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Anxiety prevails in financial markets. In accordance with psychological research, anxious traders’ hesitant behavior differs from
the frequently dissected herding and speculative behaviors. /is paper examines the interactions between agent anxiety and price
inertia in an artificial financial market. We incorporate an evolutionary mechanism to analyze the strategic benefit of the
boundedly rational anxious agent. According to our simulation results, deviations in asset prices from their fundamentals increase
with the behavioral hesitation of the anxious agent. /e investment rigidity from the anxious agent’s lack of confidence mitigates
the possibility of price reversal. Moreover, the average strategic benefit of the anxious agent is close to zero. To ensure the reliability
of our finding, we further include the irrationality of the anxious agent in our evolutionary setting. Such an endeavor again
demonstrates that the strategic benefit of the fundamentalist agent is inferior to that of the anxious agent. Since the anxious agent
is characterized by an intolerance for uncertainty, we also investigate the artificial market under various degrees of risk aversion.
We perceive that it is less possible for price reversal to emerge when considering higher levels of hesitation. /e behavioral
hesitation of the anxious agent enables the agent to cleverly evade the risk raised by the speculator.

1. Introduction

Anxiety is a prevalent psychological phenomenon, resulting
from physical illnesses, age, investing pressures, and so on.
Physical illnesses have been documented to give rise to
mental health problems. In relation to such an argument,
what is most distinct is the anxiety referred to by Santo-
mauro et al. [1] and Taquet et al. [2]. In addition to physical
illnesses, age affects anxiety as well. To be specific, Brenes [3]
and Dyck and Smither [4] have perceived that the elderly
exhibits milder anxiety compared to the young. In a similar
vein, Weiss Wiesel et al. [5] have found that anxiety at-
tenuates on account of the increase in age. Furthermore,
when agents participate in crucial and costly investments,
they are also prone to anxiety (e.g., [6–8]). Furthermore,
based on a survey involving 88,611 persons in Henan
province, China, Li et al. [9] have indicated that 12.01% of
persons aged 18 to 30 are affected by anxiety. Moreover,
anxiety prevails among 12.5% of persons aged 30 to 40. Such

a prevalence comes into being among 12.13% of those aged
40 to 50 and 9.52% of the elderly aged 60 to 100.

Research on anxiety can be traced back, at least, to
Bellack and Lombardo [10], who classified anxiety into two
categories, namely, objective anxiety and neurotic anxiety.
To be precise, objective anxiety emanates from the response
to realistic threats. In addition, the response to internal
conflict without any underlying basis enables neurotic
anxiety to take shape.When it comes to the origin of anxiety,
Pereira et al. [11] deem that repeated exposure to negative
events will certainly lead to anxiety. In a similar vein, Roberts
[12] and Charles and Carstensen [13] clarify that adverse
events can induce the emergence of anxiety.

/e emergence of anxiety elicits a battery of agents’
behavioral responses. In relation to this statement, the be-
havioral hesitation and decision rigidity of anxious agents
are obvious. Such anxious agents are unable to adjust their
decisions quickly and immediately, which is in a sharp
contrast to herding and speculative agents (e.g., [14–16]). In
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more detail, Holaway et al. [17] provide evidence that agents
will be unable to solve problems and cope with threatening
situations when they embody severe anxiety. As a result,
agents tend to engage in safety behaviors and are unwilling
to change their decisions (e.g., [18, 19]).

Similarly, Lorian and Grisham [20] perceive that those
suffering from anxiety are characterized by milder risk-
taking behaviors than their nonanxious counterparts. Put
differently, those suffering from anxiety are more risk-
averse. Furthermore, Amstadter [21] verifies that anxiety can
alleviate the attentional resources of agents, thereby in-
creasing the difficulties faced by them in coming up with
adaptive responses. Moreover, existing agent-based models
of sentiment mainly draw attention to the formation of
sentiment, the tone of sentiment, the contagion of senti-
ment, and the variation in sentiment (e.g., [22–27]). Such
extant agent-based modeling research has not involved
anxiety in modeling the agent’s beliefs and behavior.
Consequently, it is indispensable to interpret the impact of
anxiety on belief and behavior.

Apart from what has been mentioned above, there are
two commonly accepted viewpoints concerning the origin of
anxiety. To be more specific, Carleton et al. [28] and Boelen
and Reijntjes [29] suggest that anxiety by and large emanates
from an intolerance for uncertainty and the distress toler-
ance of those suffering from it. To be precise, despite the
probability of occurrence, the intolerance for uncertainty
reflects a tendency of sufferers to regard the uncertainty as
unacceptable [30]. Moreover, Laposa et al. [31] and Mitchell
et al. [32] have emphasized that distress tolerance refers to
the ability of those suffering from anxiety to resist negative
sentiment. In compliance with such conceptual statements,
the intolerance for uncertainty is positively correlated with
anxiety, while anxiety is negatively correlated with distress
tolerance.

Motivated by research in psychology and agent-based
modeling, this paper proposes and develops an artificial
market that is populated by both anxious and fundamen-
talist agents. In our model, anxious and fundamentalist
agents have their beliefs regarding the expectations and
variances for price. Furnished with agent beliefs, we follow
Chen et al. [33] and Hommes [34] to determine the agents’
demands using such beliefs and their risk aversion. In ad-
dition, inspired by Zhu et al. [35] and Chiarella and He [36],
the price of an asset is derived from the excess demand in the
agent-based artificial market.

Due to the uncertainty about the future returns of
changing strategies, the anxious agents will tend to exhibit
behavior that is characterized by searching for safety, so that
it is difficult for them to make adjustments to their decisions.
As a result, the anxious agent exhibits a delayed reaction or a
underreaction to new information (e.g., [37–39].

However, such reactions to information indicate that the
past price trend of the asset is maintained and further ac-
tivates price continuation and inertia (e.g., [40, 41]).
/erefore, in the spirit of Jegadeesh and Titman [42], we
design momentum strength to digest the impact of the
amount of anxiety on price inertia. We dissect interactions
between anxiety and deviations in the asset price from its

fundamentals. Comparisons are drawn between the re-
spective performances of the anxious agent and the fun-
damentalist agent.

Research into the psychological aspects provides con-
flicting evidence as to whether the anxious agent is rational
or irrational (e.g., [43, 44]. /erefore, in the agent evolutions
of our agent-based market, the agent is assumed to be ra-
tional and evolve by referring to self-benefit. Such evolutions
are performed using the mechanism provided by Hommes
[34]. In addition, we further modify such a mechanism to
echo the irrationality of the anxious agent. To be precise, the
anxious agent evolves unless the relative benefit of the
fundamentalist agent is higher than an upper bound.
Otherwise, the anxious agent sticks to the existing strategy
even if the fundamentalist agent has already exhibited su-
perior performance.

/is research contributes to the literature in three major
ways. First, extant studies mainly draw attention to the
impact of disposable panic from traders in the stock market
(e.g., [45–47]). However, few papers have mainly concen-
trated on the influence of continuous panic and intrinsic
anxiety from traders in the stock market. Hence, compared
to such current endeavors in relation to panic, what we strive
to settle will extend the boundary with regard to this line of
research based on stochastic simulations using an agent-
based model. Second, looking back at the existing studies on
the artificial stock market, it is found that most of them enlist
the fundamentalist agent and the chartist agent, for instance,
as in Krichene and El-Aroui [48], Franke [49], Alfi et al. [50],
and Alfarano et al. [51]. Based on the fact that anxiety already
exists, we design the anxious agent and incorporate such an
agent in the agent-based market. As a consequence, this
paper is designed in such a way that it expands the class of
agents in the field of agent-based modeling research.

/ird, in recent years, the bulk of finance research has
been continuously devoted to price inertia and reversal, such
as the studies by Hung et al. [52], Luo et al. [53], Ali and
Hirshleifer [54], and Atilgan et al. [55]. To be specific, they
inspect price inertia and reversal in terms of investor at-
tention, investor overconfidence, analyst coverage, investor
underreaction, and so on. However, these studies have not
exploited anxiety to explore the associated mystery of these
two phenomena. /erefore, armed with stochastic simula-
tions, we further dissect the effect of anxiety from the
anxious agent in relation to price inertia and reversal. Our
analysis also provides experimental explanations for the
emergence of inertia and reversal in the real market (e.g.,
[56–58]). Actually, price inertia and reversal are vital in-
dicators for identifying the market volatility (e.g., [59, 60]).
When an asset gives rise to price inertia, the price is not
prone to extreme volatility. By contrast, the volatility is apt to
emerge when there is salient risk associated with price
reversal.

Following this Introduction, which focuses on the pa-
per’s motivations and contributions, in the next section, we
present a review of related agent-based modeling literature.
In Section 3, the agent-based artificial market, which is
populated by both fundamentalist and anxious agents, is
established. In Sections 4 and 5, we perform simulations as
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well as digest anxious agents’ rationality and irrationality.
Moreover, robustness checks come into being in Section 6.
In the final section, we provide our conclusions.

2. Literature Review

Existing agent-based models are by and large populated by
the fundamentalist agent and the chartist agent. Armed with
these two strands of agents, Hommes and Vroegop [61] posit
that the trend chasing behavior of chartist agents destabilizes
markets, resulting in unpredictable price bubbles and crises.
Likewise, Hommes and Veld [62] and Hommes et al. [63]
also perceive that the trend chasing behavior is a prominent
booster of booms and busts in asset prices. Moreover,
Hommes [64] provides evidence that price bubbles and
crashes actually originate from shocks to the fundamental
information. /e behavioral switching between these two
groups of agents magnifies such bubbles and crashes. Dif-
fering from these two types of agents, the anxious agents
cannot adjust their investments in a timely manner. It is less
possible for anxious agents to switch their behavioral modes.
Consequently, in a similar vein, we also seek to determine
whether anxious agents destabilize the market.

