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Photonic accelerators have been intensively studied to provide enhanced information processing capability to benefit from the
unique attributes of physical processes. Recently, it has been reported that chaotically oscillating ultrafast time series from a laser,
called laser chaos, provides the ability to solve multi-armed bandit (MAB) problems or decision-making problems at GHz order.
Furthermore, it has been confirmed that the negatively correlated time-domain structure of laser chaos contributes to the
acceleration of decision-making. However, the underlying mechanism of why decision-making is accelerated by correlated time
series is unknown. In this study, we demonstrate a theoretical model to account for accelerating decision-making by correlated
time sequence. We first confirm the effectiveness of the negative autocorrelation inherent in time series for solving two-armed
bandit problems using Fourier transform surrogate methods. We propose a theoretical model that concerns the correlated time
series subjected to the decision-making system and the internal status of the system therein in a unified manner, inspired by
correlated random walks. We demonstrate that the performance derived analytically by the theory agrees well with the numerical
simulations, which confirms the validity of the proposed model and leads to optimal system design. +is study paves the way for
improving the effectiveness of correlated time series for decision-making, impacting artificial intelligence and other applications.

1. Introduction

Optics and photonics have been extensively studied for high-
speed information processing in various applications, es-
pecially machine learning [1–5]. One of the important
branches of the research frontier is reinforcement learning
[6], wherein the impacts of photonics have been intensively
examined [7–9]. +e multi-armed bandit (MAB) problem
regards decision-making in obtaining high rewards from
multiple selections, called arms, wherein the best arm is
initially unknown. MAB problems concern a difficult trade-
off known as the exploration-exploitation dilemma, which
captures a fundamental aspect of reinforcement learning [6].

+e physical properties of photons have been utilized in
solving MAB problems [7, 8]. In particular, chaotically
oscillating ultrafast time series generated by semiconductor
lasers, called laser chaos, has been successfully utilized in
resolving two-armed bandit problems in GHz order, which
we call laser chaos decision-maker hereafter [7]. As in-
troduced below, the principle of the laser chaos decision-
maker simply depends on the signal-level comparison
between the chaotically oscillating time series and the
threshold level. It has also been demonstrated that such a
level comparison-based principle is scalable in a tree ar-
chitecture, which can be experimentally demonstrated up
to 64 arms [10].
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Furthermore, the applications of laser chaos decision-
makers have been studied to benefit from their prompt
adaptation abilities in dynamically changing uncertain en-
vironments [11–14]. Takeuchi et al. applied laser chaos
decision-making to channel selection problems in wireless
communications [11], in which communication channels
suffer from dynamically changing disturbances due to traffic,
interference, or fading [15]. Kanemasa et al. extended the
principle using laser chaos decision-maker to channel
bonding in IEEE 802.11ac networks [12]. Furthermore,
Duan et al. optimized user-pairing in non-orthogonal
multiple access (NOMA) systems by laser chaos decision-
maker [13]. Moreover, Kanno et al. combined laser chaos-
based decision-making with photonic reservoir computing,
where adaptive model selection is realized to enhance the
computing capability [14].

In [7], it was demonstrated that the autocorrelation
inherent in laser chaos time series impacted the decision-
making performances. Indeed, chaotic time series with
negative maximum autocorrelation yield superior perfor-
mances when compared with pseudorandom numbers,
colored noise, and random shuffle surrogate data of the
original laser chaos time series [7]. Furthermore, Okada et al.
extensively examined the decision-making acceleration by
laser chaos using surrogate analysis, such as the Fourier
transform surrogate [16]. It was found that both statistical
distributions of the amplitude of time series and negative
autocorrelation therein impact decision-making perfor-
mances [16].

In the literature, the usefulness of negative autocorre-
lation in time series has been theoretically analyzed re-
garding code division multiple access (CDMA) [17–19]. To
achieve high performance in CDMA, the cross-correlation
between the spreading sequences must be small.+e optimal
negative autocorrelation to minimize the interference has
been mathematically derived, and the chaotic map that
generates the smallest cross-correlation was defined. In
addition, ref. [19] clarifies that the negative autocorrelation
that minimizes cross-correlation accelerates the perfor-
mance of solution search algorithms for combinatorial
optimization problems. An FIR filter to generate the optimal
chaotic CDMA sequence was also proposed based on the
negative autocorrelation analysis [20]. Moreover, the ef-
fectiveness of such optimal negative autocorrelation codes
has been experimentally demonstrated using software-de-
fined radio systems [21].

