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'e food security of more than half of the world’s population depends on rice production which is one of the key objectives of
precision agriculture.'e traditional rice almanac used astronomical and climate factors to estimate yield response. However, this
research integrated meteorological, agro-chemical, and soil physiographic factors for yield response prediction. Besides, the
impact of those factors on the production of three major rice ecotypes has also been studied in this research. Moreover, this study
found a different set of those factors with respect to the yield response of different rice ecotypes. Machine learning algorithms
named Extreme Gradient Boosting (XGBoost) and Support Vector Regression (SVR) have been used for predicting the yield
response. 'e SVR shows better results than XGBoost for predicting the yield of the Aus rice ecotype, whereas XGBoost performs
better for forecasting the yield of the Aman and Boro rice ecotypes. 'e result shows that the root mean squared error (RMSE) of
three different ecotypes are in between 9.38% and 24.37% and that of R-squared values are between 89.74% and 99.13% on two
different machine learning algorithms. Moreover, the explainability of the models is also shown in this study with the help of the
explainable artificial intelligence (XAI) model called Local Interpretable Model-Agnostic Explanations (LIME).

1. Introduction

More than 50% of the people in the world consume rice as
their main food item andmore than 3500 million people rely
on rice as it fulfills more than 20% of their day-to-day
calories [1]. Since the world’s population has grown over
time, the amount of cultivable land has reduced day by day,
so it is important to growmore crops on a limited amount of
land. 'erefore, it has been an essential thing to predict the
yield of the harvest before sowing the crop. Smart agriculture
has been introduced in Agriculture 4.0 [2] for intelligent
development of Argo-production, processes, and services

[2]. In research [3], thermal infrared (TIR) images of soil
have been analyzed using a convolutional neural network for
precision agriculture. Machine learning-based soil type
identification and crop recommendation system have been
proposed in another research [4]. 'e bagged trees,
Weighted k-nearest neighbor (k-NN), and Gaussian kernel-
based support vector machines (SVM) have been used for
soil type detection and crop recommendation. However,
yield response prediction for precision agriculture is such a
modern approach in the farming sector that can ensure food
security through escalating production and, at the same
time, boost the economy of a country.
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Kaur and Singh Attwal studied the effect of temperature
and rainfall on the yield estimation of paddy [5]. 'e study
used a predictive Apriori algorithm to predict paddy yield
based on daily rainfall and daily temperature. Another study
looked into the impact of rising air temperatures on yield by
applying the Ceres-rice model associated with the Decision
Support System for Agrotechnology Transfer (DSSAT) [6].
Various machine learning techniques were used to predict
the relationship between rice yield and climate variables in a
large region of Sri Lanka by the authors in Ref. [7]. In
another study, artificial neural networks were used to esti-
mate paddy yield prediction using only climate data [8]. In
Ref. [9], Shook et al. (2020) presented a deep learning-based
crop production forecast that took into account genotype
and meteorological data. Guruprasad et al. proposed a yield
estimation model for paddy based on the different spatial
resolution (SR), weather, and soil factors [10]. Disaggrega-
tion had been performed through machine learning models
using coarser SR level data to predict yields at the finer SR
level. Another research [11] shows that Backward interval
Partial Least Square Regression (BiPLS) was used in the yield
prediction of rice. 'e BiPLS showed higher prediction
accuracy on airborne hyperspectral data. In another research
[12], paddy harvest and demand are predicted using re-
current neural network (RNN) and long short-termmemory
(LSTM), respectively. 'e corelation between paddy plan-
tation date and rice productivity has been studied in Ref.
[13]. In Ref. [14], the authors discussed a deep learning-
based rice yield prediction model for selecting the best linear
and nonlinear regression models for yield prediction.

'e above-mentioned studies had considered various
factors separately, e.g., rainfall, temperature, humidity, and
soil types for rice yield prediction. However, we have to
integrate the meteorological, agro-chemical, and soil
physiographic factors for the accurate prediction of rice
yields. 'erefore, this research combinedly analyzed the
meteorological factors such as temperature, rainfall, and
humidity; the agro-chemical factors such as the used amount
of urea, TSP (trisodium phosphate), and DAP (di-ammo-
nium phosphate) fertilizers; the soil physiographic factors
such as highland, low land, grey valley soil, brown hill soil,
and soil moisture to predict the rice yield response. 'e
Extreme Gradient Boosting (XGBoost) and support vector
regression (SVR) are used for predicting the yield response
of rice. Furthermore, rice productivity varies greatly
depending on the rice ecotype. 'erefore, this research
separately analyzed the factors contributing to the rice
production of three major rice ecotypes, namely, Aus,
Aman, and Boro. 'e Aus, Aman, and Boro ecotypes are
cultivated in July-August, December-January, and March-
May seasons, respectively.

Finally, we have added “explainability,” or in other
words, “interpretability,” to the ML models we have used in
this study by using the XAI model. 'e terms “explain-
ability” and “interpretability” are being used by the re-
searchers as synonyms [15, 16]. In our work, we have
specifically used Local Interpretable Model-agnostic Ex-
planations (LIME) [17] to interpret our models. A user may
study and comprehend how inputs are mathematically

translated to outputs in an interpretable system [18]. 'e
problem of demystifying the black boxes is at the heart of
XAI models, which also implies responsible AI since it may
aid in the creation of transparent models [19]. We dem-
onstrated how different subsets of features are effective in
forecasting yield for all three ecotypes and how certain
features are more significant than others for each ecotype by
utilizing LIME for both XGBoost and SVR.