Anxious agents are generally unlikely to imitate the other
agents on account of their behavioral hesitation and decision
rigidity. Such properties are in a sharp contrast with herding
behavior. Extant agent-based modeling research on herding
behavior endeavors to probe its impact on the volatility, such
as Lee and Lee [14], Di Guilmi et al. [65], and Yamamoto
[16]. In actual fact, they have documented that herding
behavior boosts the market volatility.

To be more specific, Lee and Lee [14] demonstrate that
the herding behavior of irrational agents will promote high
market volatility. However, when the market proportion of
herding agents reaches 3%, such agents obtain considerably
positive returns. Likewise, Di Guilmi et al. [65] also posit that
the more intensive herding behavior increases drastic
market volatility. In addition, Yamamoto [16] perceives that
the volatility tends to disappear when agents have limited
information to herd. Since anxious agents’ behavioral hes-
itation differs quite significantly from herding behaviors, we
endeavor to confirm whether anxious agents bring about a
deterioration in market stability.

Furthermore, agent-based models with fundamentalist
and chartist agents have been implemented to dissect agents’
speculative behaviors. Schmitt et al. [66], Ghonghadze and
Lux [15], and Franke and Westerhoff [49] are recent ex-
amples. /ey provide by and large experimental evidence
that the market is prone to extreme volatility due to chartist
agents’ speculative activities. When chartist agents screen
out strong technical trading signals from past price trends,
the extreme market volatility is maintained and lasts. On the
contrary, the fundamentalist agent is a crucial stabilizer of
the market. Our agent-based model is populated by fun-
damentalist and anxious agents. In this respect, under
various proportions of fundamentalist agents, it is valuable
to probe reversal risk and price deviations.

/e modeling framework introduced by Brock and
Hommes [67, 68] in two of their studies is the main basis of

this paper when modeling heterogeneous agents. To be
precise, agents in the model within such a framework are
endowed with heterogeneous beliefs pertaining to the ex-
pectations and risk regarding the asset’s price. In addition,
trading strategies come into being in compliance with
agents’ beliefs. /e implementation of a discrete choice
model leads to the adaptation of agent beliefs and the in-
teraction between agents. Furthermore, according to Brock
and Hommes [67, 68], agents opt whether to alter their
previous strategies in line with the accumulated strategic
benefit. An agent in a crowd may switch to another crowd
when her strategy does not ameliorate the welfare. Indeed,
agents learn from their past experience and are thus evo-
lutionary. In the same vein, the anxious agent evolves in line
with the self-benefit of strategy in the rational circumstances
of our model.

Genetic algorithms and genetic programming are two
commonly used tools for agent evolutions and the opti-
mization problem in agent-based models. Chen and Yeh
[69, 70] adopt genetic programming to establish a novel
framework for designing an artificial financial market. In
such an artificial market, a pool of forecasting rules is
implemented for agents to engage in social learning. /e
genetic programming is employed to evolve the pool in
accordance with the accuracy of the forecasting rules.
Moreover, agents will visit the pool in order to modify their
strategies when they are characterized by dramatic incen-
tives. /e agents will resort to the pool when their strategies
are drastically inferior to those of their counterparts. By
performing experiments in this artificial market, these two
studies verify the rational expectations hypothesis and
document that it is difficult to predict asset prices. In the
irrational scenario of our model, such a pool inspires us to
design a mechanism for the anxious agent to evolve by
referring to the relative strategic benefit of the fundamen-
talist agent. Moreover, Chen and Yeh [71] can be regarded as
a classical attempt to apply genetic programming to financial
market issues. /rough a genetic programming approach,
they demonstrate the concept of price unpredictability. In
later applications of genetic programming, Chen and Liao
[72] enlist such an approach to establish an artificial market
and document that the causal relationship between the asset
price and trading volume is an intrinsic characteristic of the
market. Moreover, Chen et al. [73] dissect the emergence of
sunspot events based on a similar method./ey indicate that
sunspot believers will never be eliminated from the market.
However, in the long run, it is extremely difficult for sunspot
believers to survive.

Arthur et al. [74] and Palmer et al. [75] are two cor-
nerstones of agent-based models with genetic algorithms.
/ese two papers build up the Santa Fe Institute artificial
market in which price bubbles, crashes, and continued high
trading volume emerge. In such an artificial market, the
agents are able to evolve on their own. To be precise, they are
machine-learning traders recruiting the classifier system to
predict asset prices. Equipped with the genetic algorithm,
agents evolve and discover new forecasting rules (LeBaron
[76] and LeBaron et al. [77]) and further fine-tune the
foregoing market. /ey dissect volatility persistence,
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leptokurtosis, and large price jumps in the market. Likewise,
Chen and Huang [78] recruit an agent-based model with a
genetic algorithm to examine the agents’ ability to survive.
Such an investigation demonstrates that the risk preference
is essential to the agents’ survivability. A genetic algorithm is
also employed in our model. Differing from such extant
studies, we follow Chen et al. [33] to implement genetic
algorithm for model calibration. Based on such a method,
the parameters are calibrated through a constrained opti-
mization problem.

3. The Artificial Financial Market

In our agent-based model, two types of heterogeneous agents
are involved, namely, fundamentalist agents and anxious
agents. To be specific, we construct an artificial financial market
from the perspective of agents’ beliefs regarding the expecta-
tions and variances of the asset price. In addition, the agents’
strategy (demand), the market’s evolution, and the procedure
used to determine the asset price are also presented.

3.1. Overview. Anxiety is a prevalent psychological phe-
nomenon as indicated by Kessler et al. [79] and Wittchen
and Hoyer [80]. Such anxiety mainly results from physical,
mental, and social factors. Anxiety results in agents finding it
difficult to come up with adaptive responses to the changes
in reality. Anxious agents are unable to immediately and
quickly make adjustments. It takes them quite a long time to
form a decision.

In order to examine this issue, we develop an agent-
based model that is populated by anxious and fundamen-
talist agents. /e heterogeneous beliefs regarding the ex-
pectations and variances of the asset price are first
established. Such beliefs will be recruited to derive the
heterogeneous agents’ demand as well as the aggregate
demand. /e asset price is determined by the aggregate
excess demand.

Most importantly, the anxious agent is characterized by a
lack of confidence, behavioral hesitation, and severe risk
aversion. When designing the anxious agent, we incorporate
decision rigidity into the agent’s belief regarding the ex-
pectation for price. Put differently, the anxious agent only
makes a decision when recognizing multiperiod and qual-
itatively similar forecast errors.

3.2. Design Concepts. Compared to herding and speculative
agents, the anxious agent embodies behavioral hesitation and
decision rigidity. Of particular note, the controversy as to
whether anxious agents are rational or irrational needs to be
jointly addressed by medical, psychological, and economic
research. Consequently, the evolutions under rational and ir-
rational circumstances are both employed in our model.

3.2.1. /e Beliefs of the Anxious Agents. Anxious agents are
afraid of altering their strategy since such an action will result
in uncertainty regarding returns, and they give rise to a lack of
confidence. Such agents begin to change unless numerous

previous predictions are verified as being inaccurate. Other-
wise, they tend to accept the observed losses and stick to the
original belief. Hence, in designing the beliefs for anxious
agents, we incorporate their forecast errors into their expec-
tation for price. /e burgeoning behavioral hesitation and
decision rigidity will cause them to refer to more forecast
errors. /is concept is represented by equation (4).

3.2.2. /e Decisions of the Anxious Agents. In decision
making, anxious agents only adopt adjustments when they
qualitatively discover the same forecast errors across various
periods. More specifically, a perception of only positive forecast
errors or only negative errors will cause anxious agents to alter
their decisions. By contrast, the original decision is maintained
when they have not continuously overpriced or underpriced the
asset. Such a concept is reflected in equation (7).

3.2.3. /e Evolutions within Rational and Irrational
Scenarios. Within the rational circumstances of our artificial
market, anxious agents evolve when past strategies have not
ameliorated their welfare. Besides, in the scenario of irratio-
nality, anxious agents only evolve when there are exceedingly
drastic incentives. To be precise, when the relative strategic
benefit of fundamentalist agents exceeds an upper bound, such
anxious agents will opt to change. Indeed, even though
fundamentalist agents obtain a higher strategic benefit, it is still
possible that anxious agents will persistently maintain their
inferior strategies. /is concept is embedded in equation (11).

3.3. /e Details. In this section, we present the computa-
tional procedure for agent beliefs and agent demands. /e
fundamentalist agents’ beliefs depend on the mean-rever-
sion of the asset price. In addition, the anxious agents’ beliefs
are based on their forecast errors. For both fundamentalist
and anxious agents, their demands are derived from beliefs
and their risk aversions. Our design of the evolutionary
mechanism both in rational and irrational scenarios is also
presented. We further show the determination of the asset
price based on the excess demand. Apart from such com-
putations, the formula for momentum strength and the
pseudocode of simulations are presented.

3.3.1. Heterogeneous Agent Beliefs. /e fundamentalist
agents’ beliefs regarding the expectations and variances of
the asset’s price are presented in equations (1) and (2).
Similar designs can also be found in Chiarella et al. [81] and
Amilon [82].