However, regarding decision-making, the fundamental
underlying mechanism of how negative autocorrelation
inherent in time series impacts performance superiority is
still unclear. +at is, the results in the previous studies
[7, 16] are all limited in empirical findings. If the effec-
tiveness of the negative autocorrelation in laser chaos or
correlated time series for decision-making is theoretically
grasped, it allows, for example, a systematic design ap-
proach to derive the optimal autocorrelation depending on
given problem situations. Besides, the insights gained by
mathematical modeling ensure the reliability of the effec-
tiveness provided by the negative autocorrelation in time
series.

In this study, we theoretically construct a model to
account for the effect of negative autocorrelation in decision-
making performances.+e theory of this study is inspired by
correlated random walk [22, 23]. Contrary to conventional
random walks, which have transition probabilities inde-
pendent of prior events, correlated random walks have
probabilities dependent on prior events [22, 23]. +at is, the
notion of correlated random walks allows us to represent
state-dependent, different probability evolution dynamics.
Such a theoretical architecture accounts for the interplay
between the correlated time series and the evolution of
decision-making. We clarify the validity of the proposed
theoretical model by confirming the excellent agreement of
the decision-making performances derived analytically by
the proposed model and by numerical simulations.

+e rest of the article is organized as follows: Section 2
reviews the mechanism of laser chaos decision-maker. In
Section 3, we introduce a numerical method to generate an
arbitrary autocorrelation in time series, by which the rele-
vance between autocorrelation and the resultant decision-
making performance is systematically examined. Section 4,
which is the most important contribution of this study,
demonstrates the theoretical model of decision-making
based on correlated time sequences. Section 5 demonstrates
the agreement of the decision-making performances pre-
dicted by the proposed theory and numerical simulations.
Section 6 concludes the article.

2. Laser Chaos Decision Maker: Using Time
Series for Decision-Making

As mentioned in Section 1, the laser chaos time series allows
ultrafast decision-making. Figure 1(a) schematically illus-
trates the architecture of the laser chaos decision-maker for a
two-arm bandit problem, which is the scope of this study [7].
+e two arms are called slot machines A and B. Laser chaos is
generated by subjecting a portion of the output light back to
the laser by an externally arranged reflector, which is called
delayed feedback. We compare the intensity level of the laser
chaos with a certain threshold value, which is denoted by
T(t).

+e decision-making is executed as follows: When the
sampled value of the time series is above the threshold, the
decision is to choose slot machine A; otherwise, slot machine
B is selected. +e threshold T(t) is updated according to the
result of the slot machine play. Overall, the threshold update
is conducted under the assumption that the revised
threshold will lead to the same decision in the subsequent
decisions when the present action is successful, whereas the
threshold is revised to the opposite direction when the
present action is a failure [7, 8, 10].

More precisely, the values of threshold T(t) are deter-
mined by

T(t) � k ×[TA(t)], (1)

where TA(t) is called the threshold adjuster and [∗ ] is the
nearest integer to ∗ . [TA(t)] can take an integer value
ranging from −N to N, with N being a natural number.
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+erefore, the number of levels that the threshold adjustor
can take is 2N+ 1. Here, k is a coefficient to convert [TA(t)]

to T(t).
TA(t) is updated depending on the result of the action

conducted at t− 1:

TA(t) � −Δ + αTA(t − 1), if slotmachineAwins,

TA(t) � +Δ + αTA(t − 1), if slotmachineBwins,

TA(t) � +Ω + αTA(t − 1), if slotmachineA fails,

TA(t) � −Ω + αTA(t − 1), if slotmachineB fails,

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2)

where Δ denotes increment, which is given by Δ� 1 in this
study. α is the forgetting parameter for weighting previous
threshold adjuster variables, ranging from 0 to 1, that is
0≤ α≤ 1. Ω is called the penalty parameter [7, 8].

A hierarchical formation of such two-armed bandit
problems has been proposed to deal with problems with
more than two arms [10]. +e elemental structure is the
abovementioned two-armed situations with a dynamically
updated threshold. +is study focuses on two-arm situations
as the first theoretical analysis on the laser chaos decision-
maker.+e analysis of cases with more than two arms can be

done by extending the method proposed in this study;
however, that will become a very complicated analysis.
+erefore, we focus on a simple case in this study, and the
cases with more than two arms will be our future work.

3. Effectiveness of Correlated Time
Series on Decision-Making

As described in Section 1, the performance of the two-armed
bandit problem using laser chaos time series depends on the
autocorrelation inherent therein [7, 16]. +e best perfor-
mance is obtained when the autocorrelation of the time
series exhibited its negative maximum [7]. Furthermore, the
surrogate data analysis of laser chaos time series clarifies the
impact of time-domain correlation [10]. In this study, to
examine the influence of correlations in time series in a
systematic manner, we introduce an artistically constructed
time-correlated time series and analyze its influence on
decision-making performance.

