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In this article codes over lattice valued intuitionistic fuzzy set type-3 (LIFS-3) are defined. Binary block codes and linear codes are
constructed over LIFS-3. Hamming distance and related properties of these newly established codes are examined. 'e research
findings are applied to genetic codes. 'e set L of sixty-four codons is converted into a lattice and then codes are created over the
set S of twenty amino acids by defining membership and nonmembership functions from the set of twenty amino acids to the
sixty-four codon set. Comparison of codes over L-fuzzy set and LIFS-3 conducted in terms of hamming distance for codon system
that ensures the efficiency of newly established codes.

1. Introduction

Probability theory was once believed to be an ideal tool to deal
with any uncertain situation. However, there are many
problems where the uncertainty appears as an imprecision
and ambiguity rather than a statistical variation. 'e classical
probability theory is not efficient and suitable for handling the
uncertainties and imprecision that appear in pattern recog-
nition. Zadeh [1] presented the notion of fuzzy set as an
extension of the ordinary set. 'is notion is used for de-
scribing vagueness and ambiguity mathematically. 'e for-
mulation of fuzzy sets over a nonempty set S is based on an
allocation of a grade of membership to each element of S. 'e
allocated grades are precisely the real numbers ranging be-
tween 0 and 1. Mathematically, a fuzzy set μ over S is
characterized by amap μ: S⟶ [0, 1] termed asmembership
function and the value μ(x) as grade of membership of x in S.
For instance, let X be the set of seven days of a week and p(x)

be the number of codes transmitted from a source center S

and q(x) be the number of codes received accurately at the
receiver end R in the day x ∈ X. 'en the function

μ: X⟶ [0, 1] defined as μ(x) � q(x)/p(x), for all x ∈ X,
provides a fuzzy set over X (that is, the collection of ordered
pairs (x, μ(x))). For example, if on x � Monday, 100 codes
were transmitted from S and the supervisor at R reported that
75 codes were received properly at R, then μ(x) � 75/100 �

0.75 would be the grade of membership of x in X, or we can
say that the supervisor’s statement’s truth value was 0.75.
According to classical probability, 25 codes were not received
at R, but in real practice, mostly the interpreter at R can
decode the partially transmitted codes for further processing.
In this example, if ten partially received codes are processed,
then the supervisor’s statement’s truth value increases from
0.75 to 0.85; the falsity value (nonmembership) decreases
from 0.25 to 0.15. Let ](x) � 0.15 represent the falsity value of
the supervisor’s statement; then 1 − μ(x) + ](x)  � 0.10 is
the degree of uncertainty caused by the performance of in-
terpreter at R. So, the membership grades are not enough to
communicate the correct information in this case and need to
introduce the idea of nonmembership grades; these grades
should not be confused with the probability of non-occur-
rence P(A) � 1 − P(A) of an event A.
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Atanassov [2], first introduced the notion of non-
menbership grages. 'e generalization of fuzzy sets that
involves both the membership and nonmembership grades
is known as the intuitionistic fuzzy set (IFS). Atanassov
proposed fundamental properties, various arithmetic op-
erations for his development in fuzzy sets. In continuation,
Atanassov [3] presented the geometric interpretation of
intuitionistic fuzzy objects. 'ere are several other gener-
alizations of fuzzy sets that mostly depend upon member-
ship, nonmembership, hesitancy and indeterminacy grades.
As in a fuzzy set, the grades μ(x) belong to the close interval
[0, 1], which is naturally endowed with a partial order. 'e
assumption of order structures outside the unit interval laid
the foundations of ordered fuzzy sets. Partial orderings and
fuzzy uncertainties are features of many real-world prob-
lems.'ese kinds of problems are ill-posed most of the time,
because either they have infinite solutions or no solutions at
all. For instance, the selection of a grocery bundle from
various packages is subjected to various contradictory and
conflicting criteria. Nutritional value, quality, variety and
above all cost, are some of the factors that a person can think
about a bundle. 'us, the partial ordering of the bundles is
an essential feature of this problem. Goguen [4] introduced
the concept of L-fuzzy subsets of S where the interval [0, 1] is
replaced by a partially ordered set L. He discovered re-
markable features of this generalized concept and concluded
that L-fuzzy set theory works more efficiently in real-world
problems. After IFS Atanassov and Stoeva [5] enrich the area
and replaced the lattice [0, 1] by arbitrary complete lattice L,
to relate membership and nonmembership functions
μ, ]: S⟶ L he involved an involutive order reversing
unary operation N: L⟶ L. 'e new structure is known as
lattice valued intuitionistic fuzzy set (LIFS-1). But it has
certain limmitation mostly occurred due to the incorpora-
tion of the operator N. Gerstenkorn and Tepavcevic [6]
made an attempt to upgrade Atanassov idea and proposed a
new variant, that is, the lattice valued intuitionistic fuzzy set
type 2 (LIFS-2) simply by exchanging the operator N with a
linearization function ℓ: L⟶ [0, 1]. 'is modification is
quite helpful in the establishment of decomposition theorem
and synthesis but fails to deal with basic set operations.
Choice of the linearization function is the main reseaon
behind this failure. Finally, lattice homomorphism
α: L⟶ [0, 1] is used to relate membership and non-
membership functions and the new LIFS is called a lattice
valued intuitionistic fuzzy set type-3 (LIFS-3). 'is new
sturcture has certain advantages over the previously defined
fuzzy sets and L-fuzzy sets mostly occurs due to the inclusion
of lattices and lattice homomorphism. 'e lattice homo-
morphim is applicable to any collection of lattices unlike the
unary operator N of LIFS-1 and satisfy all the basic set
operations unlike the linearization function ℓ of LIFS-2.

A code is a system of rules used for data communication
and information process. 'ese rules are designed in the
form of letters, symbols, images, sounds or numbers. Coding
theory was established to study these rules mathematically
and make them workable in daily communication. In
communication, algebraic codes are used for data com-
pression and error correction. Coding theory is concerned

with the reliability of communication over a noisy channel.
Algebraic codes are studied in a variety of domains and they
have a wide range of applications across a large range of
disciplines. Murugan and Ananthanarayana [7] presented
the WordTrie, a specialised trie for storing words in order to
facilitate fast coding. 'e code combination is generated in
such a manner that the size of the WordCode for a word
must be less than the entire size of the character coding. To
improve the detection rate of NLOS nodes in any safety
application of VANET, the WDHPBDS protocol was
designed by Arjunan and Kaviarasan [8] in order to permit
reliable delivery of emergency information to the targeted
node in a timely manner. Nagaraju et al. [9] explored that by
using a hybrid area exploration technique, mobility assisted
localization for mission critical wireless sensor network
applications can be achieved.