Ec
t pj,t+1|p

∗
j,t, pj,t  � p

∗
j,t + m pj,t − p

∗
j,t , (1)

V
c
j,t � ηc



τc

i�0
1 − ηc

( 
i

E
c
t−1−i pj,t− i  − pj,t− i 

2
,

(2)

where c denotes fundamentalist agents, Et(·) is the condi-
tional expectations operator, pj,t is the actual price of asset j
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in period t, j � 1, 2, · · · , N, p∗j,t is assumed to be the fun-
damental price, 0≤m≤ 1 is a mean-reverting coefficient, Vc

j,t

is the fundamentalist agents’ belief regarding the asset risk,
τc � t − 1, and Ec

t−1−i(pj,t−i) − pj,t−i is the forecast error of
fundamentalist agents. /e fundamental price emanates
from the following random walk process:

p
∗
j,t � p

∗
j,t−1 + εj,t, (3)

where εj,t ∼ N(0, σ2ε ) is an i.i.d. normal random variable.
In what follows, we propose and design a type of novel

agent, namely, the anxious agent. Based on the psychological
research of Carleton et al. [28] and Boelen and Reijntjes [29],

anxiety originates from the agents’ intolerance for uncer-
tainty and distress tolerance. As a result, anxious agents tend
to embody safety behaviors and have difficulty coming up
with adaptive responses to the reality in a timely manner.
Such characteristics foster the emergence of delayed deci-
sions and an unwillingness to adapt to change (e.g., [18, 19]).
Hence, differing from fundamentalist agents, in each period
t, these anxious agents further refer to their past forecast
errors in order to form their expectations for price in an
attempt to mitigate risk (e.g., [8, 83]). In light of such
discussions, we thus design the beliefs of anxious agents as
follows:

E
x
t pj,t+1|F

x
j,t−1, F

x
j,t−2, F

x
j,t−3, . . . , F

x
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t−1 pj,t  − pj,t



, if ∀Fx
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x
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j,t−s > 0, s � 1, 2, . . . , d,

pj,t +
V

x
j,t

V
x
j,t−1

E
x
t−1 pj,t  − pj,t−1 , if ∃sign F

x
j,t−k ≠ sign F

x
j,t−g , k≠g,
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(4)

V
x
j,t � ηx



τx

i�0
1 − ηx

( 
i

E
x
t−1−i pj,t− i  − pj,t− i 

2
, (5)

where k, g ∈ s, x implies anxious agents,Fx
j,t−s � Ex

t−s(pj,t−s+1) −

pj,t−s+1 refers to anxious agents’ forecast errors, Vx
j,t is the anxious

agents’ belief regarding the asset risk, λ> 0, and τx � t − 1.
From equation (4), we can see that when all theFx

j,t−s are
negative, the most recent forecast error will be regarded as a
good signal for the asset holder. Hence, λ × |Ex

t−1(pj,t) − pj,t|

is employed when anxious agents construct their expecta-
tions for price. By contrast, if all the Fx

j,t−s are positive, the
most recent forecast error turns to be a terrible signal for the
asset holder. As a result, −λ × (Ex

t−1(pj,t) − pj,t) comes into
the decision making of anxious agents. Within these two
scenarios, major adjustments thus come into the anxious

agents’ minds. However, when anxious agents recognize that
the signs of any twoFx

j,t−s are unequal, they are optimistic or
pessimistic about the current situation. To be precise, a
positive Ex

t−1(pj,t) − pj,t−1 suggests optimism, whereas a
negative Ex

t−1(pj,t) − pj,t−1 indicates pessimism.

3.3.2. /e Demand System. In compliance with Chen et al.
[33] and Hommes [34], we derive the demand of anxious
and fundamentalist agents from the agent beliefs and risk
tolerance./e demand of fundamentalist agents and anxious
agents is defined using

q
d,c
j,t �

p
∗
j,t + m pj,t − p

∗
j,t   − pj,t

ηc


τc

i�0 1 − ηc( 
i
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t− 1− i pj,t−i  − pj,t−i 

2
 

×
1
ϕc, (6)

q
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x
j,t−1





ηx


τx

i�0 1 − ηx
( 

i
E

x
t− 1− i pj,t−i  − pj,t−i 
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×
1
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i
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×
1
ϕx, if∀Fx

j,t−s > 0 , s � 1, 2, . . . , d

q
d,x
j,t−1 , if ∃ sign F

x
j,t−k ≠ sign F

x
j,t−g , k≠g
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (7)

where k, g ∈ s, and qd,c
j,t denote the demand of fundamentalist

agents, and qd,x
j,t is the demand of anxious agents.
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From equation (7), when all the Fx
j,t−s are positive or

negative, anxious agents are motivated by the identical in-
formation. As a result, they alter the demand. By contrast,
unequal signs of any twoFx

j,t−s convey fuzzy and incomplete
information. Consequently, anxious agents stick to their
original demand. It is more possible for anxious agents to
perceive unequal signs when d is higher. In a nutshell,
anxious agents are more apt tomaintain the original demand
with progressively intense behavioral hesitation and decision
rigidity.

Indeed, dmeasures the anxious agents’ decision rigidity
and behavioral hesitation. Although the information has
been updated, there is a probability of approximately (2d −

2)/2d for anxious agents to maintain their original demand/
portfolios. Such agents need to refer to more forecast er-
rors, and the hesitation is more obvious when d is larger. If
d equals 1, the expectation for price of the anxious agent
can be expressed as Ex

t (pj,t+1) � pj,t + λ × Fx
j,t−1. /at is,

instead of multiperiod forecast errors, the anxious agent
only refers to the single-period forecast error and does not
embody behavioral hesitation in such a case. On the
contrary, once d equals 2 or becomes more than 2, their
beliefs are characterized by persistence, which can only be
altered by multiperiod, long-term, and homogeneous in-
formation (e.g., [84, 85]).

Let Qd
t be the aggregate demand in the market. It is the

weighted average of the agents’ demand using the propor-
tion of anxious and fundamentalist agents in the market.

Q
d
t � 

H

h�1
n

h
j,t ×

E
h
t pj,t+1  − pj,t

V
h
j,t

×
1
ϕh

⎡⎢⎢⎣ ⎤⎥⎥⎦, (8)

where h ∈ c, x{ }, nh
j,t denotes the market proportion of

agents, ϕh is the risk aversion coefficient of agents, and
the inverse reflects the risk tolerance. In line with Lorian
and Grisham [20], compared to the fundamentalist
agents, those suffering from anxiety give rise to more
subtle risk-seeking behavior, thereby suggesting that
their risk tolerance is weaker. Consequently, in this
paper, we assume that 1/ϕx < 1/ϕc in Section 4 and explain
it in Section 5.2.

3.3.3. /e Evolutionary Mechanism. /e evolutionary
mechanism in this paper consists of two parts. First of all,
agents evolve by assessing the self-benefit. To be more
specific, when their strategies have not ameliorated their
welfare, they will consider whether to switch their behavioral
modes. Furthermore, they will also evolve in accordance
with the relative benefit compared to their counterparts.
Such a mechanism is described as well.

In the rational scenario, agents update their behaviors
according to the benefit obtained from their strategies.
/erefore, we follow Hommes [34, 86] to let the agents’
market proportion evolve over time in the architecture
based on

θh
j,t �

pj,t − pj,t−1

pj,t−1
  × q

d,h
j,t−1 + ωθθ

h
j,t−1. (9)

where h ∈ c, x{ } and θh
j,t is the device used to acquire the

agents’ self-benefit. Armed with such a design, we calculate
the market proportions of agents as follows:

n
h
j,t �

exp β × θh
j,t 


H
h�1 exp β × θh

j,t 
, (10)

where nh
j,t is the agents’ market proportion, and β denotes

the agents’ sensitivities to their self-benefit.
As mentioned at the beginning of this section, agents can

evolve in light of the self-benefit and the benefit compared
with that of the other agents. /e latter variety is referred to
as the relative benefit in this paper. In the irrational scenario,
irrational anxious agents are reluctant to imitate funda-
mentalist agents even though fundamentalist agents have
outperformed them. To be more precise, agents adjust their
strategies in the spirit of equation (11) in the irrational
scenario.

n
x
j,t �

exp β × θx
j,t−1 

exp β × θx
j,t−1  + exp β × θc

j,t 
, if0≤ θc

j,t − θx
j,t ≤U,

exp β × θx
j,t 

exp β × θx
j,t  + exp β × θc

j,t 
, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where θc
j,t − θx

j,t refers to the relative benefit of fundamen-
talist agents, implying the magnitude of the over-
performance of such agents.

We take U to represent the upper bound of the anxious
agents’ bounded rationality. If 0≤ θc

j,t − θx
j,t ≤U, the rela-

tive benefit is inferior to such a bound, and thus, anxious
agents do not alter their original strategies. As a conse-
quence, the population of anxious agents will be main-
tained as before. Consequently, a larger U suggests that
anxious agents are increasingly reluctant to change their
decisions even though they recognize the under-
performance of their strategies. Such arguments indicate
that the magnitudes of irrationality and anxiety are more
dramatic due to a larger U. /erefore, this bound actually
draws attention to the bounded rationality of anxious
agents.

3.3.4. Price Determination. Having established the systems
for the agents’ beliefs, the agents’ demand, and the agents’
evolution, we now follow Zhu et al. [35], Chiarella and He
[36], and Chen and Yeh [70] to determine the actual price
based on the excess demand. In the agent-based market, the
actual price of the asset is determined using the following
equation:
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pj,t � pj,t−1 × 1 + c ×
exp δ Q

d
t−1 − Q

s
t−1   − exp −δ Q

d
t−1 − Q

s
t−1  

exp δ Q
d
t−1 − Q

s
t−1   + exp −δ Q

d
t−1 − Q

s
t−1  

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(12)

where δ > 0 denotes the sensitivity of the actual price to the
excess demand, Qs

t is the aggregate supply and a standard
normal i.i.d. random variable, and 0< c≤ 1 determines the
upper and lower bounds of the price adjustments.