Specifically, the key contributions of the paper are
summarized as follows:

We introduced a system capable of predicting the yield
of Aus, Aman, and Boro rice ecotypes in the same land
in different years of different land areas
We formulate and integrate meteorological, agro-
chemical, and soil physiographic factors for yield
prediction
We apply two different machine learning models to
show the comparison while predicting the yields of the
rice ecotypes
We show the explainability of the two ML models for
each rice ecotype by applying an XAI model called
LIME

'e rest of the paper is organized as follows: 'e related
work is discussed in Section 2, methodology is covered in
Section 3, result analysis is discussed in Section 4, and
discussion and conclusion are covered in Sections 5 and 6,
respectively.

2. Related Work

Previously, some research studies were conducted related to
yield prediction and improving paddy production. A case
study was conducted in the Indian region using machine
learning technologies [10]. At different spatial resolution
(SR) levels in India, they showed a yield estimationmodel for
paddy based on weather and soil-related data.'eir accuracy
of the yield estimation model was provided in their research
using numerous sets of features and different techniques of
machine learning. 'ey have included several spatial reso-
lution (SR) levels in this experiment, like coarser SR level
(district level) and finer SR level (taluk level). Moreover, they
have given a vast analysis of their system based on the
accuracy of the result they got.'ey have also used a number
of machine learning (ML) techniques in their experiments.
'e accuracy results of these ML techniques have also been
discussed in this paper. Furthermore, they have applied
disaggregation on the coarser SR level yield data. 'e dis-
aggregation has been performed by applying the machine
learning trained models using coarser SR level data to
predict yields at the finer SR level. For predicting yields of
paddy they used machine learning algorithms like support
vector machine (SVM), random forest (RF), and neural
network (NN). 'ey showed bar charts over weekly and
monthly data and analyzed their accuracy. Among 210 bars,
only 16 percent bars had an error more than 10 percent.
117 bars (equivalent to 56 percent of total bars) had error of
less than 5 percent.'e remaining 28 percent bars had errors
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ranging from 5 percent to 10 percent. 'e taluk (an area of a
district in India) yield data of disaggregation of a district had
a minimum error of 6 percent and a maximum error of 25
percent.

Another research group used statistical techniques for
getting a prediction model of the yield of rice [11]. 'ey
worked based on Indonesian fields and conducted research
using airborne hyperspectral data and yield data. Backward
interval Partial Least Square Regression (BiPLS) was used to
estimate the yields of rice. 'ey showed that BiPLS appli-
cation to hyperspectral data gave a good accurate prediction.
In their training dataset of 2011, the root mean square error
(RMSE) was 76.1 percent after the first derivation and 69.7
percent after the second derivation. 'e accuracy with re-
flectance data performed better than the first and second
derivation. 'ey suggested that their proposed method can
be used by the Indonesian government for getting the yield
estimation of paddy.

Some authors worked on the prediction of paddy harvest
and rice demand [12]. 'e authors tried to show a smart
approach for paddy with two steps. First, they established a
prediction model for paddy harvest prediction. Second, the
rice demand prediction model was established in their re-
search. 'ey have mentioned the significance of keeping a
balance between paddy cultivation and consumer demand
for it. 'ey have also figured out some aspects which the
paddy crop yield and the demand for rice in a certain area
depend upon. According to them, these factors are rainfall,
humidity, the lifestyle of the people of that area, and so on.
Judging the factors, they have found that it is a difficult task
to predict the yield of the paddy and its demand of it. From
this paper, we came to know that their goal was to prepare a
module that can predict the paddy harvest and the rice
demand of a certain area. In this regard, they have chosen
two specific machine learning techniques, i.e., recurrent
neural network (RNN) and long short-term memory
(LSTM) were used to establish the prediction models. 'e
performance was measured based on the Sri Lankan context.
'ey analyzed the performance using mean square error
(MSE), root mean square error (RMSE), and the training and
testing score of their prediction model. 'e harvest pre-
diction model showed 0.04 MSE value for training data and
0.11MSE for testing data.'e rice demand prediction model
showed 0.17 MSE value for training data whereas 0.34 for
testing data.

In Ref. [20], they focused on expanding algorithms for
precisely mapping paddy and estimating rice yield in the
Ampara area as the district has the second largest paddy
production in the Sri Lankan rice harvest. From April
through September 2019, the researchers analyzed images
from the Sentinel-1 and Sentinel-2 satellites. Maximum
likelihood classification and Divisional Secretory Division
(DSD) are the two classification techniques utilized to de-
termine the actual paddy area. Using Sentinel-2 feature
extracts and ground truth data, an artificial neural network
(ANN) model was utilized to forecast paddy rice harvest.
'ese categories had accuracy ratings of 0.92 and 0.86, re-
spectively. 'e model’s mean square error is 0.106, and its
mean absolute error is 0.245.

Alam et al.’s aim was to build a rice yield estimation
model for Bangladesh [21]. From 2011 to 2016, images from
the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Normalized Difference Vegetation Index
(NDVI) were utilized. To begin with, the rice field area is
estimated using NDVI threshold values. To calculate the
NDVI threshold values, an improved method was used. To
estimate total Boro output in each of Bangladesh’s eight
districts, four regression models are used: linear, ridge, lasso,
and decision tree. For the Barisal, Chittagong, Dhaka,
Khulna, Mymensingh, Rajshahi, Rangpur, and Sylhet divi-
sions, the highest R2 values are 0.492, 0.790, 0.899, 0.891,
0.848, 0.942, 0.777, and 0.848, respectively.