We construct a time series whose amplitude follows a
Gaussian distribution while having a determined autocor-
relation by utilizing the Fourier transform surrogate method
[24]. +e various steps involved are as follows:
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Figure 1: (a) Decision-making architecture using laser chaos time series or correlated time series. (b–d) Snapshots of correlated time series
generated via Fourier transform surrogate. +e correlation is specified by the parameter λ. (b) λ� 0.8 (strong positive autocorrelation), (c)
λ� 0 (zero correlation), and (d) λ� −0.8 (strong negative autocorrelation).
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(1) A time series r(t) is constructed with t ranging from 0
to T−1, where T is the length of the time series.
Here, we suppose that r(t) � r(0) λt. Specifically,
r(t) � λ r(t − 1) holds, indicating that r(t) undergoes
a time correlation specified by λ to its previous point
r(t− 1). We call λ the autocorrelation coefficient in
this study.

(2) +e Fourier transform of r(t) is calculated and
denoted by R(f ).

(3) +e phase of R(f ) is revised by randomly assigned
numbers, while the power spectrum is maintained.
+e revised Fourier domain signal is denoted by
R′(f).

(4) By taking the inverse Fourier transform of R′(f), a
new time series is generated, which is denoted by
r′(t).

+rough the process above, the autocorrelation of the
resultant r′(t) is equivalent to that of r(t). However, the
amplitude distribution of r′(t) follows a Gaussian profile
because of the randomized phase factors in the Fourier
domain. +e above-described process corresponds to a
special case of Fourier transform surrogate [24].

Snapshots of the time series generated for the cases when
the time correlation is specified by λ� 0.8, 0, and −0.8 are
shown in Figures 1(b)–1(d), respectively. All of the time-
series signals appear random, but there are distinct differ-
ences in their autocorrelation.With λ� 0.8, the signal level at
time t is similar to the signals around that point, that is
radically large signal-level differences in consecutive data
points are rarely observed (Figure 1(b)). Conversely, with
λ� −0.8, meaning a strong negative autocorrelation, the
signal at time t has almost the exact opposite value to the
surrounding data (Figure 1(d)). As a result, the time series
exhibits a highly time-varying structure. Meanwhile, the
histogram of the signal level of these time series follows the
same Gaussian distribution.

It should be noted that the above-described Fourier
transform surrogate-based procedure does not perfectly
reproduce the experimentally observed laser chaos time
series. +is is because the correlation in the above process is
determined only by r(t) � λ r(t − 1) in Step (1), whereas the
experimental laser chaos involves very long-range time
correlations via delayed optical feedback. However, we
consider that the Fourier transform surrogate-based method
is quite beneficial to this study for several reasons.

+e first is that the correlation between two successive
points can be specified by an arbitrary number, allowing λ
values smaller than even −0.5, which was experimentally not
feasible, at least in the previous studies [7, 10]. +erefore,
systematic analysis is enabled for a wide range of λ. +e
second is that amplitude distributions are kept equivalent
between each other even when λ is configured to different
values, which also allows us a clear examination of the
impact of autocorrelation inherent in the time series.

For these reasons, we use the time-series r′(t) generated
using the above process. We then analyze how the MAB
performance depends on the autocorrelation specified by λ.

In evaluating the performance of the MAB problem, we
employ the correct decision rate (CDR). +e CDR(t) is de-
fined as the ratio of selecting a slot machine with the highest
reward probability at a time step t and averaged over m
simulations or cycles. +at is, CDR(t) is expressed by

CDR(t) �
1
m



m

i�1
Ci(t), (3)

where m is the number of cycles with different random
initial conditions. Here, Ci(t)� 1 when the slot machine with
the highest reward probability is selected at the tth decision
(or time t) of the ith cycle. In other words, correct decision-
making is conducted. Otherwise, Ci(t)� 0, meaning that
correct decision-making is not executed. In the following
simulations, m� 60000.

Figure 2 summarizes the calculated CDR at t� 1000 as a
function of the autocorrelation coefficient λ in several dif-
ferent reward environments and the setting of the decision-
maker. +e reward probability of the two slot machines,
called machine A and machine B, is denoted by PA and PB,
respectively. For example, in Figure 2(a), PA and PB are given
as 0.9 and 0.3, respectively. In this situation, the correct
decision is to select machine A as it is the slot machine with
the highest reward probability (PA> PB). In addition, the
number of levels of threshold adjustor is 5, and specified by
N� 2. It should be emphasized that a higher CDR is obtained
when the autocorrelation is negative; indeed, the best CDR is
given by λ� −0.6.