In equation (12), let T be exp(δ(Qd
t−1 − Qs

t−1))−

exp(−δ(Qd
t−1 − Qs

t−1))/exp(δ(Qd
t−1 − Qs

t−1)) + exp(−δ(Qd
t−1−

Qs
t−1)). In actual fact, T is a hyperbolic tangential function.

Hence, when the excess demand tends to positive infinity,
the limit of this function is 1. On the contrary, the limit
reaches −1, given that the excess demand is inclined toward
negative infinity.

3.3.5. Momentum Strength. Since the anxious agents are
characterized by behavioral hesitation, it is possible that they
will exhibit delayed reactions to new information (e.g.,
[37, 38]), thereby giving rise to price inertia. Hence, in the
spirit of Jegadeesh and Titman [42], equation (13) is what is
used to calculate the momentum strength and examine the
price inertia of the asset. A similar such test can be seen in
Lin et al. [87].

MSj,t ≡

p
g

j,[t−d+1,t−1] + p
g
j,t, ifpg

j,[t−d+1,t−1] > 0, p
g
j,t > 0

− p
g

j,[t−d+1,t−1]
+ p

g

j,t , ifpg

j,[t−d+1,t−1]
< 0, p

g

j,t < 0

p
g
j,t − p

g

j,[t−d+1,t−1], ifpg

j,[t−d+1,t−1] > 0, p
g
j,t < 0,

p
g

j,[t−d+1,t−1]
− p

g

j,t, ifpg

j,[t−d+1,t−1]
< 0, p

g

j,t > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where p
g

j,[t−d+1,t−1] denotes the price growth rate during the
period covering [t − d + 1, t − 1], d is the indicator revealing
the decision rigidity and behavioral hesitation, and p

g

j,t

denotes the price growth rate in period t.

3.3.6. /e Pseudocode of Simulations. In what follows, we
present the pseudocode for simulations of our agent-based
model. Algorithm 1 shows the details. /e parameters used
in the simulations appear in Appendix A.

4. Baseline Simulations

We first examine how the asset price deviates from the
fundamental information in a market populated by anxious
and fundamentalist agents. Moreover, we continue to dissect
the price inertia of the asset through momentum strength.
/e experiments that consider the evolutionary mechanism

Initialization. Set the initial fundamental price, initial actual price, initial proportions of agents, and parameters for simulations.
(0) Begin Algorithm.
(1) For each period t, do

Procedure 1:
(a) Let the fundamentalist agents observe the current fundamental (p∗j,t) and actual prices (pj,t), as well as all available historical

prices (pH
j,t). /ey thus form their beliefs regarding the expectation (Ec

t) and variance (Vc
t) of price based on p∗j,t, pj,t, and pH

j,t.
(b) /e fundamentalist agents’ demands (qd,c

j,t ) take shape in line with Ec
t , V

c
t , pj,t, and their risk tolerances (1/ϕc).

Procedure 2:
(a) Let the anxious agents discern the pj,t and pH

j,t, thereby calculating all their forecast errors (F
x
j,t)./eir beliefs with respect to the

expectation (Ex
t ) and variance (Vx

t ) of price come into being according to pj,t and Fx
j,t.

(b) If∀Fx
j,t > 0 or ∀Fx

j,t < 0, then
the anxious agents’ demands ((qd,x

j,t )) emerge in light of Fx
j,t, V

x
t , and their risk tolerances (1/ϕx).

Elseif the signs of any two Fx
j,t are unequal, then

qd,x
j,t is maintained as before.
End Elseif.
End if.
Procedure 3:

(a) /e fundamentalist and anxious agents calculate their strategic benefits, say, θc
j,t and θx

j,t.
(b) /e market proportions of fundamentalist agents evolve over time using the discrete choice model with the device of strategic

benefits.
(c) If anxious agents are rational, then

anxious agents’ proportions evolve using the discrete choice model with the device of strategic benefits.
Elseif anxious agents are irrational, then
anxious agents’ proportions evolve when (θc

j,t − θx
j,t) is higher than an upper bound.

End Elseif.
End if.

End for.
(2) For each period t + 1, do

/e aggregate excess demand and pj,t are implemented to determine pj,t+1 through a hyperbolic tangential function.
End for.

(3) End Algorithm.

ALGORITHM 1: /e agent-based model with anxious and fundamentalist agents.
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provided by Hommes [34, 86] are also conducted. Apart
frommomentum strength, we further examine the evolution
of the anxious agent and the benefit of the anxious agent’s
strategy and draw comparisons between the anxious and
fundamentalist agents.

4.1. Momentum Strength and Deviations from Fundamentals.
/is section examines the deviations in the asset price from
the fundamental information when considering various
market proportions of the anxious agent. Under such a
setting, we also dissect the price inertia of the asset using
momentum strength. Table 1 presents the results of the
experiments regarding the deviations from the fundamental
information and momentum strength.

In accordance with the agent-based model in Section 3,
the anxious agent does not give rise to behavioral hesi-
tation when d equals 1. After d approaches 2 or is over 2,
the anxious agent begins to hesitate when making deci-
sions. Hence, from Panel A of Table 1, the presence of the
anxious agent is related to deviations from the funda-
mental information, and all the absolute t-statistics are
higher than 2 or even 3 both before and after the ap-
pearance of behavioral hesitation (denoted by d). In ad-
dition, the absolute values of deviations are exacerbated
with the increasing behavioral hesitation of the anxious
agent. Furthermore, in Panel B, the artificial market is
characterized by price reversal since the negative mo-
mentum strength is significant (most of the absolute
t-statistics are over 2). /e absolute values of negative
momentum strength decrease with increasing hesitation.
For example, in considering equal proportions of the
agents, the negative momentum strength is −0.263 for no
hesitation (d � 1), while it becomes −0.253 when the

anxious agent is characterized by hesitation (d � 2). In
addition, the absolute value of negative momentum
strength continues to decline and becomes −0.087 when d
equals 5. Hence, anxiety to a certain extent affects the
negative momentum strength.

4.2. Simulations with Evolutionary Proportions. In Section
4.1, we have investigated the deviations from the funda-
mental information and price inertia without evolutions. In
this section, the mechanism regarding the agents’ evolution
provided by Hommes [34, 86] is involved. Such a mech-
anism enables the agents to decide whether or not to
change their strategies by means of assessing the benefits of
previous strategies. Hence, this mechanism also influences
the market proportions of the agents, thereby implying that
the market proportion is time-varying. In addition, anxious
agents change their strategies once they perceive that the
previous investment did not benefit them. Consequently,
the anxious agent is indeed assumed to be rational in this
section.

In Table 2, as indicated by Panel A, deviations from the
fundamental information are still relevant to the magnitudes
regarding the behavioral hesitation of the anxious agent even
if we enlist the evolution of the anxious agent. In Panel B, we
find that the market proportions of the anxious agent are
significantly different from 0.5 (the absolute t-statistics are
over 3). In addition, despite behavioral hesitations, the
market proportions of the anxious agent change at around
0.54. Although the benefit of the anxious agent’s strategy
changes around zero as suggested by Panel C, the anxious
agent still obtains a better benefit than the fundamentalist
agent. More specifically, in Panel D, the differences in
benefits (anxious minus fundamentalist) are significantly

Table 1: Simulations without evolutions. Note:/is table reports deviations from fundamentals (differences between the asset price and the
fundamental price) and momentum strengths considering various proportions of the anxious agent. /e market proportions of the anxious
agents lie between 0.5 and 0.9./e indicator of behavioral hesitation (denoted by d) is between 1 and 5. When d equals 1, the expectation for
price of the anxious agent can be written as Ex

t (pj,t+1) � pj,t + λ × Fx
j,t−1. Hence, the anxious agent does not embody hesitation since the

agent only relies on the single-period forecast error in such a case. However, hesitation begins to emerge if d is 2 or over 2 since the agent
refers to multiperiod forecast errors. In Panel A, we calculate the mean and the t-statistic of the mean for deviations from the fundamentals.
To be precise, in our statistical inferences, we perform a one-sample t-test in each simulation window. After acquiring the t-statistic for each
window, we then compute the average of the t-statistics across windows. Such a procedure used to infer the statistical significance can also be
found in Gatti and Grazzini [88] and Garćıa-Magariño et al. [89]. As for the momentum strength of the asset, we show the results in Panel
B. Note that a positive momentum strength denotes price inertia, whereas a negative momentum strength stands for price reversal.

d 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Panel A: deviations from fundamentals Deviations t-Statistics
1 −1.028 −0.859 −0.597 −0.340 −0.128 −3.334 −3.119 −2.599 −1.935 −1.018
2 −1.139 −0.991 −0.756 −0.446 −0.249 −3.628 −3.511 −3.221 −2.505 −2.052
3 −1.180 −1.014 −0.792 −0.491 −0.340 −3.758 −3.577 −3.345 −2.763 −2.687
4 −1.195 −1.045 −0.812 −0.542 −0.480 −3.804 −3.691 −3.437 −3.047 −3.657
5 −1.210 −1.074 −0.830 −0.547 −0.690 −3.848 −3.809 −3.527 −3.069 −4.706
Panel B: momentum strength Strength t-Statistics
1 −0.263 −0.248 −0.248 −0.241 −0.174 −3.906 −4.206 −5.063 −6.375 −6.773
2 −0.253 −0.227 −0.190 −0.159 −0.111 −4.099 −4.182 −4.061 −4.260 −4.324
3 −0.131 −0.145 −0.155 −0.168 −0.141 −1.729 −2.210 −2.824 −4.006 −5.170
4 −0.259 −0.220 −0.195 −0.161 −0.096 −3.342 −3.276 −3.525 −3.801 −3.356
5 −0.087 −0.093 −0.116 −0.133 −0.081 −1.101 −1.389 −2.103 −3.152 −2.847
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positive since the absolute t-statistics are greater than 5 or 6.
Such outcomes indicate that the anxious agent is at least free
of losses.