Alebele et al. proposed a Gaussian kernel for the esti-
mation of rice yield by using SAR and optical imagery where
ground truth data are used in a limited amount [22]. 'e
primary goal was to study the synergistic use of Sentinel-2
statistical parameters and Sentinel-1 interferometric co-
herence data for predicting rice grain production using
Gaussian kernel regression for the prediction of accuracy
was assessed using in situ measured yield data collected in
2019 and 2020 over Xinghua county in Jiangsu Province,
China. 'e Gaussian kernel regression outperformed the
probabilistic Gaussian regression and Bayesian linear in-
ference in every aspect. If the RDVI1 and interferometric
coherence are combined at the heading stage
(RMSE� 0.55 t/ha and r2 � 0.81), the highest prediction
accuracy can be achieved. However, the optical red edge
difference vegetation index (RMSE� 0.61 t/ha and r2 � 0.65)
shows better prediction than with the interferometric co-
herence (RMSE� 0.79 t/ha and r2 � 0.52).

In Ref. [23], for forecasting rice production in different
locations of Bangladesh, a method called Weather-based
Prediction System for Rice Yield (WPSRY) is provided. 'is
suggested method begins by developing a model for the
prediction of weather parameters where neural networks
(NN) will be utilized, and then rice yield will be calculated by
using Support Vector Regression (SVR), which takes as
inputs anticipated weather from NN as well as existing
agricultural data. 'e simulation results show that the
WPSRY technique offers promising prediction accuracy.

In Ref. [24], using historical yield data from 1981 to 2010,
a statistical technique was created for six distinct locations in
China. Based on 28 ensemble weather forecasts from six
cutting-edge models, the data collected from the National
Bureau of Statistics were combined with meteorological
station observations for checking the effect of different
climates such as precipitation and temperature changes on
grain yields into the 2030s. Model results from the Coupled
Model Intercomparison Project Phase 5 (CMIP5). 'e
findings show that maize, rice, soybean, and wheat respond
similarly to climatic differences across China with suscep-
tibility to increasing heat from north to south and from
inland to coastal locations. In Central-South China and the
East, the yield of every type of crop indicated here is very
strongly correlated with weather changes. Future projections
based on a moderate emission reduction scenario (RCP4.5)
found that the yield of the four types of crops in six locations
in China will increase in the 2030s where the range will vary
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from 0.02–1.19 hundred ton/ha compared to that in the
2000s.

Gandhi et al. intended to use neural networks to predict
the output of rice production and investigate the factors
impacting rice crop yield in numerous locations in India’s
Maharashtra state [25]. 'e statistics for 27 districts in the
Indian state of Maharashtra were taken from publicly
available Indian Government sources. Precipitation, lowest
temperature, average temperature, maximum temperature,
and reference crop evapotranspiration, area, production,
and yield were the factors studied for the current study from
1998 to 2002 during the Kharif season which means from
June to November. 'e WEKA tool was used to analyze the
dataset. To validate the data, a multilayer perceptron neural
network was created using the cross-validation approach.
'e results revealed 97.5 percent accuracy, 96.3 percent
sensitivity, and 98.1 percent specificity.

'e paper [26] is the result of a thorough investigation of
the usage of machine learning technologies in yield pre-
diction. 'e authors compare and contrast the use of neural
networks against machine learning techniques in this work.
Another study used a survey of developing advances in
machine learning to estimate crop productivity [27]. 'ey
investigated a variety of machine learning approaches as well
as advanced techniques such as deep learning for crop yield
prediction. 'ey also looked into the effectiveness of hy-
bridized models created by combining multiple techniques.
'e authors of this study [28] conducted a performance
analysis on machine learning techniques for crop yield
prediction using a deep learning model. For yield prediction,
they employed two separate datasets and used random forest
and multilayer perceptron neural network regression
models. In a separate study, the authors use machine
learning and deep learning to integrate multisource data for
rice yield forecasts across China [29]. With publicly available
multisource data, they developed a scalable, simple, and low-
cost technique for estimating rice output across a vast area in
real time. Islam et al. used both parametric and nonpara-
metric techniques to create boro rice yield prediction models
utilizing satellite remote sensing-based vegetation indicators
at the optimum harvesting period [30]. 'ey discovered that
by combining vegetation indices and ground reference mean
yield data, more than 70% of the study area can be effectively
predicted. Another study employed MODIS-based factors
and meteorological data to forecast crop yields at the county
level [31]. 'e researchers wanted to see how well machine
learning models predicted crop yields. Considering all of the
facts, they came to the conclusion that SVM is an appro-
priate method for crop yield prediction.

3. Methodology

'e proposed yield prediction system is an effective com-
bination of a two-step feature selection strategy, ML re-
gression models, and the explainability of those ML models
shown by the XAI model called LIME. It comprises five
distinct phases: (1) general data preprocessing with first step
of feature selection, (2) formulation of training/testing data,
(3) second step of feature selection using RFE, and (4)

finding RMSE and R-squared values applying ML-based
regression models, and finally, (5) using XAI model called
LIME for explainability of the ML models. Figure 1 rep-
resents the system overview of the proposed yield prediction
system.