When data are transmitted through a noisy channel,
some errors may arise. 'e vagueness in data transmission
can be handled by involving theoretical fuzzy set concepts in
the coding and decoding process. 'ere are two ways to
incorporate theoretical fuzzy set concepts in coding. One
method was proposed by von Kaenel and Pierre [10], termed
fuzzy code, and is defined as a fuzzy subset of n-dimensional
vector space Fn over the field F . He investigated the
Hamming distance for newly established fuzzy codes.
Kaenel’s theory is based on the symmetric nature of the
error—that is, the probability of 1⟶ 0 crossover failure
and 0⟶ 1 is equally likely. However, in computer
memories and VLSI circuits, the error may not be sym-
metric. Hall and Dial [11] discussed the asymmetric nature
of fuzzy codes and generalized the results of Kaenel. 'ey
worked on the distance between fuzzy code words and
proved that the distance is independent of the dimension of
the vector space Fn. Tsafack et al. [12] established a fuzzy
linear code, fuzzy cyclic code over Gralois ring Zpk .
Amudhambigai and Neeraja [13] discussed arithmetic op-
erations on fuzzy codes and introduced their super in-
creasing sequences. Shijina [14] introduced multi-fuzzy code
in terms of a multi-fuzzy subset of n-tuples over a set S, and
produced some essential results for Hamming distance. Du
[15] analyzed arithmetic operations of subtraction and di-
vision on intuitionistic fuzzy subsets that were induced by
the Hamming distance. Ali et al. [16] developed soft alge-
braic codes over soft sets. 'ey also defined soft canonical
generator matrix and soft canonical parity check to decode
these algebraic codes. Seselja and Tepavcevic [17] introduced
another method of involving fuzzy theory in coding, which is
based on defining a map A from a nonempty set
S � 1, 2, . . . , n{ } for partially ordered set P. Seselja et al. [18]
carried the concept and defined binary block codes over
lattice valued fuzzy sets (L-fuzzy sets). Mališa and Lazarević
[19] discussed the length and cardinality of block codes over
L-fuzzy sets. 'e concepts of fuzzy codes and codes of or-
dered fuzzy sets are relatively new, but crucial for modifying
the data communication and pattern recognition in deep
learning [20] and fault detection for distributed components
[21, 22]. However, these codes are unable to identify and
handle any expected error in the information process while
codes are transmitted in a noisy channel, for example, a spell
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checker and machine reader. Moreover, the already existing
fuzzy codes or codes over fuzzy sets are based solely on the
degree of membership; the degree of nonmembership was
not incorporated in any previous method. Lattice valued
intuitionistic fuzzy set type-3 is a generalization of basic
fuzzy set that incorporates both the degree of membership
and the degree of nonmembership, so it is a more workable
framework for modeling uncertain data. 'e effectiveness of
LIFS-3 motivated us to construct codes over these fuzzy sets.

2. Preliminaries

2.1. Bounded Lattice. A relation 9 on a nonempty set L is
precisely a subset of L × L. 'e elements of 9 are more
commonly denoted by a9b; a is ρ related to b. Based on the
nature of elements in the relation 9, it can have different
names. For instance, if x9x for all x ∈ L, then 9 is called
reflexive; if x〉y⟹y〉x, then 9 is called symmetric; if x9y

and y≻x⟹x � y, then 9 is called anti-symmetric; if x9y

and y〉z⟹x〉z, then 9 is called transitive. A reflexive, anti-
symmetric and transitive relation is called a partial order of
L. In this case, the set L is called a partially ordered set. For
example, “≤ ” (less than or equal) is a partial order on the set
of real numbers. 'e symbol “≤ ” is used for partial order in
general and is also used in this article for better under-
standing by a wider audience. A subset Y of a partially
ordered set L is said to be bounded above (below) if there
exists ℓ ∈ L such that ℓ′ ≤ ℓ (ℓ ≤ ℓ′) for all ℓ′ ∈ Y. 'e element
ℓ is called an upper (lower) bound of Y. 'e set Y may
possess more than one upper (lower) bound. 'e least
(greatest) member in the set of upper (lower) bounds of Y is
called the supremum (infimum) of Y denoted by
sup(Y)(inf(Y)). More precisely, if ℓ � sup(Y) then.
ℓ ≤ ξ(ξ ≤ ℓ).

'e partially ordered set L is called a lattice if inf l1, l2 

and sup l1, l2  exist for any pair of elements l1, l2 ∈ L. 'e
symbols ∧ and ∨ are used to indicate the infimum and
supremum of l1 and l2. 'us, we can write l1 ∧ l2 � inf l1, l2 

and l1 ∨ l2 � sup l1, l2 . 'e lattice L is said to be complete if
and only if inf(Y) and sup(Y) exist for all Y ⊂ L. 'e lattice
L is said to be bounded if it has a greatest a element T and a
least element B. 'ese elements are also called the top and
bottom elements of L, respectively.'us, in a bounded lattice
B≤ l≤T for all l ∈ L. If ∨ and ∧ are distributive over each
other, then such a lattice is called a distributive lattice. A
complemented distributive lattice is called a Boolean lattice.

A lattice L can be represented geometrically by means of
a Hasse diagram whose vertices are labeled by elements of L,
and any two vertices a and b are joined by a line segment or a
curve that goes upward from a to b whenever a< b and there
is no member c ∈ L between a and b. 'ese edges may cross
each other but must not touch any vertex other than their
endpoints. Such a diagram uniquely determines the partial
order defined on L. In a partial order, the existence of l1 ∧ l2
and l1 ∨ l2 is essential for the formulation of lattices. Being
nonempty sets, we can define several maps between any two
lattices. Any map that preserves the three essential com-
ponents that constitute a lattice is called a lattice homo-
morphism. Mathematically, a map α from a lattice L1 into a

lattice L2 is called a lattice homomorphism if for all
l1, l1′ ∈ L1, α(l1 ∧ l1′) � α(l1)∧ α(l1′) and α(l1 ∨ l1′) � α(l1)∨ α
(l1′).

If L1 is a bounded lattice with top element TL1
and

bottom element is a bounded lattice with α(TL1
) and α(BL1

)

as top and bottom elements. If L1 and L2 both are bounded
lattices, then αmaps top and bottom elements of L1 onto the
top and bottom elements of L2 respectively.

Example 1. Let L � B, T, a, c, d, e, f, g, h, i, j, k  be a lattice
[6] with partial order presented by the Hasse diagram in
Figure 1.

'e map α: L⟶ [0, 1] de is a lattice homomorphism.
A filter F of a lattice L is a subset F⊆L satisfying two

conditions stated as

(i) If ℓ ∈ F and ℓ′ℓ′, then ℓ′ ∈ F;
(ii) If ℓ, ℓ′ ∈ F, then ℓ ∧ ℓ′ ∈ F.