Moreover, in Panel E, with regard to the evolution of the
anxious agent, we can perceive that the absolute values of
negative momentum strengths are approximately attenuated
by the increasing hesitation (denoted by d). For instance, the
negative momentum strength is −0.314 for d� 1, but it
becomes −0.141 when d is 5. Such results suggest that the
behavioral hesitation of the anxious agent and resulting
delayed transactions can alleviate the possibility of price
reversal.

5. Dissections on Rationality and Irrationality

Indeed, the research on psychology has not reached a
consensus on whether the anxious agent is rational or ir-
rational. For instance, Addis and Bernard [44] and Himle
et al. [90] have perceived that an increase in anxiety will lead
to a deterioration in rational cognitive capability and thus

give rise to boundedly rational behaviors. By contrast, since
anxiety is a result of the agent’s intolerance for uncertainty,
the unwillingness of anxious agents to alter decisions and the
salient risk aversion are just driven by their rationality (e.g.,
[43, 91, 92]).

By going back to the discussion in Section 3, the original
evolutionary mechanism proposed by Hommes [34, 86] is
based on the self-benefit of the agent. /e anxious agent
changes strategy when the previous strategy does not benefit,
thereby suggesting that the agent is rational. In addition to
incorporating such an evolutionary mechanism, we fine-
tune it by allowing the agent to rely on the relative benefit in
decision making. In other words, the anxious agent will not
take any action when the relative benefit is inferior to an
upper bound even if they find that the fundamentalist agent
outperforms. Hence, the anxious agent is regarded as ir-
rational. Furthermore, as we indicated in Section 3, the
magnitude of the risk aversion of the anxious agent is
generally greater than that of the fundamentalist agent.
Consequently, in the upcoming experiments, we consider

Table 2: Simulations with evolutionary proportions. Note: /is table presents deviations from the fundamental information, market
proportions of anxious agents, the benefit of the anxious agent’s strategy, the difference in benefits between the anxious and fundamentalist
agents, and the momentum strengths. /e indicator of behavioral hesitation (denoted by d) ranges from 1 to 5. When d equals 1, the
expectation for price of the anxious agent can be written as Ex

t (pj,t+1) � pj,t + λ × Fx
j,t−1. Hence, the anxious agent does not embody

hesitation since the agent only relies on the single-period forecast error in such a case. However, hesitation begins to emerge if d is 2 or over 2
since the agent refers to multiperiod forecast errors. For the sake of inferring statistical significance, we perform a one-sample t-test in every
simulation window. Furnished with such exercises, the averages of the t-statistics across windows are obtained. Gatti and Grazzini [88] and
Garćıa-Magariño et al. [89] also employ the same inference procedure.

d Mean t (mean)
Panel A: deviations from fundamentals
1 −0.805 −2.866
2 −0.870 −3.058
3 −0.911 −3.191
4 −0.913 −3.194
5 −0.915 −3.210
Panel B: proportions of anxious agents
1 0.544 4.189
2 0.541 3.915
3 0.540 3.744
4 0.541 3.866
5 0.541 3.818
Panel C: anxious agents’ benefit
1 0.00305 4.364
2 0.00015 0.202
3 −0.00004 −0.045
4 −0.00021 −0.259
5 −0.00032 −0.384
Panel D: anxious agents’ benefit minus fundamentalist agents’ benefit
1 0.092 6.174
2 0.086 5.638
3 0.081 5.311
4 0.085 5.526
5 0.083 5.443
Panel E: momentum strength
1 −0.314 −5.273
2 −0.221 −3.703
3 −0.195 −2.772
4 −0.230 −3.260
5 −0.141 −1.934
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various degrees of risk aversion for the anxious agent.
Armed with such experimental designs, we continue to
dissect our artificial financial market.

5.1. /e Upper Bound of Irrationality and the Nonherding
Agent. Herding agents are apt to change their behaviors and
exhibit irrationality (e.g., [14, 65]). Compared to such agents,
anxious agents give rise to behavioral hesitation and decision
rigidity. Hence, it is less possible for them to make a dif-
ference to decisions. In the evolutionary mechanism of the
irrational scenario, the agents update their strategies by
referring to the relative benefit compared to the strategies of
the other agent. Since anxious agents are constrained by
their anxiety, they are characterized by a lack of confidence
and behavioral hesitation. Even though anxious agents
perceive that their benefits are inferior to those of funda-
mentalist agents, they will stick to the extant strategy unless
the relative benefit exceeds an upper bound. A higher upper
bound corresponds to more severe anxiety and irrationality.
It is, therefore, quite possible that such a psychology of the
anxious agent will contribute to deviations from funda-
mentals and the emergence of price inertia. /erefore, in
Table 3, the anatomy of the artificial market under various
upper bounds comes into play.

From Table 3, when concerning the irrationality of the
anxious agent, deviations from fundamentals are still related
to the degrees of behavioral hesitation from the anxious
agent. Despite upper bounds of irrationality, deviations are
positively correlated with the degrees of behavioral hesita-
tion. Moreover, just as we perceive in the original evolu-
tionary mechanism provided by Hommes [34, 86], the
anxious agents’ market proportions are significantly dif-
ferent from 0.5 (the absolute t-statistics are at least greater
than 3 across all panels).

As for agent benefits, the anxious agents encounter
significantly positive benefits (the absolute t-statistics are
over 4) when they do not exhibit behavioral hesitation
(d� 1). If such agents are characterized by hesitation (d is
greater than 1), the benefit turns to be insignificant and close
to zero (absolute t-statistics are lower than 1). However, the
anxious agent still outperforms the fundamentalist agent
since most of the absolute t-statistics for the difference in
their benefits are higher than 5 across all panels. Such
outcomes again indicate that anxious agents will not be
inferior to fundamentalist agents even if they are charac-
terized by irrationality.

/e momentum strengths are all negative regardless of
the magnitudes of the behavioral hesitations (indicated by
d). However, with a higher d, the absolute values of negative
momentum strengths are lower. To be precise, when d equals
1 in Panel A, the negative momentum strengths are close to
−0.3. Such negative momentum strengths, respectively, vary
around −0.17 and −0.12 when d is 3 and 5. To sum up, in
considering the irrationality of the anxious agent, such
experiments imply that the anxious agent’s hesitation can
mitigate the possibility of price reversal in financial markets.

5.2. Various Degrees of Risk Aversion. In considering the
various degrees of risk aversion of the anxious agent, this
section continues to check our findings regarding the
benefits of agents’ strategies and momentum strengths al-
ready discussed. /e results of such experiments are pre-
sented in Table 4.

In Table 4, as implied by Panel A, we can find that most
of the absolute t-statistics for the positive difference in
benefits are higher than 4 or even 5 despite different degrees
of risk aversion and behavioral hesitation. In addition, the
behavioral hesitation of anxious agents has not exerted a
positive impact on their strategic outperformance. Such a
result can be shifted unless they engage in active transactions
after perceiving long-term information on forecast errors.
To be specific, when the risk aversion coefficient of the
anxious agent is 0.1, their investments thus become active,
and significant outperformance increases with the behav-
ioral hesitation (the absolute t-statistics are over 3 or 4).

Regardless of the degrees of hesitation and risk aversion
in Panel B, most of the momentum strengths are signifi-
cantly negative (the absolute t-statistics are mainly over 2 or
3). However, the negative momentum strengths are miti-
gated as the behavioral hesitation is stronger. For instance,
when the risk aversion coefficient is 0.1, the negative mo-
mentum strength is −0.349 when d is 1, whereas the negative
strength is −0.165 if d is 2. Moreover, in considering more
severe hesitation (d equals 4 or 5), such a process results in
positive momentum strengths. /ese outcomes again
demonstrate that the behavioral hesitation of the anxious
agent alleviates the possibility of price reversal.

5.3. SummaryofResults. Having already conducted a battery
of experiments in this and the previous section, we continue
to summarize the existing results. In experiments without
the evolutions in Table 1, the market proportion of the
anxious agent will be related to the deviations from the
fundamental information. In addition, the magnitudes of the
negative momentum strengths decrease after the appearance
of behavioral hesitation. /e behavioral hesitation of the
anxious agent can reduce the possibility of price reversal.
Moreover, such observations are more evident after in-
cluding the agent evolutions in the experiments in Table 2.
/ese results persist even though we consider the irratio-
nality of the anxious agent in the evolutions as presented in
Table 3.