In the proposed yield prediction system, a dataset with
43-features (explained in Section 3.1) has been used. After
general data preprocessing, the first feature selection has
been applied. XGBoost and SVR are being used for re-
gression after the second feature selection using RFE (details
in Sections 3.2.2). In this work, it has been shown that a
carefully selected combination of features and proper ML-
based regression models can be very effective for yield
prediction. An XAI model called LIME (discussed in Section
3.4) is used to show the explainability of both the ML
models.

3.1. Dataset Description and Preprocessing. 'is paper uses
data from an agricultural dataset recorded during 2008–2017
season found on kaggle.com [32]. 'e dataset contains 43
features including meteorological factors, agro-chemical
factors, and soil physiographic factors. In total, there are 70
rows and 44 columns present in the tabular format.

'e dataset includes the geographical location and year-
by-year production of Aus, Aman, Boro, Wheat, Potato, and
Jute, as well as certain meteorological factors that influence
agricultural product output, such as maximum and mini-
mum temperatures, average rainfall, humidity, and storm.
'is dataset also includes some argo-chemical factors such
as Urea, TSP (triple super phosphate), and MAP (mono-
ammonium phosphate), and DAP (di-Ammonium Phos-
phate), as well as various soil physiographic factors such as
various types of high, low, and very low land, miscellaneous
land, different alluvium, acid basin clay, and different kinds
of soil, peat, and soil moisture. In Table 1, all the 43 features’
names have been listed sequentially.

We have used scatter plots (Figure 2) for showing the
existing Figure 3 yield production Figure 4 of rice based on
the year for the particular districts mentioned in the dataset
separately for three different rice ecotypes, namely, Aus,
Aman, and Boro.

We have discovered that important features for Aus,
Aman, and Boro yield prediction were present in our dataset
based on our analysis. However, the dataset had several
irrelevant features and anomalies. For this reason, we have
used data preprocessing, which is an important step in
improving data efficiency and improving prediction results.
It is a method for resolving issues with data such as in-
completeness, unevenness, and errors, as well as deter-
mining the optimal dataset for the research. Figure 5
illustrates the general order of data preprocessing methods.

We began by removing three nonessential features from
our dataset to make it more appropriate for improved yield
prediction. 'e features of wheat, potato, and jute pro-
duction are irrelevant to our study because our goal was to
forecast the output of three different rice ecotypes. As a
result, we have removed these features. After removing these
three features, the dataset included a total of 40 features.
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Filling missing and “0” values was the next preprocessing
phase, which is a required data preprocessing method since
it might cause lower algorithm performance and irregu-
larities in the whole dataset. We have started by looking for
“NaN” values in the data. We have discovered that the “area”
feature has 35 “NaN” values or missing data. 'ere are
various methods for dealing with missing values. From
those, we have applied the imputation technique. With our
dataset, the imputation approach is well balanced since it
replaces missing values with available information from that
particular feature, reducing the risk of missing crucial data.
As a result, we have imputed the “NaN” values with the
median value for that column in the remainder of the data.
Following that, we looked for “0” values in the data. 'e
dataset had a significant number of “0” values, which we
observed. We have replaced the “0” values in each column
with the mean or median value of that particular column of
data based on the best fit for that particular column.'e total
number was 704, and we replaced the “0” values in each
column with the mean or median value of that particular
column of data based on the best fit for that particular
column. We chose the mean value in most of the columns
since the number of “0” values in those columns was quite
high, making the usage of the median value unfeasible. To
prevent outlier concerns, imputation by the median ap-
proach was utilized for just three features, and the remainder
of the columns with “0” values were replaced by the column
mean values.

After that, we concentrated on feature selection. To
begin, we used a heat map to determine the data’s corre-
lation. A heat map is a more visual representation of the
dataset that helps us to understand how the features are

connected. In the case of meteorological, agro-chemical, and
soil physiographic factors, we searched for correlated fea-
tures to ensure that there were no strongly correlated fea-
tures. 'e diagonal in the heat map below (Figure 6)
indicates that the features are linked with one another, which
is why the value is 1. For our dataset, we consider features to
be strongly correlated if the correlation is greater than 0.8,
and we only maintain one feature from the group of ex-
tremely correlated features. We investigated the connection
of the three rice ecotypes individually and discovered 27
significantly linked features. We acquire a total of 17 features
for our models after eliminating the relevant 23 significantly
associated features using manual cross-checking. We
omitted the “district” feature column from the 17 features
since it is string-type data and has no influence on our yield
forecast. Meteorological, agro-chemical, and soil physio-
graphic factors are among the 16 features that are chosen.

We used feature scaling on the 16 features that we chose.
Feature scaling is a technique for reducing the number of
features in a dataset to a smaller subset. We checked for large
differences or outliers among data of the same feature.'is is
an important observation as we used Support Vector Re-
gression (SVR) for prediction, and SVR is a distance-based
algorithm and is affected by the range of features. 'is is
because SVR compares the distances between data points to
see how similar they are. We have noticed that several of the
dataset’s values are vastly different. As a result, we chose the
standard scaler as a scaling strategy among the various
scaling techniques. 'e standard scaler is a technique where
data is usually distributed within each feature and scales the
data in a way that the distribution is centered around 0, with
a standard deviation of 1.