Let L be a lattice. 'e principal filter denoted by ↑p is de
Clearly, the principal filter is the smallest filter that contains
the given element p. Let L be a bounded lattice. If M is a
subset of L, then Mp: � ↑p∩M.

2.2. Lattice Valued Intuitionistic Fuzzy Set Type-3. Zadeh [1]
formulated the fundamental definition of fuzzy sets. A fuzzy
subset A of a nonempty set S is perhaps the collection of
ordered pairs with first components from S, and second
components are images of the map μ: S⟶ [0, 1] (called
membership function). Mathematically, A can be written as
A � (x, μ(x)): x ∈ S . 'e grades of membership for ele-
ments of S under μ can be used to define crisp subsets of S

termed level or cut sets. For any α ∈ [0, 1], the α-level set of μ
is de. 'e idea of a fuzzy set is a major breakthrough in
mathematical logic giving a better approximation than the
classical probability theory. However, in real-life problems,
membership is not the only option in all cases; there is the
chance of nonmembership to handle as well. For such cases,
Atanassov introduced the concept of the intuitionistic fuzzy
set (IFS). An intuitionistic fuzzy set (IFS) A over S is a triplet
(A, μ, ]), where μ, ]: S⟶ [0, 1] (called membership and
nonmembership functions). 'us, the IFS A can be written
as A � 〈x, μ(x), ](x)〉: x ∈ S  with 0≤ μ(x) + ](x)≤ 1.
“Less than or equal to” (≤ ) constitutes a natural partial
order on the closed interval [0, 1] and turns it into a lattice.
'e replacement of [0, 1] by any other lattice L gives us the
concept of L-fuzzy and L-intuitionistic fuzzy sets. A lattice
valued intuitionistic fuzzy set type-1 (LIFS-1) [6] is the set
(S, L, μ, ], N), where S is a non empty set; L is a lattice;
μ: S⟶ L and ]: S⟶ L are membership and nonmem-
bership functions; and N: L⟶ L is an involutive order
reversing unary operator on L such that μ(x)≤N(](x)) for
all x ∈ S. 'e replacement of unary operator N by the
linearization map ℓ: L⟶ [0, 1] satisfying
ℓ(μ(x)) + ℓ(](x)) ≤ 1 for all x ∈ S constitutes a lattice val-
ued intuitionistic fuzzy set type-2 (LIFS-2). A lattice valued
intuitionistic fuzzy set type-3 (LIFS-3) is the quintuplet
(S, L, μ, ], α), where S is a nonempty set; L is a bounded
lattice with top element T and bottom element B; μ: S⟶ L
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and ]: S⟶ L are membership and nonmembership
functions; and α: L⟶ [0, 1] is a lattice homomorphism
with α(μ(x)) + α(](x)) ≤ 1 for all x ∈ S. For p ∈ L, two level
sets in LIFS-3 are defined as:

μp � X ∈ S ∣ μ(x)≥p ; ]p � X ∈ S ∣ v(x)≥p . (1)

Two level functions generally called characteristics
functions μp and ]p are defined as:

μp(x) � 1⟺ μ(x)≥p, ]p(x) � 1⟺ ](x)≥p. (2)

Proposition 1. [6] Let S be a nonempty set and (S, L, μ, ], α)

be an LIFS-3. :en the following statements are true:

(i) Let L be a lattice with bottom element B. :en
μB � ]B � S.

(ii) If p≤ q, then μq⊆μp and ]q⊆]p.
(iii) If Z⊆ L, then ∧ μP|p ∈ Z  � μ∨ p|p∈Z{ } and
∧ ]P|p ∈ Z  � ]∨ p|p∈Z{ }.

Remark 1. 'e functions μ: S⟶ L and ]: S⟶ L define a
partitioning of L under the equivalence relation ∼ defined as
g ∼ h if and only if μg � μh and ]g � ]h.

For every g ∈ L, the equivalence class of g is
[g]∼ � h ∈ L|g ∼ h . As we know, the join (supremum) of a
set may or may not be an element of that set, but for these
classes ∨ [g] ∼ ∈ [g] ∼ .

3. Codes over LIFS-3

Let S � 1, 2, . . . , r{ } and SαLμ] � (S, L, μ, ], α) be an LIFS-3.
For p ∈ L, define Cp: S⟶ 0, 1{ } as:

Cp � μp ∧ ]p

� up ∧ vp

� a1, . . . , an( ∧ b1, . . . , bn( 

� a1 ∧ b1(  a2 ∧ b2(  . . . an ∧ bn( ,

(3)

where up and vp are the codewords—also called vectors—for
the element p ∈ L. 'e map Cp is called a binary block
codeword over SαLμ]. 'e LIFS-3 codewords inherit a partial
order from the lattice L in such a way that a1 . . . an ≤ b1 . . . bn

if and only if a1 ≥ b1, a2 ≥ b2, . . . , an ≥ bn in L. 'e number of
elements in S that are mapped onto p ∈ L under μ and ] are
called the degrees of up and vp denoted by s(up) and s(vp).
Moreover, the degree of cp is exactly equal to the sum of the
maxima of s(up) and s(vp). For a binary block code
C⊆ 0, 1{ }n, a nonempty set S, a lattice L and lattice homo-
morphism α: L⟶ [0, 1], the set SαLμ]C is an LIFS-3 if the
binary block code constructed on it is equal to C.

Example 2. Let us consider a nonempty set S � x, y, z  and
lattice L described in example 1. Define membership and
nonmembership functions as

μ �
x y z

a g e
 ] �

x y z

f d j
 . (4)

Clearly, for all s ∈ S, the lattice homomorphism α sat-
isfies 0≤ α(μ(s)) + α(](s))≤ 1. Now for a ∈ L, μa � 111 and
]a � 101 because a≤ μ(x), a≤ μ(y), a≤ μ(z) and a≤ ](x),
a≥ ](y), a≤ ](z). 'us, Ca � (1∧ 1)(1∧ 0)(1∧ 1) � 101.

Codewords corresponding to other elements of L can be
computed in a similar fashion and are presented in Table 1.

As s(ua) � 1 and s(va) � 0, the degree of a code word
ca⊆C is. s(ca) � max s(ua), s(va)  � max 1, 0{ } � 1.

Theorem 1. :e binary block code C⊆ 0, 1{ }n constitutes a
lattice valued intuitionistic fuzzy set type-3 if and only if code
C is closed under an intersection and the identity vector
11 . . . 1 belongs to C.