Since agent evolutions rely on the benefit of the agent’s
strategy, we dissect and compare the benefits between the
two types of agents. In evolutions without considering the
upper bound of irrationality, the anxious agent’s benefits are
close to zero in Table 2. However, such benefits are not
inferior to those of the fundamentalist agent. /ese findings
are maintained when we include the upper bound of irra-
tionality in the agent evolutions in Table 3. Hence, these
results suggest that the anxious agent will at least not en-
counter losses in the artificial market developed in this
paper.
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Table 3: Simulations for the upper bound of irrationality. Note: In this table, by focusing on the upper bound of irrationality in agent
evolutions, we dissect deviations from the fundamental information, market proportions of anxious agents, the benefit of the anxious agents’
strategy, the difference in the benefit between the anxious and fundamentalist agents, and the momentum strength. /e magnitudes of the
lack of confidence and behavioral hesitation (denoted by d) are 1, 3, and 5, respectively. When d equals 1, the expectation for price of the
anxious agent can be written as Ex

t (pj,t+1) � pj,t + λ × Fx
j,t−1. Hence, the anxious agent does not embody hesitation since the agent only

relies on the single-period forecast error in such a case. However, hesitation begins to emerge if d is 2 or over 2 since the agent refers to
multiperiod forecast errors. /e upper bounds are 0.01, 0.05, 0.1, 0.2, and 0.5, respectively. In order to ensure the accuracy of statistical
inference, we thus follow Gatti and Grazzini [88] and Garćıa-Magariño et al. [1, 8]] to perform a one-sample t-test for each simulation
window. Equipped with such endeavors, we proceed to calculate the averages of the t-statistics across windows.

Deviations Anxious agents’
proportions Anxious agents’ benefit

Anxious agents’
benefit minus
fundamentalist
agents’ benefit

Momentum
strength

U Mean t (mean) Mean t (mean) Mean t (mean) Mean t (mean) Mean t (mean)
Panel A: d� 1
0.01 −0.836 −2.921 0.542 3.957 0.003 4.236 0.087 5.662 −0.305 −4.939
0.05 −0.849 −2.965 0.542 3.977 0.003 4.214 0.087 5.639 −0.303 −4.910
0.1 −0.852 −2.994 0.543 4.015 0.003 4.278 0.088 5.687 −0.305 −4.947
0.2 −0.846 −2.964 0.543 4.061 0.003 4.305 0.089 5.775 −0.311 −5.046
0.5 −0.853 −2.986 0.542 3.992 0.003 4.234 0.087 5.637 −0.301 −4.869
Panel B: d� 3
0.01 −0.931 −3.214 0.541 3.842 −5.45E− 05 −0.055 0.084 5.496 −0.179 −2.502
0.05 −0.945 −3.240 0.540 3.769 −2.28E− 05 −0.017 0.081 5.289 −0.177 −2.475
0.1 −0.939 −3.236 0.541 3.853 −1.76E− 05 −0.012 0.083 5.410 −0.182 −2.561
0.2 −0.947 −3.247 0.540 3.765 −2.67E− 05 −0.023 0.080 5.238 −0.172 −2.408
0.5 −0.935 −3.205 0.540 3.813 −1.92E− 05 −0.014 0.082 5.317 −0.172 −2.398
Panel C: d� 5
0.01 −0.952 −3.275 0.540 3.741 −0.0003 −0.372 0.081 5.303 −0.122 −1.653
0.05 −0.979 −3.353 0.540 3.760 −0.0003 −0.378 0.081 5.263 −0.120 −1.619
0.1 −0.953 −3.265 0.540 3.776 −0.0003 −0.345 0.081 5.260 −0.127 −1.722
0.2 −0.960 −3.282 0.540 3.812 −0.0003 −0.370 0.082 5.311 −0.112 −1.514
0.5 −0.955 −3.280 0.541 3.860 −0.0003 −0.375 0.083 5.398 −0.119 −1.621

Table 4: Simulations with various degrees of risk aversion. Note: /e agents’ benefits and momentum strengths for various degrees of risk
aversion in agent evolutions are presented in this table./e indicator of hesitation (represented by d) lies between 1 and 5. When d equals 1,
the expectation for price of the anxious agent can be expressed as Ex

t (pj,t+1) � pj,t + λ × Fx
j,t−1. Hence, the anxious agent does not embody

hesitation since the agent only relies on the single-period forecast error in such a case. However, hesitation begins to emerge if d is 2 or over 2
since the agent refers to multiperiod forecast errors. /e risk aversion (RA) of the anxious agent lies between 0.1 and 5. In the pursuit of
accuracy regarding statistical inference, we follow Gatti and Grazzini [88] and Garćıa-Magariño et al. [89] to perform a one-sample t-test for
each window. /is procedure enables us to calculate the averages of the t-statistics across windows. /e upper bound of the evolutionary
mechanism is 0.1.

Mean t (mean)
RA� 0.1 RA� 0.5 RA� 1 RA� 2 RA� 5 RA� 0.1 RA� 0.5 RA� 1 RA� 2 RA� 5

Panel A: anxious agents’ benefit minus
fundamentalist agents’ benefit
d� 1 0.124 0.085 0.086 0.086 0.086 4.791 4.935 5.410 5.574 5.733
d� 2 0.133 0.077 0.083 0.083 0.086 3.581 4.627 5.330 5.461 5.688
d� 3 0.498 0.074 0.083 0.084 0.086 3.974 4.443 5.309 5.483 5.725
d� 4 2.200 0.066 0.080 0.084 0.085 3.852 3.880 5.080 5.487 5.626
d� 5 2.376 0.063 0.082 0.083 0.086 3.464 3.687 5.159 5.405 5.700
Panel B: momentum strength
d� 1 −0.349 −0.269 −0.292 −0.300 −0.304 −5.177 −4.182 −4.647 −4.852 −4.959
d� 2 −0.165 −0.223 −0.222 −0.224 −0.214 −1.857 −3.723 −3.660 −3.682 −3.531
d� 3 −0.102 −0.142 −0.155 −0.186 −0.193 −0.974 −1.979 −2.160 −2.571 −2.680
d� 4 0.034 −0.220 −0.264 −0.249 −0.232 0.134 −2.933 −3.671 −3.454 −3.233
d� 5 0.002 −0.132 −0.102 −0.127 −0.161 0.039 −1.673 −1.362 −1.718 −2.207
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6. Robustness Checks

We check the robustness of this paper in three ways. First of
all, the agent-based model is validated by confirming
whether it reproduces stylized facts. Second, the long short-
term memory neural network is enlisted for agents to learn.
Furnished with such a technique, we compare the difference
in strategic benefit between the fundamentalist and anxious
agents. /ird, key parameters of the agent-based model are
calibrated using data from a real financial market. We
further check whether the model still reproduces stylized
facts after key parameters are calibrated.

6.1. Reproductions of Stylized Facts. In our baseline simu-
lations, the model parameters follow Zhu et al. [35] and
Amilon [82]. To be precise, our procedure for determining
the asset price and modeling the fundamental price is the
same as in Zhu et al. [35]. In addition, Amilon [82] performs
empirical analysis for the S&P 500 index, and we follow such
a study to set parameters for agent beliefs. From our previous
results, we have clarified the influence of anxiety on devi-
ations in asset prices from their fundamentals and price
reversal. Hence, we continue to validate the model following
Arifovic et al. [93], Fagiolo et al. [94], and Chen et al. [33].
More specifically, we confirm whether the model reproduces
well-known fat-tailed returns and the absence of autocor-
relation among the returns from real markets. Table 5
presents the outcomes of fat-tailed returns. /e results re-
garding the autocorrelation of returns come into being in
Figures 1 and 2.

In Table 5, we show the skewness and kurtosis of
returns both in rational and irrational scenarios. /e
simulations are performed using the parameters from Zhu
et al. [35] and Amilon [82]. /e kurtosis exceeds 19 re-
gardless of rationality and irrationality, suggesting that the
returns from our artificial market are leptokurtic and fat-
tailed. Such findings are similar to those of Arifovic et al.
[93], Brandouy et al. [95], and Cont [96]. Accordingly, it is
obvious that our agent-based model well reproduces fat-
tailed returns. In addition, the returns from the model give
rise to a long right tail since the skewness is positive and
higher than 3.

As depicted by Figure 1, the autocorrelation of returns is
evidently negative at the beginning but quickly becomes very
close to zero. Such a perception is persistent across all de-
grees of behavioral hesitation and decision rigidity (denoted
by d). Armed with the parameters from Zhu et al. [35] and
Amilon [82], the agent-basedmodel in this paper reproduces
the absent autocorrelation of returns.

Figure 2 depicts the same findings as in Figure 1. To be
specific, the autocorrelation of returns is negative at the
beginning. However, it is prevalently close to zero when
the lag is lengthened. Such a pattern emerges despite the
magnitude of behavioral hesitation and decision rigidity
(indicated by d). /erefore, our agent-based model is again
validated using the absent autocorrelation of returns in the
irrational scenario.

6.2. Alternative Learning Mechanism. /e long short-term
memory (LSTM) neural network has been extensively
employed in time-series forecasting, for example, in Zhang
et al. [97], Ghimire et al. [98], Nguyen and Bae [99, 101],
and Somu et al. [101]. (In Appendix B, we present the
theory of the LSTM in detail.) /e LSTM neural network is
a type of recurrent neural network (RNN). It is a loopback
framework armed with interconnected neurons in which
information is shared between time steps. It also performs
well in tackling long-term information.

Specifically, the LSTM network is treated as a route for
fundamentalist agents to learn and obtain the expectation
for price. In our original results, the strategy of the fun-
damentalist agent underperforms that of the anxious agent.
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Figure 1: Autocorrelation of returns in the rational scenario. /is
figure plots the autocorrelation of returns in the rational scenario.
In the simulations, we use the parameters from Zhu et al. [35] and
Amilon [82]. d is the strength regarding the behavioral hesitation
and decision rigidity of the anxious agent. /e length of the lag
extends from 1 to 30.