Dataset Collection
(containing Meteorological,

Agro-chemical and
Soil Physiographic Factors)

Hyperparameter
Tuning

Computing the RMSE
and R-squared values

for Aus, Aman
and Boro

Applying Explainable
Artificial Intelligence
(XAI) model to show

explainability

Dataset
Pre processing

Correlation based
feature selection
(best 16 features)

Train test split of
the dataset (70% and

30% respectively)

Predicting the models
using test dataset
for three different

rice ecotypes

Fitting the models
on the train dataset
of Aus, Aman and

Boro separately

Reducing the feature
number to 10 using
Recursive Feature
Elimination (RFE)

Figure 1: System overview of the proposed yield prediction model.
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Finally, for the selection of features for three different
rice ecotypes, we utilized Recursive Feature Elimination
(RFE) to determine the yield of each ecotype individually.
Feature selection is a method for selecting a subset of the
dataset’s most important features (columns). It makes
constructing a predictive model easier by reducing the
number of input variables. Besides, machine learning al-
gorithms perform better when they have fewer features. For
the different ecotypes, we utilized RFE to select distinct sets
of features. It is a wrapper feature selection model that
creates several models of input features with various subsets
and picks the best-performing model from those features.
Using this technique, we choose the best-fitted features for
the XGBoost and SVR algorithms to improve prediction
outcomes for three rice ecotypes. We used a trial and error

approach to decrease the features to 10 for both the models
and all three rice ecotypes after seeing the prediction out-
comes of three ecotypes based on two distinct machine

Table 1: Feature name list.

Column serial number Feature name
1 Year
2 Area
3 avg_rainfall
4 max_temperatue
5 min_temperature
6 Aus
7 Aman
8 Boro
9 Wheat
10 Potato
11 Jute
12 Humidity
13 Storm
14 Urea
15 TSP
16 Mp
17 DAP
18 inundationland_Highland
19 inundationland_mediumhighland
20 inundationland_lowland
21 inundationland_mediumlowland
22 inundationland_verylowland
23 Miscellaneous land
24 Calcareous alluvium
25 Noncalcareous alluvium
26 Acid basin clay
27 Calcareous Brown floodplain soil
28 Calcareous grey floodplain soil
29 Calcareous dark grey floodplain soil
30 Noncalcareous grey floodplain soil
31 Noncalcareous dark grey floodplain soil
32 Peat
33 Made-land
34 Noncalcareous Brown floodplain soil
35 Shallow Red-Brown terrace soil
36 Deep Red-Brown terrace soil
37 Brown mottled terrace soil
38 Shallow grey terrace soil
39 Deep grey terrace soil
40 Grey valley soil
41 Brown hill soil
42 Grey piedmont soil
43 Soil moisture
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Figure 2: Year-wise (2008–2017) production of Aus.
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Figure 3: Year-wise (2008–2017) production of Aman.
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learning models. For all ecotypes and both models, we found
that picking 10 features gives us good RMSE and R-squared
values. Although the number of features considered in all
three rice ecotypes and both models is the same, the features
differed from ecotype to ecotype, as well as model to model.

3.2. XGBoost Regression Model. 'e XGBoost regression
model is one of the two machine learning (ML) models that
we have used to predict the yield of three different rice
ecotypes. XGBoost regression is a powerful supervised
regression model. 'is is very useful for both classification
and regression model prediction. 'e XGBoost decision
tree ensemble is a highly scalable decision tree ensemble
based on gradient boosting [33]. XGBoost, like gradient
boosting, minimizes a loss function to produce an additive
expansion of the objective function [34]. 'is ML model
uses the gradient boosting decision tree algorithm called
multiple additive regression trees, gradient increasing,
gradient boosting machines, or stochastic gradient
boosting [35, 36]. 'is is one of the models that follow
increasing techniques like AdaBoost, gradient boosting,
extreme gradient boosting, and many more ML models
[36–38].

XGBoost dominates structured or tabular datasets in
classification and regression problems. XGBoost was chosen
as one of the machine learning models since our dataset is
structured. 'is model is also exceptionally quick and
performs well because it is built on gradient-boosted deci-
sion trees. 'at is why it is the go-to method for competition
winners on the Kaggle competitive data science platform and
the most used model by data scientists in different machine
learning competitions [33]. In boosting, new models are
added to correct earlier models’ flaws. Models are intro-
duced one by one until no more improvements are possible.
'e gradient descent architecture is the basis of XGBoost’s
boosting. XGBoost further improves the gradient boosting
machine architecture through system optimization and

algorithmic innovations. Additionally, it is highly flexible
and takes advantage of parallel processing. It has regulari-
zation capabilities and does a cross-validation test after each
iteration. XGBoost was used as one of the models in our
dataset to produce a higher overall prediction because of
these benefits.

3.2.1. Model Description. 'e very first step in fitting
XGBoost to the training data is to make an initial prediction.
'is prediction can be anything, but the default value used
for both regression and classification is 0.5 [33]. After the
initial prediction, the residuals are used to observe the
differences between observed and predicted values. 'is
gives an estimation of how right the initial prediction is. Just
like extreme Gradient Boost, XGboost fits a regression tree
to the residuals. However, XGBoost uses a unique regression
tree different from the regular regression tree used by other
models. 'ere are more than one ways to build XGBoost
trees. However, for the most common method, each tree
starts as a single leaf, and all of the residuals go to the leaf.
After that, the quality or similarity score is calculated for the
residuals.'e formula for calculating the similarity score is

Similarity Score �
Sumof Residuals, Squared
Number of Residuals + λ

. (1)

Here, lambda is a regularization parameter. Its primary
job is to reduce the sensitivity of the prediction. Generally,
we see that when the residuals in a node are very different,
they cancel each other out, and the similarity score is rel-
atively small. In contrast, when the residuals are similar, or
there is just one of them, they do not cancel each other out,
and the similarity score is relatively large. Next, we quantify
how much better the leaves cluster similar residuals than the
root by calculating the gain of splitting the residuals into two
groups.