Proof. Let C⊆ 0, 1{ }n be a code and SαLμ]C be the corre-
sponding LIFS-3. As L is a lattice, the families μp: p ∈ L 

and ]p: p ∈ L  are closed under a set theoretical inter-
section, which implies that the code C is closed. Hence,
binary block code is closed under intersection. Moreover,
μB � S and ]B � S imply that 11 . . . 1 ∈ μB and 11 . . . 1 ∈ ]B

for the bottom element B ∈ L. 'us CB � μB ∧ ]B � 11 . . . 1
belongs to C. Conversely, suppose that C is closed under a
set theoretical intersection and non-zero codeword
11 . . . 1 ∈ C. Now we show that there is an LIFS-3 corre-
sponding to the code C. Consider S � 1, 2, . . . , n{ }. 'e
complements of the subsets of S obtained by the codewords
ofC in terms of characteristic functions constitute a lattice L

with inclusion as a partial order. Now for p ∈ L, Cp is a
codeword such that μp(i) � ]p(i) � 0 if and only if i ∈ p.'e
collection Cp: p ∈ L gives an LIFS-3 having cod for all
x ∈ S. □

3.1. Hamming Distance. 'e Hamming distance d(s, t)

defined in [23] is the number of places in which the two
vectors (codewords) s and t differ. In other words, d(s, t)

represents the component-wise difference of the two
codewords s and t. 'at is,

d(s, t) � i : si � ti 


. (5)

Consider a codeC.'en the distance d(C) of a codeC is
defined in [23] as the minimum distance between two

T
k

I

g

a

f
e

j

h

dc

B

Figure 1: Lattice L � B, T, a, c, d, e, f, g, h, i, j, k .
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distinct codewords in C. 'e number of non-zero com-
ponents of a codeword is known as its Hamming weight
denoted by ‖cp‖.

Proposition 2. For any code C, d(C)≥minp∈μ(s),](s) s(cp).

Proof. Let L be a lattice and C be a binary block code over
SαLμ]. 'en for any p ∈ L and codeword cp, the degree of cp is
equal to the maximum of s(μp) and s(]p). Ultimately if cp

differs at the ith coordinate, then it will differ at each jth

coordinate, which is an outcome of some x ∈ S mapped onto
p under μ and ]. 'us, the distance of codeC is at least equal
to s(cp). □

Proposition 3. For any cp ∈ C, the Hamming weight

cp

�����

�����≥max s cq  : q ∈ μ(S), ](S) and cp ≤ cq . (6)

Proof. Let SαLμ] be an LIFS-3. 'en uq(x) � vq(x) � 1 if
μ(x), ](x)≥ q⇒cq(x) � 1 if p � C(x)≥ q. Hence, cq(x) is
non-zero if both uq(x) and vq(x) are non-zero, implying
that the number of non-zero coordinate is equal to or greater
than the degree of s(cq). □

Proposition 4. Let cp, cq ∈ C, such that ?p≤ ?q. :en,
d(cp, cq) � ct∈Ts(ct) where

T � ct ∈ C : ct ≥ cp and ct ≤ cq . (7)

Proof. Let SαLμ] be an LIFS-3. Let up and uq be two vectors
corresponding to the membership function. For cp ≤ cq we
have up ≤ uq; this implies that the number of non-zero el-
ements in uq is not more than the number of non-zero
elements in up. Let t ∈ μ(S) such that ut ≥ vp and ut ≤ vq.
'en for each element x ∈ S which is mapped onto t, we
have up(x) � 1 and uq(x) � 0.

A similar argument for the nonmembership function
implies. vp(x) � 1 and vq(x) � 0.

Hence cp(x) � up(x)∧ vp(x) � 1 and.
cq(x) � uq(x)∧ vq(x) � 0.

As cp ≤ cq, for each x ∈ S there exist non-zero coordi-
nates in cq that belong to cp and are mapped onto t. □

Theorem 2. If cp and cq are two different codewords, then
d(cp, cq) � d(cp, cp∨ q) + d(cq, cp∨ q).

Proof. Suppose we have two vectors up and vp corre-
sponding to the membership and nonmembership functi in
this case p∨ q � q, and

d(cp, cq) � d(cp, cp∨ q) + d(cq, cp∨ q). Now let us consider
the case when two vectors up and uq are non-comparable.
'en any coordinate which is non-zero in up∨ q will be non-
zero in up and uq. A similar case exists for two vectors vp and
vq corresponding to the nonmembership function. Let m be
the coordinates at which two code words up and uq and vp

and vq differ, that is, uq(m) � 1 and up(m) � 0.

In addition, vq(m) � 1 and vp(m) � 0, imply
cq(m) � 1, cp(m) � 0.

Hence, cp and cq differ at m. If μ(m) � t, then.
ut ≥ uq and ut ≤ up.

If ](m) � t, then vt ≥ vq an d vt ≤ vp. Hence
ut ≤ up∨ q, up∨ q(m) � 0 and. vt ≤ vp∨ q, vp∨ q(m) � 0

Imply

cp∨ q(m) � 0. (8)

Hence cq and cp∨ q differ at the coordinate m. □

3.2. Linear Codes over LIFS-3. A linear (n, k) code is defined
in [23] is a k-dimensional subspace of a vector space 0, 1{ }n

under the binary operation ⊕ of componentwise addition
modulo 2.

Theorem 3. Let C be a linear (r, k) code satisfying the
conditions of :eorem 1. :en the lattice L of SαLμ] corre-
sponding to C is Boolean.

Proof. LetC be a linear (r, k) code satisfying the conditions
of 'eorem 1. 'en, corresponding to code C, we have an
LIFS-3, where L consists of all the elements which are the
complement of subsets of the set S. 'e lattice is distributive
and the elements 0 and 1 are in L. As in distributive lattice,
every element has a unique complement and r � r⊕ 11 . . . 1,
so this lattice is complemented, and hence it is a Boolean
lattice.

'e relation in Remark 2.4. is modified in the following
result. □

Theorem 4. If for μ: S⟶ L and ]: S⟶ L in SαLμ] we have
M � μ(S) and N � ](S), then for any pair of elements p,q in
Lp ∼ q if and only if Mp � Mq and Np � Nq.

Proof. For SαLμ], the relation ∼ defined by p ∼ q if and only
if μp � μq and ]p � ]q is an equivalence relation on L. As
μp � x ∈ S|μP � 1  � x ∈ S|μP ∈↑p  and
]p � x ∈ S|]P � 1  � x ∈ S|]P ∈↑p . We get that

Table 1: Codewords over LIFS-3.