Figures 2(b)–2(f) examine other reward settings and
decision-maker conditions. Table 1 summarizes the reward
probabilities of slot machines and the number of threshold
levels N for each MAB problem. In Figures 2(b) and 2(c), PA
and PB are differently configured while maintaining the same
threshold number as in Figure 2(a) (i.e., N� 2). More
specifically, the difference of PA and PB is only 0.1 in
Figure 2(b) by setting (PA, PB)� (0.6, 0.5). Similarly, the
difference is 0.2 in Figure 2(c) by setting (PA, PB)� (0.9, 0.7).
+at is, the difficulties in finding the best machine are
configured differently. Here, it should be noted that the
highest CDR is accomplished when the autocorrelation
coefficient λ is given by −0.8 and −0.3 in Figures 2(b) and
2(c), respectively. +at is, the best decision-making is re-
alized with negatively correlated time series.

+e reward setting of (PA, PB) in Figures 2(d)–2(f) is the
same as in Figures 2(a)–2(c), respectively.+e only difference is
in the threshold value, which is specified byN� 4.+e achieved
CDR was different because of the change in the value of N.
However, it should be noted that the highest CDR perfor-
mances are all obtainedwith negative autocorrelationwhen λ is
given by −0.6, −0.9, and −0.6 in Figures 2(d)–2(f), respectively.

4. Theoretical Model of Decision-Making Using
Correlated Time Series

+is section shows a mathematical model to account for the
impact of correlated time series on decision-making. Here,
we focus on two-armed bandit problems where two slot
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machines are called machines A and B. Figure 3 shows a
conceptual architecture of the proposed model. We assume
that slot machine A has a larger reward probability than slot
machine B, that is PA>PB. +erefore, the correct decision
would be to choose slot machine A.

Here, we assume that the subjected time sequence takes
either of the two signal levels specified by + x or −x, which is
denoted by sky blue marks in Figure 3. In the meantime,
remember that the threshold level, T(t) given by equation
(1), takes in total 2N+ 1 different signal levels, each of which
is represented by −N, −N+ 1, . . ., N− 1, N. Furthermore, we
assume that the higher-level signal + x satisfies N− 1< x<N,
meaning that the upper signal level of the incoming time
series is below the maximum threshold level but greater than
the second maximum threshold. Similarly, the lower signal
level (−x) satisfies −N<−x<−N+ 1, indicating that the
lower signal level of the subjected time series is above the
minimum threshold level but less than the second minimum
threshold.

Based on the decision-making principle described in
Section 2, we summarize the decision-making process in the

present situation. Let the signal level of the incoming time
series at time t and the threshold level at time t be denoted by
s(t) and T(t), respectively.

(i) If T(t) � −N, regardless of the signal level s(t), slot
machine A is selected. +is is because T(t)� −

N< s(t) always holds since the minimum of s(t) is
−x, which is larger than −N.

(ii) Similarly, if T(t) � N, slot machine B is selected
regardless of the signal level s(t) because T(t)�

N> s(t) always holds since the maximum of s(t) is
+x, which is smaller than N.

(iii) If−N + 1≤T(t)≤N − 1, the decision of selecting slot
machine A or B depends on the signal level of s(t).

(1) If s(t) is given by + x, the decision is to select
machine A because s(t)�+x is greater than
N – 1.

(2) Conversely, if s(t) is given by −x, the decision is
to select machine B because s(t)� −x is smaller
than −N+ 1.

Furthermore, the incoming signal s(t) contains inherent
correlations, as discussed in Sections 1 and 2. Concerning
the fact that s(t) under study is a two-level signal train, we
can think of the probability where the signal level s(t+ 1) at
time t+ 1 is different from s(t) at time t, that is s(t+ 1)�+x
results after s(t)� −x or s(t+ 1)� −x after s(t)�+x. Since the
autocorrelation between two consecutive timings is given by
λ, such a signal-level changing probability is given by
μ � (1 − λ)/2. Conversely, the probability of exhibiting the
same signal level is given by 1 − μ � (1 + λ)/2.

+erefore, such stochastic processes are represented by
conditional probabilities given by
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Figure 2: Correct decision rate at t� 1000 as a function of the autocorrelation coefficient λ in various reward environments and a different
number of threshold levels. It is to be noted that the maximum performance is obtained by negatively correlated time series.
(a)PA � 0.9, PB � 0.3, N � 2, (b)PA � 0.6, PB � 0.5, N � 2, (c)PA � 0.9, PB � 0.7, N � 2, (d)PA � 0.9, PB � 0.3, N � 4,
(e)PA � 0.6, PB � 0.5, N � 4, and (f)PA � 0.9, PB � 0.7, N � 4.