'e formula for calculating gain is as follows:

Gain � Leftsimilarity + Rightsimilarity − Rootsimilarity.

(2)

After that, calculate the gain for different thresholds
depending on the dataset and the branches of trees deriving
from the dataset. After comparing different thresholds, the
model will use the threshold that gave the largest gain. 'e
model uses the pruning of XGBoost trees based on their gain
value. If the difference between the gain and c (gamma) of a
branch is negative, then the model will remove that par-
ticular branch, and if the difference between the gain and c

(gamma) is positive, then the branch will not be removed.

Gain − c �
If positive, then do not prune,

If negative, then prune.
􏼨 (3)

Output value calculation for the leaves is the next step of
the regression model. It used the following formula to
calculate the output value:

OutputValue �
Sumof Residuals

Number of Residuals + λ
. (4)

Dropping irrevalant
values

Filling missing values
and ‘0’ values

Removing strongly
correlated data

Feature scalling

Feature selection

Figure 5: Data preprocessing techniques.
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After finishing this process, the model will be done by
building a new tree for predictions.'emodel will make new
predictions by taking the initial prediction, and then with the
help of the learning rate, it will add the output of the tree
continuously. It will check the residuals values for going
forward by building new trees based on the new residuals.
'is process will continue until the residuals are super small
or it has reached the maximum number.

With the result of more pruning, smaller output values
can be achieved for the leaves by using the value of lambda
greater than 0 as it initiated more pruning and shrinking of
similarity scores. Let us observe and explore the mathe-
matics of XGBoost regression based on the minimizing of
the loss function and finding a suitable output value for the
model.

From the earlier discussion, we know that XGBoost
regression starts with an initial prediction value that usually
is 0.5. To determine how good the initial prediction is, the
loss function is calculated using the formula given below:

L yi, pi( 􏼁 �
1
2

yi − pi( 􏼁
2
. (5)

In general, the formula looks like what as follows:

􏽘

n

i�1
L yi, pi( 􏼁 �

1
2

yi − pi( 􏼁
2
. (6)

After calculating the loss function, we can observe if the
new prediction is improving or not based on the initial
prediction that was made. 'e XGBoost regression uses a
formula and uses the calculated loss function for building
new trees using the output value in this formula that is
calculated. 'e formula is as given below:

􏽘
n

i�1
L yi, pi( 􏼁 +

1
2
λO

2
v. (7)

Here, Ov � output value.
'is equation contains the loss function and the regu-

larization term and tries to minimize the whole equation.
Here, the first part of the formula represents the loss
function that we discussed before, and the second part

represents the regularization term where lambda and output
values are present.

For the output value optimization of the first tree, the Pi

is replaced with the initial predictions and output value and
the equation looks like as given below:

􏽘

n

i�1
L yi, p

0
i + 0v􏼐 􏼑 +

1
2
λO

2
v. (8)

'en λ (lambda) is set to 0 for simple calculation and the
updated equation looks like what as follows:

For λ� 0,

􏽘

n

i�1
L yi, p

0
i + Ov􏼐 􏼑. (9)

If the plot shows the output value and loss function that
the above equations give, then a parabola-like structure is
created. In the parabola-like structure if the lambda value
increases, then the parabola shifts towards zero, and this is
how regularization works.

If λ (lambda) is set to a 0 value, then the optimal output
value is situated at the bottom of the parabola, and here, the
derivative is also zero. XGBoost generally uses second-order
Taylor approximation for regression models. 'e updated
equation containing both loss function and output values is
as follows:

L y1, p
0
1􏼐 􏼑 + g1Ov +

1
2
h1O

2
v + L y2, p

0
2􏼐 􏼑 + g2Ov

+
1
2
h2O

2
v + · · · + L yn, p

0
n􏼐 􏼑 + gnOv +

1
2
hnO

2
v +

1
2
λO

2
v.

(10)

Here, we can observe that the first part of the above
equation contains the loss function. 'e next part of the
equation represents the first derivative of the loss function,
and then the later part contains the second derivative of the
loss function. Now, XGBoost uses “g” for representing the
first derivative part as this part is related to Gradient Descent
and as the second derivative came fromHessian, and for that
reason, XGBoost uses “h” to represent the second derivative.
Replacing these values, the above equation will be
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Figure 6: Partial heat map based on features correlations.
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L y, pi + Ov( 􏼁 � L y, pi( 􏼁 + gOv +
1
2

hO
2
v. (11)

Now, using the summation, we get

􏽘

n

i�1
L yi, p

0
i + Ov􏼐 􏼑 +

1
2
λO

2
v. (12)

After expanding the summation, it becomes

L y1, p
0
1 + Ov􏼐 􏼑 + L y2, p

0
2 + Ov􏼐 􏼑 + · · · + L yn, p

0
n + Ov􏼐 􏼑 +

1
2
λO

2
v.