μp ]p Cp � μp ∧ ]p μp ]p Cp � μp ∧ ]p μp ]p Cp � μp ∧ ]p

111 101 101 010 101 000 000 001 000
011 101 001 010 001 000 000 000 000
011 111 011 000 001 000 111 111 111
011 101 001 000 000 000 000 000 000
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p ∼ q⇔μp � μq ,

]p � ]q

⇔ x ∈ S|μ(x) ∈↑p  � x ∈ S|μ(x) ∈↑q ,

x ∈ S|](x) ∈↑p  � x ∈ S|](x) ∈↑q ,

⇔↑p∩M � ↑q∩M

↑p∩N � ↑q∩N,

⇔Mp � Mq,

Np � Nq.

(9)

'us for g, h ∈ L, g≠ h implies↑g∩M≠ ↑h∩M turns
out to be the necessary and sufficient condition for an
equivalence class to be a singleton. □

Theorem 5. :e sets μ(S) and ](S) consists of all coatoms of
the Boolean lattice L of lattice valued intuitionistic fuzzy set
type-3 SαLμ] constituted by a linear (r, k) code.

Proof. Let SαLμ] be an LIFS-3 corresponding to the linear
code C. From 'eorem 4. if x≠y ∈ L, then.

[x)∩ μ(S)≠ [y)∩ μ(S),

[x)∩ ](S)≠ [y)∩ ](S).
(10)

Hence, the top element 1L of the lattice L does not belong
to μ(S) and ](S) otherwise, the code C does not contain the
codeword 00 . . . 0, which contradicts the linearity of the
code. Now on the contrary, suppose that one co-atom, say, y,
is not present in μ(S) and ](S); then

[y)∩ μ(S) � [1)∩ μ(S),

[y)∩ ](S) � [1)∩ ](S).
(11)

'us |C|< |L|, which leads to a contradiction. In fact,
each codeword that corresponds to a co-atom has only non-
zero coordinates, and forms a basis for the code C. Let t be
an element in μ(S) and ](S) but not a co-atom. 'en each
codeword corresponding to t has a zero coordinate. If ct is a
codeword corresponding to t, then it is linearly independent
of all those elements which are in the base that are not true.
Hence μ(S) and ](S) will consist of all co-atoms of a Boolean
lattice. □

Theorem 6. :e linear (r, k)-codeC corresponds to an LIFS-
3 if and only if C is closed under intersection and for each
j ∈ 1, . . . , r{ } there is a codeword inC having a non-zero j th
coordinate.

Proof. Let SαLμ] be the LIFS-3 corresponding to C. 'en by
'eorem 3, C is closed under an intersection, and non-zero
vector 11 . . . 1 belongs to the families μp and ]p for an el-
ement p ∈ L. As codeword cp ∈ C is a meeting of these two
families, it is a non-zero vector contained in C. Hence,
satisfies the required condition. Conversely, suppose C is a
linear (r, k) code satisfying the given conditions. 'e

closeness of C under intersection ensures the existence of
11 . . . 1 in C, which implies the constitution of LIFS-3. □

Theorem 7. Let SαLμ] be an LIFS-3 over a Boolean lattice L. If
μ(S) and ](S) include the maximum element of the set of all
co-atoms of L, then the code constructed on SαLμ] is linear.

Proof. Consider SαLμ] over a Boolean lattice L. 'e code-
words corresponding to the maximum elements of co-atoms
of a boolean lattice are linearly independent and thus can be
extended to a basis that will be used to generate other
codewords from the former codewords. If, corresponding to
amaximum number of co-atoms, we have n codewords, then
the codeC consists of exactly 2n codewords.'usC is closed
under the binary operation ⊕, and hence it is linear. □

Example 3. Consider the lattice L � 0, 1, a, b, c, d, e, f  with
partial order presented in Figure 2.

Construct an LIFS-3 on S � 1, 2{ } by defining μ and ] as

μ �
1 2
e f

  and ] �
1 2
f d

 .'en a linear code is obtained

as shown in Table 2.

Theorem 8. LetC be a linear code over where a set T consists
of maximum elements of the classes of co-atoms of Boolean
lattice.

Proof. For the linear code C over SαLμ], the sets μ(S) and
](S) consist of all the maximum elements of co-atoms.
Hence μ(S) � ](S) � T and by Proposition 2.

d(C)≥ min
p∈μ(s),](s)

s cp . (12)

As for s(up) and s(vp), this distance is equal to the
minimum value on the codeword corresponding to the class
of the co-atoms with minimal degree, and thus s(cp) is also
attained its minimum. □

4. Application

Proteins are the most diverse class of biomolecules, both
structurally and functionally, and they carry out many tasks.
'ey are polymers of amino acids which are attached via
peptide bonds and arranged in the form of long polypeptide
chains [24]. Proteins have an extremely wide range of dif-
ferent functions, and they do not act by themselves. 'ey
usually interact with other proteins or macromolecules to
form fully functional complexes, and these protein com-
plexes are responsible for carrying out many different
functions [25]. Nucleic acids are giant biomolecules made of
monomers called nucleotides. Nucleic acids refer to the
genetic material present in cells that transfer all the he-
reditary and transmissible information from parents to
offspring. Deoxyribonucleic acid (DNA) and ribonucleic
acid (RNA) are the two types of nucleic acids.'e key task of
nucleic acids is to use their stored genetic information for the
synthesis of proteins via processes commonly known as
translation and transcription. DNA is transcribed to RNA
and then translated into a protein. 'e translation
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machinery includes tRNA, mRNA and ribosomes. A ribo-
somal subunit attaches to an mRNA molecule; then, tRNA
molecules that have three complementary bases in their
anticodon regions recognize and bind to specific codon
sequences on the mRNA molecule. 'e ribosome moves
along the mRNA, matching three base pairs at a time and
adding the amino acids to the polypeptide chain [24, 25].

All living cells use a genetic code to translate the in-
formation encoded within the genetic material (DNA and
RNA) into proteins. 'e genetic code describes the set of
trios of nucleotides which specify particular amino acids
(three nucleotides to one amino acid). 'ere are twenty
amino acids typically used to build proteins. As there are
four bases, there are 64 possible base triplets [26]. A genetic
code is a list of codons, and a codon is a consecutive series of
three nucleotides. A codon set is an extension of the four
letter-alphabet of DNA. 'ere are four DNA bases, adenine
(A), guanine (G), cytosine (C) and thymine (T), and thymine
is replaced by uracil in RNA. 'e base guanine is the
complementary base of cytosine, and adenine is that of
thymine. Each codon corresponds to a specific type of amino
acid; for example, the sequence of nucleotides “GUU”
corresponds to a specific amino acid known as valine [27].
Two or more different codons can correspond to the same
amino acid, making the genetic code degenerate, and such
codons are known as synonymous codons. In a coding
sequence, the synonymous codons are not used with equal
frequencies in many organisms. 'is phenomenon is called
synonymous codon usage bias (SCUB), and this shows that
during the translation of genes to proteins, there is non-
uniform usage of synonymous codons encoding the same
amino acid; e.g., UGC and UGU are two different sequences
corresponding to the same amino acid, cysteine [28].