Table 5: Skewness and kurtosis of returns. Note: /is table reports
the outcomes of reproducing fat-tailed returns using the param-
eters from Zhu et al. [35] and Amilon [82]. /e skewness and
kurtosis of returns are calculated, respectively, in rational and
irrational scenarios. d suggests the degree of behavioral hesitation
and decision rigidity of the anxious agent.

d Skewness Kurtosis
Panel A: the rational scenario
1 3.201 19.120
2 3.223 19.277
3 3.246 19.453
4 3.207 19.188
5 3.230 19.347
Panel B: the irrational scenario
1 3.223 19.303
2 3.213 19.237
3 3.197 19.116
4 3.200 19.129
5 3.210 19.164
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Hence, in retrieving the belief of the anxious agent, we use
the original method and do not resort to the LSTM. Armed
with such an experimental design, we can observe whether
the LSTM helps the fundamentalist agent improve the
strategy. /e neural network is trained with the deep
learning toolbox of MATLAB.

Such agents train their own LSTM in accordance with
the agent-based studies of Kieu et al. [101], Fraunholz
et al. [102], Dehghanpour et al. [103], Salle [104],
Yıldızoğlu et al. [106], and Sgroi and Zizzo [107, 108]. /e
simulation with the LSTM is comprised of 104 periods.
(104 periods echo 104 trading weeks for two years in real
financial markets.) We select 50% of the data for the
period as the original training set in the spirit of Tang et al.
[109] and Baek and Kim [110]. In addition, we follow Liu
et al. [111], Gao et al. [112], Xia et al. [113], and Tian et al.
[114] to perform sliding-window training for the LSTM
network.

During the training procedure, the output is the expected
asset price. /e inputs of the fundamentalist agents’ network
are all available historical fundamental prices and historical
price deviations. With regard to the parameters for training,
the initial learning rate is 0.005 with a drop factor of 0.2 in
compliance with Ghimire et al. [98]. In addition, the batch
size is 10, and there are 200 epochs following Zhang et al.
[97] and Fischer and Krauss [115]./e optimization method
is adaptive moment estimation (Adam) in light of Nguyen
and Bae [99] and Ghimire et al. [116].

Furnished with the trained network, fundamentalist
agents incorporate information into the network. Before

including such data in the trained network, agents stan-
dardize the data using the mean and standard deviation of
the training sample employed in the training procedure.
After acquiring the prediction from the network, the agents
destandardize the prediction using the same mean and
standard deviation.

To be precise, fundamentalist agents incorporate
the fundamental price and price deviation into the net-
work. /e belief of such agents is derived from them in
the original agent-based model. Such executions enable
their expectations for price at time t+1 to take shape. Such
a simulation with the embedded LSTM network is re-
peated 30 times. We probe the difference in strategic
benefit between fundamentalist and anxious agents
within such a market. Table 6 presents the results of the
experiment.

Table 2 reports positive differences in the strategic
benefits between anxious and fundamentalist agents. (In
Table 2, the evolutionary proportion of the anxious agent
varies around 0.5. Such results are mainly compared with the
results of Table 6 with proportions of 0.5 and 0.6.) According
to Table 6, the anxious agent is no longer superior to the
fundamentalist agent since most of the differences in stra-
tegic benefit are negative. Such a finding prevails regardless
of the anxious agent’s proportions and the magnitude of
behavioral hesitation. In short, furnished with the deep
learning belief, the fundamentalist agent successfully ame-
liorates the strategic benefit.

6.3. Calibrationwith theGenetic Algorithm. Tesfatsion [117],
Dieci and He [118], and Fabretti [119] have suggested cal-
ibrating key parameters of the agent-based model when the
model is used to study the real market. Consequently, in this
section, the parameters of price determination and the
fundamental price will be calibrated using the data for the
S&P 500 index. (We obtain the data from http://www.
investing.com, which is one of the top three websites for
financial markets.) Bertschinger and Mozzhorin [120], Lux
[121], and Franke [122] also apply the stock market index to
calibrate their parameters.

In the spirit of Moya et al. [123] and Recchioni et al.
[124], the constrained optimization problem proceeds from
equations (14) to (16). To solve such a constrained opti-
mization problem, we follow Chen et al. [33] to enlist the
genetic algorithm. In accordance with Soh and Yang [125]
and Davis [126], the population size is 50, the size of
tournament selection is 4, and the crossover is interme-
diate. /e mutation rate is adaptive in compliance with
Marsili Libelli and Alba [127]. We execute the genetic
algorithm using the global optimization toolbox of
MATLAB.

ω∗ � c
∗
, δ∗, σ∗ε(  � argmin

ω∈Ω
f(ω), (14)
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Figure 2: Autocorrelation of returns in the irrational scenario. /e
autocorrelation of returns in the irrational scenario is shown in this
figure. /e parameters from Zhu et al. [35] and Amilon [82] are
implemented in the simulations. d is the strength regarding the
behavioral hesitation and decision rigidity of the anxious agent./e
length of the lag ranges from 1 to 30.
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subject to

0< c
∗ ≤ 1,

δ∗ > 0,

σ∗ε > 0,

⎧⎪⎪⎪⎨
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(16)

where Ω denotes the parameter space, ω∗ denotes the op-
timal parameter vector, K suggests the number of simu-
lations, pm

t is the price emerging from the agent-based
model, pa

t is the price from the real market, and T is the
length of the sample period. Such an objective function has
two merits. First of all, the positive and negative values of
pm

t − pa
t will not offset each other. Second, we divide the

pm
t − pa

t by pa
t so that the outcome will not be disturbed by

the scale of the data. In Table 7, we report the calibrated
parameters of the model in both rational and irrational
circumstances.

Armed with the calibrated parameters from Table 7, we
then seek to figure out whether our model reproduces fat-
tailed returns and the absent autocorrelation of returns. In
Table 8, we calculate the skewness and kurtosis of returns
from our model in both rational and irrational scenarios.We
depict the autocorrelation of returns for these two scenarios
in Figures 3 and 4. It is notable that the model is validated
when fat-tailed returns and the absence of autocorrelation
among the returns are reproduced.

From Table 8, as demonstrated by Panel A, we assert that
returns from our agent-based model are characterized by a
long right tail since the skewness is persistently positive (the
skewness exceeds 2). In addition, it is evident that returns are
leptokurtic and fat-tailed since the kurtosis goes beyond 11 or
even 12. Such similar outcomes take shape in Panel B. In a
nutshell, our agent-based model with the anxious agent re-
produces the fat-tailed returns in the real market quite well.

Furnished with Figure 3, the autocorrelation is negative
at the beginning and soon turns to be very close to zero.
Consequently, it is obvious that the autocorrelation of
returns is absent in our agent-basedmodel when considering
rationality. After calibrating key parameters, the model is
still validated in the rational scenario using the absence of
autocorrelation among the returns.

Likewise, in the irrational scenario, Figure 4 exhibits
negative autocorrelation at the beginning. However, we have
not observed evident autocorrelation of returns when the
lengths of the lags mushroom since the autocorrelation is
approximately zero. Despite the theoretical parameters or
calibrated parameters, our agent-based model is validated
through fat-tailed returns and the absence of autocorrelation
in the returns in both the rational and irrational scenarios.

In Table 9, price deviations are significantly positive and
burgeoned with behavioral hesitation (the absolute t-sta-
tistics exceed 10). Notably, price deviations with no hesi-
tation (d� 1) are different from those with severe hesitation
(d� 5). Such discoveries appear in both the rational and
irrational scenarios. In addition, absolute values of negative
momentum strengths increase with behavioral hesitation
when considering rationality and irrationality. Compared to
the fundamentalist agent, the anxious agent is characterized
by more severe pessimism (e.g., [128, 129]).

/e original experiments in Sections 4 and 5 suggest
that the asset price is below the fundamental price in the
market. However, the anxious agent does not quickly
make adjustments on account of the behavioral hesita-
tion. /e anxious agent expects that the asset price will
tend not to increase to the fundamental price. As a
consequence, such pessimism on the part of the anxious
agent slows down the change in the asset price to return to
the fundamental price. Hence, the behavioral hesitation
of the anxious agent alleviates the possibility of price
reversal.

After the calibration based on the S&P 500 in Table 9, the
asset price is higher than the fundamental price in the
market due to positive price deviations. In such a market, the

Table 6: Agents’ strategic benefit in considering the LSTM. Note: In this table, we report the difference in strategic benefit between anxious
agents and fundamentalist agents and related t-statistics. More specifically, the anxious agent maintains the original route to obtain the
expectation for price, while the fundamentalist agent applies the long short-termmemory (LSTM) neural network to acquire the expectation
for price./emarket proportion of the anxious agent lies between 0.5 and 0.9. d denotes the magnitude of behavioral hesitation and decision
rigidity. It extends from 1 to 5.

d 0.5 0.6 0.7 0.8 0.9
Panel A: anxious agents’ benefit minus fundamentalist agents’ benefit
1 −0.566 −0.659 −0.370 −0.488 −0.687
2 −0.472 −0.516 −0.526 −1.041 −0.639
3 −0.688 −0.680 −0.469 −0.538 −0.323
4 −0.322 −0.580 −0.603 −0.674 −0.871
5 −0.703 −0.938 −1.062 −0.480 −0.390
Panel B: t-statistics
1 −0.922 −1.600 −0.800 −1.324 −1.120
2 −1.401 −1.417 −1.565 −1.804 −0.755
3 −1.407 −1.690 −1.386 −1.401 −0.961
4 −1.540 −1.366 −1.538 −1.060 −1.594
5 −1.727 −1.249 −1.705 −0.895 −1.294
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Table 7: Calibrated parameters of the model. Note: In this table, the calibrated parameters of the model are presented, including c and δ in
price determination, as well as σ in modeling the fundamental price. d denotes the magnitude of the behavioral hesitation and decision
rigidity of the anxious agent.