(13)

'en, let us plug in the Taylor approximation in the
above equation (13). 'e equation then looks like as follows:

L y1, p
0
1􏼐 􏼑 + g1Ov +

1
2
h1O

2
v + L y2, p

0
2􏼐 􏼑 + g2Ov

+
1
2
h2O

2
v + · · · + L yn, p

0
n􏼐 􏼑 + gnOv +

1
2
hnO

2
v +

1
2
λO

2
v.

(14)

'e next step is to remove those terms from the equation
that does not contain output value terms. 'e remaining
function can be minimized by first taking the derivative of
the output value. Now, to solve for the lowest point in the
parabola, the derivative needs to be set to 0.

'en the output equation will be

Ov �
− g1 + g2 + · · · + gn( 􏼁

h1 + h2 + · · · + hn + λ( 􏼁
. (15)

For the negative residuals represented by gi, the formula
is as follows:

gi �
d

dpi

1
2

yi − pi( 􏼁
2

􏼒 􏼓 � − yi − pi( 􏼁. (16)

'e number of residuals in the equation, hi, can be given
as follows:

hi �
d
2

dp
2
i

1
2

yi − pi( 􏼁
2

􏼒 􏼓 � 1. (17)

Putting the negative residuals, gi, and number of re-
siduals, hi value, in equation (15), the output value equation
now is as follows:

Ov �
y1 − p1( 􏼁 + y2 − p2( 􏼁 + · · · + yn − n( 􏼁

(1 + 1 + · · · + 1 + λ)
. (18)

Finally, we can write the equation as

Ov �
Sumof residuals

Number of residuals + λ
. (19)

We have already seen this equation in the first part of the
model description, where we describe the model without the
mathematical terms.

3.2.2. Description of Model Implementation. Initially, we
divided our dataset for training and testing. We have kept 70
percent data for training and 30 percent data for testing.

After that, hyperparameter tuning is used to control the
XGBoost model’s overall behavior. 'e final aim was to
discover the best hyperparameter combination that mini-
mizes a predefined loss function and produces better results.
Because finding the appropriate hyperparameter might be
time-consuming, the “GridSearchCV” Python package is
used to implement a grid search method with 10-fold cross-
validation. We utilized the grid search method to determine
the optimum combination of six hyperparameters for
XGBoost that are the most important, which are defined as
those with the highest chance of the algorithm producing the
most accurate, unbiased results the fastest without over-
fitting. We found that in case of Aus yield prediction, the
best hyperparameters are {“gamma”: 0, “learning_rate”: 0.12,
“max_depth”: 5, “min_child_weight”: 3, “n_estimators”:
1000, “reg_lambda”: 3}. For Aman yield, the best hyper-
parameters are {“gamma”: 0, “learning_rate”: 0.1, “max_-
depth”: 3, “min_child_weight”: 1, “n_estimators”: 1000,
“reg_lambda”: 1}. And in case of Boro, the best hyper-
parameters found are {“gamma”: 0, “learning_rate”: 0.15,
“max_depth”: 3, “min_child_weight”: 1, “n_estimators”:
1000, “reg_lambda”: 1}.

In the next step, the RFE (Recursive Feature Elimina-
tion) model is implemented for the XGBoost classifier. It
plays an influential role in selecting the most accurate
features for getting the predicted value. After using the heat
map, 16 features are found, and among them, 10 best fea-
tures have been identified using RFE. 'is set of 10 features
is different for each rice ecotype. 'e set of best 10 features
for Aus, Aman, and Boro yield prediction is given below.

For theAus rice ecotype, the selected features using RFE are
year, area, max_temperature, min_temperature, aman, boro,
humidity, TSP, inundationland_mediumlowland, and shallow
Red-Brown terrace soil. For the Aman rice ecotype, the selected
features using RFE are year, area, max_temperature, boro,
humidity, TSP, inundationland_mediumlowland, non-
calcareous grey floodplain soil, shallow red-brown terrace soil,
and Aus. For the Boro rice ecotype, the selected features using
RFE are area, max_temperature, aman, humidity, tsp, inun-
dationland_mediumlowland, calcareous alluvium, non-
calcareous alluvium, noncalcareous grey floodplain soil, and
Aus.

It is seen that the best 10 features are not the same for all
rice ecotypes. We then applied XGBoost for all three rice
ecotypes and generate RMSE and R-squared values. Finally,
we have applied LIME to show the explainability of the
model for each rice ecotype separately.

3.3. Support Vector Regression (SVR)Model. 'e second ML
model used for yield prediction is Support Vector Regres-
sion (SVR). A Support Vector Machine (SVM) defined by a
separating hyperplane is a classifier [39]. When a support
vector machine is used for a regression problem, it is called
Support Vector Regression (SVR). SVR is a regressionmodel
used for the prediction of a continuous dataset. Since our
dataset contains tabular data with constant values, SVR also
works well in our dataset. Instead of minimizing the error
rate like other regression models, this model tries to fit the
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error into a certain threshold.'e hyperplane is a separation
line between the data classes [40]. For a nonlinear classifier
or regression line, a radial basis kernel function is used. 'e
kernel function is used to transform n-dimensional input to
m-dimensional input. Here, m is higher than n, and the dot
product in higher-dimensional efficiency is found. A linear
classifier or regression curve in a higher dimension is
converted to a nonlinear classifier or regression curve in a
lower dimension through the kernel function, which is the
central concept behind using a kernel function. 'e kernel’s
main objective is to do calculations in any d-dimensional
space where d is greater than 1. As a result, quadratic, cubic,
or any polynomial equation of a large degree can be found.
'at is why it is implemented in our dataset. 'is model is
called the nonparametric technique as it depends on kernel
functions. Some of the terminologies of this regression
model are as follows:

(1) Kernel: 'is function is used to convert lower-di-
mensional data into higher-dimensional data. 'ere
are five kernels available for Support Vector
Regression.

