least suppressed by the amplitude signal. However, under
the AM paradigm, if the upstream signal activates gene
expression, then the amplitude signal will have the largest
gene products, but the effect of noiseless input suppressing
downstream gene expression will be best. Taken together,
our results suggest that AM should be more advantageous in
gene regulation, but FM is more common in the signal

sensing pathway (Hao et al. [3]; Micali et al. [5]). Another
constraint is stability (Paulsson [13]; Schwanhausser et al.
[65]; Sanchez et al. [59]). We have shown that the expression
noise has different effects in different contexts. The ex-
pression noise will be the lowest when the extracellular
signal is a noiseless signal and an activator under the FM
paradigm, while the amplitude signal will minimize the
expression noise under the FM paradigm if the extracellular
signal represses the downstream expression. Moreover, the
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gene is more stable under the AM paradigm if the amplitude
signal activates the downstream expression but will decrease
the expression noise under the AM paradigm if the signal
suppresses the downstream gene expression (Figures 4-6).
When “efficiency” and “stability” in the regulation network
are required to satisfy simultaneously, a trade-off on the
fitness may exist, which is worthy of further study.

In general, dynamic disordering readjusts to the new
ordering need to sense and handle the information trans-
mitted from extracellular stimuli and consume the energy to
attenuate the fluctuation from the environment (Micali et al.
[5]; Mehta and Schwab [66]). The second issue is well in-
vestigated in many synthetic molecular networks, such as
molecular motors, actin, and the myosin protein, while the
first issue may be essential and more difficult because the
global understanding of cells needs to be investigated from
the viewpoint of systems theory. From the single-cell ex-
periments and the idea of engineering principles [67-70], we
believe that the collective behaviour in the large regulation
network stimulated by many sources of signals can be most
likely to elucidate clearly.
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expression is under FM modulation paradigm when the
transcription factors are the activator. The red line repre-
sents that the upstream stimulus signal is noiseless, and the
green line represents the upstream stimulus signal is random
with the burst frequency («) changing and the burst size ()
being equal to 2, while the blue line represents that the
upstream stimulus signal is also random with the burst
frequency (a) being equal to 2 and the burst size (ff)
changing. All parameters are the same as those listed in the
main text. Figure S2: the mean mRNA number (A) and the
noise (B) of downstream gene expression is under FM
modulation paradigm when the transcription factors are the
repressor. The red line represents that the upstream stimulus
signal is noiseless, and the green line represents the upstream
stimulus signal is random with the burst frequency («)
changing and the burst size (f8) being equal to 2, while the
blue line represents that the upstream stimulus signal is also
random with the burst frequency («) being equal to 2 and the
burst size () changing. All parameters are the same as those
listed in the main text. (Supplementary Materials)
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