d c δ σ
Panel A: the rational scenario
1 0.932 7.629 4.943
2 0.949 6.843 9.123
3 0.944 6.846 9.066
4 0.946 6.881 9.750
5 0.949 7.218 9.776
Panel B: the irrational scenario
d c δ σ
1 0.986 6.413 8.959
2 0.949 6.843 9.123
3 0.945 6.863 7.558
4 0.947 6.650 14.604
5 0.915 7.726 12.878
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Figure 3: Autocorrelation of returns in the rational scenario. /is figure shows the autocorrelation of returns in the rational scenario. /e
parameters of price determination and the fundamental price used in simulations are calibrated. d represents the magnitude of behavioral
hesitation and decision rigidity, which ranges from 1 to 5. /e lengths of the lags range from 1 to 30.
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Figure 4: Autocorrelation of returns in the irrational scenario. In this figure, we plot the autocorrelation of returns when considering
irrationality. /e parameters of price determination and the fundamental price used in the simulations are calibrated. /e behavioral
hesitation and decision rigidity of the anxious agent are represented by d, which extends from 1 to 5. /e lengths of the lags range from 1 to
30.
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absolute values of the negative momentum strengths
mushroom with the behavioral hesitation (denoted by d).
Such a finding suggests that the progressive anxiety will
increase the possibility of price reversal. When the asset

price goes beyond the fundamental price, there is a higher
likelihood that the asset price will attenuate due to the
more drastic lack of confidence of the anxious agent (a
higher d).

Table 8: Skewness and kurtosis of returns after calibration. Note: We present the skewness and kurtosis of returns in this table. Panels A and
B, respectively, show outcomes for the rational and irrational circumstances. d denotes the strength in regard to the behavioral hesitation
and decision rigidity of the anxious agent.

d Skewness Kurtosis
Panel A: the rational scenario
1 2.011 11.907
2 2.176 12.891
3 2.191 12.940
4 2.186 12.933
5 2.096 12.433
Panel B: the irrational scenario
d Skewness Kurtosis
1 2.244 13.268
2 2.165 12.808
3 2.170 12.844
4 2.227 13.088
5 2.035 12.039

Table 9: Price deviations and momentum strengths after calibration. Note:/is table reports the price deviations and momentum strengths
after the model parameters are calibrated. In light of Recchioni et al. [124], the initial asset price and initial fundamental price in the
calibration are equal to the first weekly observation of the S&P500 in 2021. We calculate the deviations in asset prices from their fun-
damentals and momentum strengths for both the rational and irrational scenarios. /e magnitude of behavioral hesitation and decision
rigidity of the anxious agent is denoted by d. When d equals 1, the anxious agent does not embody hesitation. /e anxious agent begins to
exhibit hesitation when d equals 2 or is even higher than 2. /e upper bounds for the irrational circumstances are 0.1, 0.2, and 0.5,
respectively.

Deviations Momentum strength
d Mean t (mean) Mean t (mean)
Panel A: evolutions in the rational scenario
1 1937.722 13.149 −0.002 −0.084
2 1909.506 13.899 −0.002 −0.147
3 1949.298 14.519 −0.003 −0.165
4 1959.178 14.331 −0.002 −0.125
5 2011.462 13.725 −0.003 −0.181
Panel B: evolutions in the irrational scenario ( U � 0.1 )
1 1887.498 14.488 −0.001 −0.085
2 1940.968 14.247 −0.002 −0.109
3 1934.550 14.409 −0.002 −0.121
4 1898.376 14.271 −0.002 −0.132
5 1975.848 13.646 −0.004 −0.198
Panel C: evolutions in the irrational scenario ( U � 0.2 )
1 1873.440 14.463 −0.001 −0.086
2 1909.521 14.353 −0.002 −0.131
3 1929.630 14.477 −0.002 −0.145
4 1874.889 14.088 −0.002 −0.156
5 1982.344 13.170 −0.003 −0.187
Panel D: evolutions in the irrational scenario ( U � 0.5 )
1 1833.252 14.117 −0.001 −0.077
2 1902.283 13.427 −0.001 −0.092
3 1922.032 14.708 −0.002 −0.140
4 1908.596 14.426 −0.002 −0.162
5 1943.689 12.876 −0.003 −0.179
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7. Conclusions

/is paper proposes and develops an artificial market, which
is populated by anxious agents and fundamentalist agents. In
accordance with the psychological research of Clapp et al.
[18] and Lorian and Grisham [20], we take the lack of
confidence and behavioral hesitation into account when
designing the anxious agent’s belief in the expectation re-
garding the asset’s price. We analyze the relationship be-
tween anxiety, the evolutionary mechanisms, and price
deviations through computational experiments. Further-
more, the effect of anxiety on price inertia is also investi-
gated. In addition to these dissections, we strive to confirm
whether there is a significant difference in the strategic
benefit between the rational fundamentalist agent and the
irrational anxious agent.

From our experimental outcomes, we perceive that the
deviations from the fundamental price are related to the
behavioral hesitation of the anxious agent (denoted by d).
/e mean of the deviations increases with the hesitation of
anxious agents in the market. In light of Jegadeesh and
Titman [42], we design momentum strength to analyze the
interactions among anxiety, price inertia, and price reversal.
Our experiments indicate that the behavioral hesitation of
the anxious agent is positively correlated with momentum
strength.

Moreover, the evolutionary mechanism of Hommes [34]
is employed in our agent-based model. Under the cir-
cumstance of agent evolution, the absolute values of the
negative momentum strengths are attenuated with an in-
creasing d. Since anxious agents lack confidence, they need
continuous and multiperiod positive (negative) information
to alter their beliefs and adjust their trading strategies. Such
results imply that it is less possible for price reversal to
emerge when the anxious agent embodies more severe
hesitation.

According to the definition of a strategic benefit pro-
vided by Hommes [34, 86], we find that the average benefit
of the anxious agent’s strategy is close to zero. Since devi-
ations from fundamentals prevail in the market, and the

fundamentalist agent’s beliefs are based on fundamentals,
the average benefit of the fundamentalist agent is negative.
In Section 5.1, irrationality is implemented in the anxious
traders’ evolutionary mechanism. Likewise, we still discover
that fundamentalist traders cannot obtain significant ben-
efits. Such findings from the simulations also echo the
strategic benefit, which can be observed in the real market.

In a nutshell, the fundamentalist agent cannot outper-
form in a market in which there are deviations from the
fundamental price. /e anxious agent engages in delayed
transactions as a result of a lack of confidence. Such deci-
sions enable the agents to be immune to losses. From this
perspective, the strategy of the anxious agent may be a wise
one. We believe that it would be valuable to incorporate the
overconfident speculator into such an anxiety agent-based
model in future research.

Appendix

A. Simulation Design and Parameters of
the Model

We follow Chiarella et al. [81] to design our simulations for
the artificial financial market developed in this paper. To this
end, a simulation is comprised of 52 periods. In addition,
these 52 periods correspond to 52 trading weeks of a year in
the real financial market. Such a simulation is repeated 100
times. Before performing simulations for the artificial
market, it is necessary to define several parameters used in
the model. In Table 10, we report the parameters following
Zhu et al. [35] and Amilon [82].

B. The Long Short-Term Memory
Neural Network

Furnished with the design of memory cells, Hochreiter and
Schmidhuber [130] construct a long short-term neural
network (LSTM). /e involvement of self-connected
memory cells enables the LSTM to tackle long-term infor-
mation. Within each memory cell, there are three gates to
maintain and control the cell state, encompassing the forget
gate, input gate, and output gate. /ese three gates serve as
information filters. We describe such a neural network
model in more detail as follows.

First of all, the forget gate determines which information
should be removed from the cell state at time t-1. /e ac-
tivation value of the forget gate at time t is obtained through
the following equation:

ft � sigmoid Wf,xxt + Wf,hht−1 + Bf , (B.1)

where xt is the input at time t, ht−1 is the output from the cell
at t-1, Wf,x and Wf,h are weight matrices, Bf is the bias
vector, and sigmoid(z) � (1 + e− z)− 1 with a range between
0 and 1.

Second, themodel screens out which information is to be
added to the cell state at time t. Such a task is accomplished
using the following two procedures:

Table 10: Parameters of the agent-based model. Note: /is table
reports the parameters used in this paper. /ese parameters are
chosen in accordance with Zhu et al. [35] and Amilon [82].

Parameters Values
p∗t�0 10
pt�0 10
σε 0.01
Qs

t N(0, 1)

c 0.8
δ 2
ωθ 0.04
β 1.5
m 0.06
λ 0.06
ϕc 1
ϕx 2
ηc 0.4
ηx 0.4
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ct

it � sigmoid wi,xxt + wi,hht−1 + bi ,
(B.2)

where ct is the candidate value of the cell state, it denotes the
input gate, Wc,x, Wc,h, Wi,x, and Wi,h are weight matrices, Bc
and Bi are bias vectors, and tanh(z) � (ez − e− z)/(ez + e− z).

/ird, the cell state at time t is updated through the
following equation:

ct � ft ⊙ ct−1 + it ⊙ct, (B.3)

where ⊙ denotes element-wise multiplication.
Finally, the output of the memory cell at time t is derived

from the following equations:

ot

ht � ot ⊙ tanh ct( .
(B.4)

Here, Wo,x and Wo,h are weight matrices, Bo is a bias vector,
ot is the output gate, and ht is the output of the cell state, ct.
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