Table 1: +e settings of the reward probabilities of slot machines
(PA and PB) and the parameter N that specifies the number of
threshold levels (2N+ 1).

Figure PA PB N

Figures 2(a) and 7(a) 0.9 0.3 2
Figures 2(b) and 7(b) 0.6 0.5 2
Figures 2(c) and 7(c) 0.9 0.7 2
Figures 2(d) and 7(d) 0.9 0.3 4
Figures 2(e) and 7(e) 0.6 0.5 4
Figures 2(f ) and 7(f) 0.9 0.7 4
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Pr(s(t + 1) � ± x|s(t) � ∓x) � μ and Pr(s(t + 1)

� ± x|s(t) � ± x) � 1 − μ,
(4)

where Pr denotes probability. +e important aspect is that
the internal status of the decision-maker, represented by
T(t), is tightly coupled with the correlated time series

subjected to the system as well as the betting results of the
slot machine playing, which is specified by PA and PB.

+e behavior of the revision of T(t) is described by the
following cases:

(i) If T(t) � −N, slot machine A is always selected. +e
threshold is updated as

T(t + 1) �
T(t) + 1 whenmachineA fails with probability 1 − PA( ,

T(t) whenmachineAwinswith probability PA( .
 (5)

(ii) If T(t) � N, slot machine B is always selected. +e
threshold is updated as

T(t + 1) �
T(t) whenmachine Bwins with probability PB( ,

T(t) − 1 whenmachine B fails with probability 1 − PB( .
 (6)

(iii) If −N≤T(t)≤N − 1, when slot machine A is selected, the threshold is updated
as

T(t + 1) �
T(t) + 1 whenmachineA fails with probability 1 − PA( ,

T(t) − 1 whenmachineAwinswith probability PA( ,
 (7)

and when slot machine B is selected, the threshold is updated
as

T(t + 1) �

T(t) + 1 whenmachine Bwins with prob.PB( ,

T(t) − 1 whenmachine B fails with prob.1 − PB( .

⎧⎪⎨

⎪⎩
(8)

It should be noted that regardless of the machine se-
lection and betting result, the threshold level always

increases or decreases in this case, meaning that the same
threshold level is not allowed.

+e procedure summarized above is a special case of the
principle shown in Section 2 by specifying the parameters
therein by k � Δ � Ω � α � 1. In addition, we have to
emphasize that the upper and lower limits of T(t) are newly
posed when the decrement or increment of the threshold is
not permitted beyond the range between −N and N.

Slot machine A

Slot machine B

…
…

Select A N

N – 1

–N + 1

–N
–x

+x

2

1

0

–1

–2
Select A

Select B

Select B …
…

Correlated time series s (t)s (t) = +x

T (t)

s (t) = –x

Threshold level

Figure 3: +e theoretical model of the decision-making based on correlated time series and reconfiguration of the threshold.
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Hereafter, we refer to this as the stopping rule. +is setting is
the simplest case for the laser chaos decision-maker. We use
this simplest case to keep our analysis model from being too
complicated. Cases with other settings may be possible by
extending our proposed scheme, but this will be a future
project.

To theoretically deal with the abovementioned seemingly
complex situations, we introduce a set vt � (T(t), s(t)),
which represents the state of the model at time t. +e space
spanned by vt is −N, −N + 1, · · · , N − 1, N{ } × ± x{ }.

Herein, we can characterize the state transition proba-
bility between two states. Let, for example, the current state
is specified by (i, +x) while T(t) is not at the border, that is
−N + 1≤ i≤N − 1. Here, we consider the probability of the
state transition as (i+ 1, −x). It should be noted that the
decision is to select machine A in this given situation (i, +x)
since the signal level + x is larger than the current threshold
T(t). In this state transition from (i, +x) to (i+ 1, −x), the
threshold is incremented (i⟶ i+ 1) and the incoming
signal level is reversed (+x⟶ −x). Such a situation occurs
when the slot machine A playing is unsuccessful and the
incoming signal level is flipped, whose probability is given by
(1− PA)μ. Similarly, all transition probabilities are
determined.

+e notion of correlated random walk allows us to
summarize such transitions in a unified manner [22, 23]. We
first introduce the probability of the state vt by
πt(v) � πt(i, σ), meaning the probability of the state with
T(t) = i and s(t) = σ. In addition, we define a probability
vector πt(i), which is given by

πt(i) �
πt(i, +x)

πt(i, −x)
 , (9)

which combines the probabilities involving the threshold
level being i for different signal levels of the time series (+x
and −x).