'e algebraic structures of the genetic code are essential
to understanding the information and applications which
are stored within the code. 'ere are various conventional
mathematical models of the genetic code, which include
binary representations of the DNA bases. 'e representa-
tions of the four DNA bases by Jimenez-Montano et al. [29]
are: ?�00, G � 01, U � 10 and C � 11. Stambuk [30] pre-
sented the universal metric properties of the human genetic
code and described it by using the nucleotide base repre-
sentation on the square having U or T � 00, C � 01, G � 10
and A � 11. A model for topological coding of proteins was
proposed by Karasev and Stefanov [31], using: C � 00,
U � 01, G � 10 and A � 11. Sánchez et al. [32] described the
Boolean lattice of the genetic code and showed that the
Boolean lattice of the genetic code can be obtained as the
third power of the initial lattice. He used two types of lattices,
the primal (B(X), sup, inf) and the dual (B(X), inf , sup),
with X � U, C, G, A{ }. 'e representations of the four bases
given to primal lattice are: G � 00, A � 01, U � 10 and
C � 11. Similarly, for the dual lattice: C � 00, U � 01, A � 10
and G � 11. AHasse diagram of the genetic Boolean lattice is
presented in the following Figure. It shows that the codons
with uracil as a second base encode hydrophobic amino
acids, and the codons with adenine as the second base
encode hydrophilic amino acids. Additionally, the Ham-
ming distances between pairs of codons reveal distinct
hydrophobicities among their encoded amino acids. If XYZ

and X1Y1Z1 are two codons, then XYZ≤X1Y1Z1 only if
X≤X1, Y≤Y1, Z≤Z1, and we can say that the codons are
comparable.

In recent years, a paradigm shift for “new biology” has
taken place as a direct result of an expanded awareness of the
fuzziness of the processes that occur in biological systems.
'ere is a lot of evidence to suggest that many biological
processes are not deterministic but rather include an in-
herent element of uncertainty. Many studies and observa-
tions have shown that fuzzy effects are a very important part
of how living things develop and work in their physiology
and evolution. Both fuzzy set theory and fuzzy logic, along
with many other approaches to computational intelligence,
have the potential to solve a numerous challenges that arise
in the field of bioinformatics. An analysis of protein se-
quences can be performed using fuzzy set theory and fuzzy
logic. A method was devised to predict the solvent acces-
sibility of each amino acid in a protein sequence by using a
k-nearest neighbour approach [33]. In addition, the FKNN
algorithm has been used to predict a protein’s subcellular
location [34], which refers to the region of the cell in which
the protein is found (including extracellular, cytoplasm,
nucleus). In this study, a class membership function was
used in accordance with the dipeptide composition of a
protein sequence. Fuzzy logic was used in conjunction with
neural networks to describe how protein motifs can change
[35].

An information-theoretic-based fuzzy inference engine
was created to predict coding areas, or the sequence seg-
ments that correspond to proteins, for genomic sequences
(DNA) [36]. Polynucleotides (words made up of the letters
A, T, C, and G) were also employed by researchers as fuzzy

1

ef

a

b

c

0

d

Figure 2: Lattice L � 0, 1, a, b, c, d, e, f .

Table 2: Linear code over LIFS-3.

μp ]p C μp ]p C μp ]p C μp ]p C

00 00 00 10 10 10 01 00 00 01 01 01
10 10 10 00 11 00 11 01 01 11 11 11
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sets, and they developed a method for calculating the dis-
tances between them as points in a hypercube [37, 38]. 'e
procedure served as a tool for comparing various genetic
sequences. Additionally, operons, an important structure in
bacterial genomes, were predicted using fuzzy scoring
functions based on various biological information (e.g.,
genome sequences, functional annotations, and conserva-
tion across multiple genomes) [39]. An operon is a closely
related group of neighbouring genes on a DNA sequence.

Ordinary fuzzy sets are used in the literature to model
numerous bioinformatics-related problems. In a conven-
tional fuzzy set, the degree of belongingness to the set under
discussion is indicated by the membership function, which

assigns a number from the unit interval to each element of
the discourse universe. A LIFS-3, on the other hand, is
distinguished by two functions that, express the degree of
belongingness and the degree of non-belongingness. 'is
concept, which is a natural generalization of an ordinary
fuzzy set, appears to be helpful in simulating a variety of real-
world scenarios. 'us, the idea of LIFS-3 can be used to
study biological problems in a more significant way.

In this paper we investigate the genetic code further by
considering a lattice valued intuitionistic fuzzy set. We
consider S to be the set of 20 amino acids:
x1 � Phenylalanine, x2 � Leucine, x3 � Isoleucine,
x4 � Methionine, x5 � Valine, x6 � Serine, x7 � Proline,

Table 3: Amino acids and RNA codons.

Amino acid RNA codons Abb Amino acid RNA codons Abb
Isoleucine AUU, AUC, AUA I Phenylalanine UUU, UUC F
Valine GUA, GUC, GUG, GUU V Lysine AAA, AAG K
Tryptophan UGG W Methionine AUG M
Alanine GCA, GCC, GCG, GCU A Glycine GGA, GGC, GGG, GGU G
Cysteine UGC, UGU C Tyrosine UAC, UAU Y
Proline CCA, CCC, CCG, CCU P 'reonine ACA, ACC, ACG, ACU T
Serine UCA, UCC, UCG, UCU, AGC, AGU S Histidine CAC, CAU H
Glutamic acid GAA, GAG E Asparagine AAC, AAU N
Glutamine CAA, CAG Q Aspartic acid GAC, GAU D
Leucine CUA, CUC, CUG, CUU, UUA, UUG L Arginine CGA, CGC, CGG, CGU, AGA, AGG R

GUG

UUG

UUU UUA

UUC CUU CUA AUC UCU

CUC UCC CCU

CCC

CCA ACC CAC

UCA CCG CGC GCC ACU ACAACA UAC CAU CAA AAC

AUU CUG AUA GUC GCU UGC CGU UCG AGC GCA ACG CGA CAG UAU GAC UAA AAU AAA

GUU GUA AUG UGU UGA CGG GCG GGC AGU AGA UAG GAU GAA AAG

GGG

UGG GGU GGA AGG GAG

Second base U
Second base A

Second base C
Second base G

Figure 3: 'e Boolean lattice of 64 codons.
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Table 4: Genetic codes over LIFS-3.