We denote the probability of the threshold being i at time
t, regardless of the incoming signal level, by πt(i), which is
mathematically equivalent to the L1-norm of πt(i). +at is

πt(i) � πt(i, +x) + πt(i, −x) � πt(i, +x)


1

+ πt(i, −x)


1 � πt(i)


1.
(10)

Based on these preparations, the recurrent formulae of
πt(i) lead us to precisely characterize the behavior of the
system.

Case 1. +e probability vector for the case when the
threshold is between −N+ 1 andN – 1 at time t+ 1 is given by

πt+1(i) � Q(i − 1)πt(i − 1) + P(i + 1)πt(i + 1), (11)

where the matrices P and Q are given by

P(i) �
PA(1 − μ) 1 − PB( μ

PAμ 1 − PB( (1 − μ)
 , (12)

Q(i) �
1 − PA( (1 − μ) PBμ

1 − PA( μ PB(1 − μ)
 . (13)

Equation (11) clearly implies that the probability vector
of the threshold being i comprises the transitions from the
states with the thresholds being i – 1 and i+ 1. +e elements
of thematricesP(i) andQ(i) are intuitively easily understood
by the following. +e dynamics given by equation (11) are
schematically illustrated in Figure 4(a).

+e matrix P(i) concerns the probability of decre-
menting the threshold level. For example, the (1, 1)-element
of P(i), or P1,1(i), represents the probability of the transition
from the state (i, +x) to (i− 1, +x). +e state (i, +x) indicates
that the decision is to select machine A.+e decrement of the
threshold indicates that the result is a win.+e probability of
consecutive identical signal levels is given by 1− μ. Hence,
P1,1(i)� PA (1 – μ). Similarly, P1,2(i) means the probability of
the transition from the state (i, −x) to (i – 1, +x); the dif-
ference is the change of the polarity of the incoming signal
level. +erefore, P1,2(i)� (1 –PB) μ. Similarly, P2,1(i) corre-
sponds to the probability of the transition from the state (i,
+x) to (i – 1, −x), and P2,2(i) corresponds to the transition
from (i, −x) to (i− 1, −x). +e blue arrows in Figure 4(a)
schematically represent the role of the matrix P(i), which
concerns the decrementing of the threshold level.

Conversely, the matrix Q(i) concerns the probability of
incrementing the threshold level. Q1,1(i), for example, rep-
resents the probability of the transition from the state (i, +x)
to (i+ 1, +x), meaning that the threshold is incremented
while the signal level is unchanged. +is situation represents
the decision to select machine A, the result is lost, and the
polarity of the incoming signal is the same; the corre-
sponding probability is given by (1 –PA) (1 – μ). Similarly,
other elements of Q(i) are specified straightforwardly. +e
red arrows in Figure 4(a) schematically represent the role of
the matrix Q(i), which concerns the incrementing of the
threshold level.

Case 2. +e probability vector for the case when the
threshold is at the edge on the negative side, −N at time t+ 1
is specified by

πt+1(−N) � P(−N)πt(−N) + P(−N + 1)πt(−N + 1). (14)

Edges are to be treated carefully in this case. First,
P(−N+ 1) in the second term on the right-hand side of
equation (14) describes the transition of the decrement of the
threshold level from–N+ 1 to N, which has already been
defined in equation (12). Second, since there are no
threshold levels smaller than −N, the transitions involving
increments or any Q matrix are not included in equation

Complexity 7



(14). +ird, what is different from Case 1 above is that the
threshold level can be maintained at the edges, which is
indicated by the first term on the right-hand side of equation
(14). More specifically, the P matrix at −N is given by

P(−N) �
PA(1 − μ) PAμ

PAμ PA(1 − μ)
 . (15)

P 1,1(−N) means the state transition from (−N, +x) to
(−N, +x). +is corresponds to the decision to select machine
A, the result is a win, and the signal polarity is unchanged.

+erefore P1,1(−N) =PA (1 – μ). Similarly, P1,2(−N) means the
state transition from (−N, −x) to (−N, +x); what is different
from P1,1(−N) is the change in polarity. Hence, P1,2(−N)
=PAμ. Likewise, P2,1(−N) and P2,2(−N) can be obtained. +e
blue arrows in Figure 4(b) illustrates the role of the matrix
P(−N), which concerns keeping the same threshold level.

Case 3. Similar to Case 2, the probability vector for the case
when the threshold is N at time t+ 1 is specified by

πt+1(N) � Q(N − 1)πt(N − 1) + Q(N)πt(N). (16)
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Figure 4: Transition probability vectors of the model. (a) +e matrices of P and Q concern the increment and decrement of the threshold
level. (b and c)When the threshold is at the edge (−N orN), transition to an identical threshold should be considered, which are represented
by P(−N) and Q(N) in (b) and (c), respectively.