p μp ]p Cp � μp ∧ ]p

CCC 11111111111111111111 11111111111111111111 11111111111111111111
CUC 11111000000000001111 11111100000000001111 11111000000000001111
UCC 11001100110000111111 11001100110000111101 11001100110000111101
CCU 10111111111010101111 01010000000101010100 00010000000000000101
CCA 01010000000101010110 01010000000101010110 01010000000101010110
ACC 00111001100011110011 00111001100011110011 00111001100011110011
CAC 00000000011111111111 00000000011111111111 00000000011111111111
UUC 11001000000000001101 10010000000000001101 11001000000000001101
CUU 10111000000000001101 01010000000000000111 00010000000000000111
CUA 01010000000000000110 01010000000000000110 01010000000000000110
AUC 00111000000000000011 00111000000000000011 00111000000000000011
UCU 10001100110000101101 01000000000000010101 00000000000000000101
UCA 01000000000000010100 00100000000000010100 01000000000000000100
CCG 00010000000000000100 01010100000100010110 00010000000000010110
CGC 00000000000000000111 00000000000000001111 00000000000000000111
GCC 00001000100000110001 00001000100000110001 00001000100000110001
ACU 00111001100010100001 00010000000001010011 00010000000000000001
ACA 00010000000001010010 00100000000011101010 00010000000001010010
UAC 00000000010000111101 00000000010000111111 00000000110000111101
CAU 00000000000101010111 00000000001000101011 00000000000000000101
CAA 00000000001010110110 00000000000101010110 00000000000101010110
AAC 00000000000011110011 00000000000011110011 00000000000011110011
UUU 10000110000000001101 01000000000000000100 00000000000000000100
UUA 01000000000000000100 01000000000000000100 01100000000000000100
AUU 00111000000000100001 00010000000000000010 00010000000000000001
CUG 00010000000000000100 01010000000000000110 00010000000000000100
AUA 00010000000000000010 00010000000000000010 00010000000000000010
GUC 00000000000000110001 00000000000000110001 00000000000000110001
GCU 00001000100000010001 00000000000000010000 00000000000000000000
UGC 00000000000000001111 00000000000000001111 00000000000000001111
CGU 00000000000000000100 00000000000000000100 00000000000000000100
UCG 00000000000000000100 00000000000000000100 00000000000000000100
AGC 00000000000000000011 00000000000000000011 00000000000000000011
GCA 00000000000000010000 00000000000000010000 00000000000000010000
ACG 00010000000000000000 00010000000001010010 00010000000000000000
CGA 00000000000000000110 00000000000000000110 00000000000000000110
CAG 00000000000000000100 00000000000100010110 00000000000000000100
UAU 00000000010000101101 00000000000000000101 00000000000000000101
GAC 00000000000000110001 00000000000000110001 00000000000000110001
UAA 00000000000000010100 00000000000000010100 00000000000000010100
AAU 00000000000010100001 00000000000000010010 00000000000000000000
AAA 00000000000001010010 00000000000001010010 00000000000001010010
UUG 00000000000000000100 01000000000000001100 00000000000000000100
GUU 00001000000000000001 00000000000000000000 00000000000000000000
GUA 00000000000000000000 00000000000000000000 00000000000000000000
AUG 00010000000000000000 00010000000000000000 00010000000000000000
UGU 00000000000000001101 00000000000000000101 00000000000000000100
UGA 00000000000000000100 00000000000000000100 00000000000000000100
CGG 00000000000000000100 00000000000000000110 00000000000000000100
GCG 00000000000000000000 00000000000000010000 00000000000000000000
GGC 00000000000000000001 00000000000000000001 00000000000000000001
AGU 00000000000000000001 00000000000000000010 00000000000000000000
AGA 00000000000000000010 00000000000000000010 00000000000000000010
UAG 00000000000000000100 00000000000000010100 00000000000000000100
GAU 00000000000000100001 00000000000000010000 00000000000000000000
GAA 00000000000000110000 00000000000000010000 00000000000000010000
AAG 00000000000000000000 00000000000000010010 00000000000000000000
GUG 00000000000000000000 00000000000000000000 00000000000000000000
UGG 00000000000000000100 00000000000000000100 00000000000000000100
GGU 00000000000000000001 00000000000000000000 00000000000000000000
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x81 � Threonine, x9 � Alanine, x10 � Tyrosine,
x11 � Histidine, x12 � Glutamine, x13 � Aspartic,
x14 � Lysine, x15 � Asparagine, x16 � Glutamic,
x17 � Cysteine, x18 � Tryptophan, x19 � Arginine,
x20 � Glycine. 'e codons related to amino acids are listed
in Table 3.

Let L be the lattice (see Figure 3.) consisting of 64 co-
dons. As two or more codons can encode the same amino
acid e.g., UUU and UUC encode the same amino acid,
phenylalanine we put μ(x1) � UUU and ](x1) � UUC,
where x1 �phenylalanine. Similarly, we can assign a codon
for every other amino acid, and we ha where

a1 � UUU a2 � UUA a3 � AUU a4 � AUG a5 � GUU

a6 � UCU a7 � CCU a8 � ACU a9 � GCU a10 � UAC

a11 � CAU a12 � CAA a13 � AAU a14 � AAA a15 � GAU

a16 � GAA a17 � UGU a18 � UGG a19 � AGA a20 � GGU
b1 � UUC b2 � UUG b3 � AUC b4 � AUG b5 � GUC

b6 � UCC b7 � CCC b8 � ACC b9 � GCU b10 � UAC

b11 � CAU b12 � CAG b13 � AAC b14 � AAG b15 � GAC

b16 � GAG b17 � UGC b18 � UGG b19 � AGG b20 � GGC

(13)

Consider a representation of four bases as C � 00,
U � 01, A � 10 and G � 11. Let p � CCC be an element of a
lattice L. 'en, μCCC(x1) � μ(x1)≥CCC. Now, by using
definition of a level function, μCCC(x1) � 1. Similarly,
μCCC(x2), . . ., μCCC(x20) � 1. 'us

μCCC � 1111111111111111111 is a codeword relative to the
codon CCC. In similar fashion, the remaining codewords
corresponding to the other codewords can be found, which
are shown in Table 4.

Hence, we have a binary code corresponding to 64
codons having length 20. Furthermore, the difference

Table 5: Hamming distance between pairs of Amino acids.