8 Complexity



+emeaning of equation (16) is similar to equation (14).
Q(N− 1) in the right-hand side of equation (16) has been
already defined in equation (13). As in Case 2, the threshold
level can be maintained at the edge, which is shown byQ(N)
in equation (16). +is is given by

Q(N) �
PB(1 − μ) PBμ

PBμ PB(1 − μ)
 . (17)

Q 1,1(N) means the state transition from (N, +x) to (N,
+x). +is corresponds to the decision to select machine B,
the result is a win, and the signal polarity is unchanged.
+erefore Q1,1(N) � PB(1 – μ). Similarly, Q1,2(N) indicates
the state transition from (N, −x) to (N, +x); what is dif-
ferent from Q1,1(N) is the change in polarity. Hence,
Q1,2(N) � PBμ. Likewise, Q2,1(N) and Q2,2(N) can be ob-
tained. +e red arrows in Figure 4(c) illustrate the role of
the matrix Q(N), which concerns keeping the same
threshold level.

Finally, a remark is needed for the matrix P at N and
matrix Q at −N, which should be different from the one
given by equations (12) and (13), and are given by

P(N) �
1 − PB( (1 − μ) 1 − PB( μ

1 − PB( μ 1 − PB( (1 − μ)
  , (18)

Q(−N) �
1 − PA( (1 − μ) 1 − PA( μ

1 − PA( μ 1 − PA( (1 − μ)
 . (19)

+is is because the decision at the edges does not de-
pend on the incoming signal level. For example, with the
threshold at N, the decision is always to select machine B
because both signal levels + x and −x are smaller than the
threshold. Hence P1,1(N) means the probability of the state
transition from (N, +x) to (N− 1, +x), meaning that the
decision is to select machine B, the result is a loss, and the
polarity of the signal is unchanged. +erefore P1,1(N) �

(1− PB) (1− μ). Similarly, all other elements in equations
(18) and (19) are specified. +e blue arrows in Figure 4(c)
and the red arrows in Figure 4(b) illustrate P(N) and
Q(−N), respectively.

Figure 5 summarizes the chains of the probability
vector πt(i) by equations (11), (14), and (16). +e blue
arrows, which regard the decrement of the threshold
level, are induced by either a win by selecting machine A
or a loss by selecting machine B. In contrast, the red
arrows, which represent the increment of the threshold
level, are triggered by either a win by selecting machine B
or loss by selecting machine A. +e thresholds at the edge
(−N and N) involve arrows of transitions to an identical
threshold.

Finally, the CDR can be discussed using the probabilities
defined above. Assume that the correct decision is to select
machine A. +e selection of machine A is realized exces-
sively in the following two cases:

(1) +e threshold is −N. In this case, both signal levels −x
and +x result in the decision to choose machine A.

(2) When the threshold is between −N+ 1 and N – 1, the
input signal level of +x results in the decision to
choose machine A.

Hence, the probability of selecting machine A at time t,
denoted by CDR(theory) (t), is given by

CDR
(theory)

(t) � πt(−N, −x) + πt(−N, +x)

+ 
N−1

i�−N+1
πt(i, +x).

(20)

5. Evaluation

With the theoretical model shown in Section 4, we can
calculate the time evolution of the probability vector πt(i)

and its L1-norm πt(i) from any initial conditions. Conse-
quently, CDR(theory) (t) is derived by equation (20).

Here, we examine the case when the reward probabilities
are given by PA= 0.9 and PB= 0.7 and assume that N is given
by 2, meaning that the number of threshold levels is 5.
Herein, the initial probability vector is given by π1(0) �

(0.5, 0.5) while assuming all the other vectors are zero. +e
autocorrelation coefficient λ specifies the time-correlated,
two-level signal trains.

Figure 5(b) shows the analytically calculated chains of
probability vectors. As time evolves, the probability vector at
the edge (i� −2) increases, indicating a high likelihood of
choosing machine A, which is the correct decision (since
PA> PB).

To examine the mechanism more deeply, Figures 6(a)–
6(c) demonstrate the time evolution of the probability when
the threshold is at level i (i� −2, −1, 0, 1, 2) and when the
autocorrelation λ is specified by −0.8, 0, and 0.8, respectively.
What is commonly observed in these figures is that πt(−2),
indicated by blue curves, increases as the time elapses,
leading to a high chance of selecting machine A or correct
decision-making. Meanwhile, πt(2), indicated by green
curves, exhibits approximately 0.2 at a time step of 25 when λ
is 0.8 (Figure 6(c)), whereas it shows nearly zero at the same
timing when λ is −0.8 (Figure 6(a)). +is indicates that the
probability of choosing machine B, which is the wrong
decision, is not negligible when λ� 0.8.