Amino acid G W C R S V L F M I E D Y K N Q H A T p

G 0 1.5 2.8 1.8 3.2 1.4 3.8 5.2 1.7 2.5 1 2.9 2.5 2 3 3.5 6 2.4 4.5 8.6
W 1.5 0 1 0.6 2.7 3 2.8 5 2 4 2 2.5 2 2.5 4 2 5.5 2.5 5.5 8.2
C 2.8 1 0 1.2 2.8 2.3 2.8 5.8 3 3.7 3 3 2 3.6 4 2.5 5 3.1 5.4 8
R 1.8 0.6 1.2 0 3.1 2.5 2.8 4.8 2.5 3.5 2 2.8 3 2.5 4.3 2.3 5.5 2.9 5.3 7.9
S 3.2 2.7 2.8 3.1 0 3.8 3.0 5.3 4.0 4.2 3.3 2.9 3.3 4 4.6 3.6 6.5 3.8 5.7 8.5
V 1.4 3 2.3 2.5 3.8 0 4.3 6.2 2 3.7 1.2 1.8 2.8 2.2 3 3.6 6.2 1.6 4.6 8
L 3.8 2.8 2.8 2.8 3.0 6.2 0 6.5 3.2 3.9 4 4.8 3.5 4.8 5.9 4.3 7 4.3 6.3 7.8
F 5.2 5 5.8 4.8 5.3 6.2 6.5 0 7 6.8 6 6 5 5.3 5 5 8 5.8 8.3 8.5
M 1.7 4 3 2.5 4 2 3.2 7 0 2 1.5 2.5 4 2.5 4 4 7.5 2 3.5 8.7
I 2.5 4 3.7 3.5 4.2 3.7 3.9 6.8 2 0 3 4 4.5 3.8 6.3 5.3 7.3 3.6 3.8 4.5
E 1 2 3 2 3.3 1.2 4 6 1.5 3 0 2 3 2 3.5 3.5 7.3 2.2 5.1 8.3
D 2.9 2.5 3 2.8 2.9 1.8 4.8 6 2.5 4 2 0 2.5 2.8 3.3 3.5 6 2 4.6 8.1
Y 2.5 2 2 3 3.3 2.8 3.5 5 4 4.5 3 2.5 0 4 4.2 3.5 4.5 3.6 5.4 8.2
K 2 2.5 3.6 2.5 4 2.2 4.8 5.3 2.5 3.8 2 2.8 4 0 3 4.5 5.3 2.6 5.1 8.4
N 3 4 4 4.3 4.6 3 5.9 5 4 6.3 3.5 3.3 4.2 3 0 4.3 5.5 4.3 4.8 8.6
Q 3.5 2 2.5 2.3 3.6 3.6 4.3 5 4 5.3 3.5 3.5 3.5 4.5 4.3 0 5.5 5 5.8 7.2
H 6 5.5 5 5.5 6.5 6.2 7 8 7.5 7.3 7.3 6 4.5 5.3 5.5 5.5 0 6 8.1 7.2
A 2.4 2.5 3.1 2.9 3.8 1.6 4.3 5.8 2 7.3 2.2 2 3.6 2.6 4.3 5 6 0 4.7 4.5
T 4.5 5.5 5.4 5.3 5.7 4.6 6.3 8.3 3.5 3.8 5.1 4.6 5.4 5.1 4.8 5.8 8.1 4.7 0 4.5
P 8.6 8.2 8 7.9 8.5 9 7.8 8.5 8.7 4.5 8.3 8.1 8.2 8.4 8.6 7.2 4.5 7.2 8.9 0

Table 4: Continued.

p μp ]p Cp � μp ∧ ]p

GGA 00000000000000000000 00000000000000000000 00000000000000000000
AGG 00000000000000000100 00000000000000000100 00000000000000000100
GAG 00000000000000000000 00000000000000010000 00000000000000000000
GGG 00000000000000000000 00000000000000000000 00000000000000000000
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between two codewords can be calculated by using well
known Hamming distance. 'at is,

dH CCUC,CUCC(  � dH(11111000000000001111, 11001100110000111101) � 8. (14)

If we consider only membership values μp from the
above table, then it is an L-fuzzy code [28]. 'e distances
between different amino acids pairs can be computed in
terms of mean distances between their respective codons.
For instance, the amino acids glycine (G) and methionine
(M) are encoded by the bases GGA,GGC,GGG,GGU and
AUG. 'us, the distance between G and M means the
distances between the codewords (CGGA, CGGC, CGGU,
CCUG and CAUG) relative to their codons. 'e distances
between all the 20 pairs of amino acids are shown in Table 5.

'e Hamming distance between two codons reflects the
variations among the physico-chemical properties of the
relative amino acids. Amino acids can be categorized by two
types, hydrophobic amino acids (codons having U in second
base) and hydrophilic amino acids (codons having A in the
second base). Consider the collections of codewords CXAZ,
CXUZ, CXAZ′ and CXUZ′ , where X, Y, Z ∈ A, C, G, U{ } over
LIFS-3 and L-fuzzy set, respectively. Table 6 shows the
Hamming distances between these sets.

It can be seen that the distances between amino acids
with larger differences in physico-chemical properties are
larger in an LIFS-3 environment than a L-fuzzy set.

5. Conclusion

'e authors’ main focus was to construct codes over lattice
valued intuitionistic fuzzy set type-3. Binary and binary
Linear codes are commonly defined in terms of subspaces of
Zn

2. Different attempts were made to incorporate the im-
precisions in data into the coding process by involving
theoretical fuzzy set concepts. Using membership and
nonmembership functions, codes were designed over LIFS-
3. Distances of code were examined in relation with the
degrees of the codewords. It was concluded that binary block
and binary linear codes can be constructed over LIFS-3, and
conversely, from any given binary block code, we can for-
mulate an LIFS-3. Code over a lattice valued intuitionistic
fuzzy set type-3 was constructed by considering the lattice of
a 64-codon system, and we found that the physico-chemical
differences can be interpreted by computing the Hamming
distances between codewords. In the case of LIFS-3, the
Hamming distances between codewords were greater than
the Hamming distances between codewords in L-fuzzy sets,
which indicates the efficiency of the LIFS-3 compared to the

L-fuzzy set. In the future, a variety of extensions will be
possible. One of the major directions of this work will be to
study the already existing codes, such as Hamming code and
Hadamard code, by introducing the concept of LIFS-3. 'is
may be done by encoding the messages by using the de-
composition of LIFS-3, which gives the family of charac-
teristic functions. Furthermore, the developed application
could be used for the further study of the structure of genetic
code. As found in the literature, the variations among dif-
ferent physio-chemical properties of amino acids are de-
scribed by the Hamming distances between the codons. In
LIFS-3 codes, this Hamming distance is related to the de-
grees of code words (or classes), so we can extend it by
incorporating these degrees along with the Hamming dis-
tances. Moreover, there are several practically useful gen-
eralizations of fuzzy sets including the picture fuzzy sets [40],
Pythagorean fuzzy sets [41], hesitant fuzzy sets [42] and
neutrosophic sets [43] where the replacement of the interval
[0, 1] by lattices L can play a vital role in the development
and application of fuzzy coding theory.
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