From another perspective, the blue, red, and yellow
markers in Figure 6(d) characterize the probabilities of the
threshold at t� 1000, which is written as π1000(i), when the
autocorrelation is specified for λ values given by −0.8, 0, and
0.8, respectively. We can clearly observe a large probability
greater than 0.6 about the threshold level of −2, regardless of
λ values.

It is remarkable that for λ� −0.8, the probability
monotonically decreases as the threshold increases, whereas
for λ� 0.8, the probability increases when the threshold
increases from 0 to 2. Even with zero autocorrelation (λ� 0),
a slight increase in probability is observed at the threshold
level of 2. We assume that a positive autocorrelation tends to
conduct similar decisions consecutively, and hence the
decision can be locked in a status, which is actually not the
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Figure 5: (a) Chains of the probability vector πt(i) given by equations (11), (14), and (16). (b) An example of the evolution of probability
vector πt(i) when the initial condition is π0(0) � (0.5, 0.5), the autocorrelation coefficient λ is −0.8, the threshold number is specified by
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optimal one. Indeed, a related tendency is observed in
Figures 6(a)–6(c), where the dynamic change of probabili-
ties, most notably by πt(0) indicated by orange curves,
exhibits a strong oscillatory behavior with λ� −0.8, whereas
it is attenuated when λ� 0.8.

As discussed in Section 4, the decision-making ability
can be theoretically derived as CDR(theory)(t), given in
equation (20) using the probability model. We examined
CDR(theory)(t) depending on a variety of conditions. Herein,

the reward probabilities (PA, PB) and the number of
threshold levels specified by N are summarized in Table 1,
which are the same as discussed in Section 3 and Figure 2.
For example, Figure 7(a) concerns the case (PA, PB)� (0.9,
0.3) and N� 2. +e red curves in Figure 7 show
CDR(theory)(1000) as a function of autocorrelation coeffi-
cient λ ranging from −0.95 to 0.9 with 0.05 interval. In
addition, λ� −0.99 is examined. For all cases in Figure 7, the
maximum CDR(theory)(1000) is obtained when the
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autocorrelation coefficient is negative, indicated by red ar-
rows therein, which coincide with the numerical observa-
tions shown in Figure 2.

Furthermore, we numerically simulate the correct de-
cision rate CDR(t) defined in equation (3) based on the
original decision-making algorithm described in Section 3
while adapting the stopping rule in Section 4. +e results are
shown by the blue curves in Figure 7. We observe in all
panels in Figure 7 that the results from theory (red) and
simulation (blue) match well with each other. Additionally,
while the blue marks exhibit fluctuations since they are
obtained as a statistical average via numerical results, the
results in red marks are smooth because they are analytically
derived based on the theory described in Section 4.

6. Conclusion

In this study, we construct a theoretical model to account for
the acceleration of decision-making by correlated time se-
quences. Previous studies have shown that the solution to the
two-armed bandit problem is accelerated by negative auto-
correlation inherent in the time series subjected to the de-
cision-making system. However, its underlying mechanisms
are unclear. We begin the discussion by clarifying the impact
of time-domain correlation on decision-making by utilizing
time series with specific autocorrelation designed via Fourier
transform surrogate. Coinciding with the prior reports of
using experimentally observed laser chaos time series, we
confirm that the negative autocorrelation accomplishes su-
perior decision-making performance. +e difficulties in un-
derstanding the underlying mechanism of such acceleration
stem from the fact that multiple entities are involved: the
dynamical reconfiguration of the internal status of the de-
cision-maker (the threshold level and its revision), time-
domain structure of the incoming time series, and stochastic
attributes of the environment (reward probability of slot
machines). +e theoretical model of this study unifies these
entities based on correlated random walks. Furthermore, the
decision-making performance obtained analytically by the
theoretical model agrees with the numerical results from
simulations, which validates the proposed theory. Addi-
tionally, this indicates that the optimal autocorrelation for
maximizing can be obtained through the model without
executing enormous numerical simulations. +e proposed
scheme to select the best laser chaos with the best autocor-
relation can accelerate performance in applications such as
wireless communication systems [11–13]. +is study con-
stitutes a foundation of the intellectual mechanism enhanced
by correlated time series, which is important for future in-
formation and communications technology.

+e laser chaos decision-maker can quickly solve MAB
problems with GHz order decisions. +erefore, it will be
possible to optimize decisions in wireless communication
systems in real time. However, a dedicated device for the
laser chaos decision-maker is necessary. In the meantime, a
chip-scale photonic implementation has been recently
demonstrated [25] on the basis of the recent advancements
in integrated photonics technology, indicating the potential
for system integration and miniaturization.
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