(2) Hyperplane: In SVR, this line helps to predict the
target values or continuous values using the distance
method.

(3) Boundary Line: In SVR, boundary lines are used to
create a margin just like Support Vector Machine
(SVM).

(4) Support Vectors: Support vectors represent the
closest data points towards either side of the hy-
perplane. 'ese points create boundary lines.

'e SVR, unlike other regression models, aims to fit the
best line within a threshold value rather thanminimizing the
error between the real and predicted value. 'e threshold
value is calculated by measuring the distance between the
hyperplane and the boundary line. Another reason to
consider SVR is that it offers outstanding generalization and
prediction accuracy. Additionally, when compared to other
regression models, SVR requires less processing and is
simple to apply. Because of these advantages, SVR was
chosen as the secondML model for our dataset.

3.3.1. Model Description. First, there are two boundary lines
selected from the epsilon distance of the hyperplane. For
simplicity, let us assume that epsilon is represented by “e.”
Let us take that the hyperplane goes through the Y-axis and
is a straight line. 'en, the equation is

wx + b � 0. (20)

From this equation, we can derive the two equations of
the boundary lines. 'ese equations are, respectively, given
as

Wx + b � +e,

Wx + b � −e.
(21)

From these equations, the equation that satisfies SVR for
any linear hyperplane can be derived, and that equation is

e≤y − Wx − b≤ + e. (22)

'e primary purpose here is to create a boundary at
distance “e” from both sides of the hyperplane so that the
closest data points towards the hyperplane or the support
vectors remain in the boundary line that is created.

In Figure 7, the solid black line is the hyperplane here,
and the rest two dotted black lines are the boundary lines,
and “e” is distant from the hyper-line. 'is boundary in-
dicates the tolerance’s margin, and the points within this
boundary will be taken as accepted values as they will have
the least error rate. 'is way, it will provide a better fitting
regression model.

Another essential factor of Support Vector Regression is
the kernel function. Selecting and using the right kernel is
very important for getting a good prediction. 'ere are five
kernels for SVR: linear, radial basis function (RBF), poly-
nomial, sigmoid, and precomputed.

'e linear kernel function equation is given as

K xi, xj􏼐 􏼑 � xi · xj. (23)

'e radial basis function (RBF) kernel function is rep-
resented by

K xi, xj􏼐 􏼑 � exp −c xi − xj

�����

�����
2

􏼒 􏼓c> 0. (24)

'e polynomial kernel function is

K xi, xj􏼐 􏼑 � xi · xj + 1􏼐 􏼑
d
d. (25)

'e sigmoid kernel function equation is

K xi, xj􏼐 􏼑 � tanh b xi, xj􏼐 􏼑 + c􏼐 􏼑b, c. (26)

'e appropriate kernel function selection is the key to
improving a particular model’s performance, and this should
be given importance while using the Support Vector Re-
gression model for continuous datasets.

yi = 〈w, xi〉+b+

yi = 〈w, xi〉+b-

 - deviationi
*

i

Figure 7: Support Vector Regression model.
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3.3.2. Description of Model Implementation. After the pre-
processing of the dataset, the Support Vector Regression
model is used on the dataset to predict the yield of Aus,
Aman, and Boro separately. 'e necessary packages for this
ML model were imported. 'e dataset is split into train and
test sets containing 70% for training and 30% for testing.

'en, hyperparameter tuning is instantiated just like we
did in the XGBoost model to find the best combination of the
most important hyperparameters of SVR. Just like XGBoost,
we used the “GridSearchCV” package with 10-fold cross-
validation to implement the grid search method to determine
the optimum combination of the five hyperparameters of SVR
that we found most important. 'e result showed that in case
of Aus yield prediction, the best hyperparameters are {“C”:
1.0, “epsilon”: 0.1, “gamma”: “scale,” “kernel”: “linear,” “tol”:
0.001}.'e best hyperparameters for Aman yield are {“C”: 1.0,
“epsilon”’: 0.2, “gamma”: “scale,” “kernel”: “linear,” “tol”:
0.001}. For Boro yield, the best hyperparameters are {“C”: 2.5,
“epsilon”: 0.1, “gamma”: “scale,” “kernel”: “linear,” “tol”: 0.01}.

After that, RFE was used to select the best 10 features for
running the model. Here, the 10 features were mainly se-
lected after tuning the selection and observing the results.
'e best 10 features differ for each rice type just like
XGBoost. 'e best 10 features are provided below for three
separate rice ecotypes.

For the Aus rice ecotype, the selected features using RFE
are year, area, min_temperature, aman, boro, humidity, TSP,
inundationland_mediumlowland, calcareous alluvium, and
noncalcareous alluvium.

For the Aman rice ecotype, the selected features using
RFE are area, avg_rainfall, max_temperature, min_-
temperature, boro, humidity, TSP, inundationland_me-
diumlowland, noncalcareous alluvium, and Aus.

For the Boro rice ecotype, the selected features using RFE
are year, area, min_temperature, aman, storm, TSP, inun-
dationland_mediumlowland, noncalcareous alluvium,
noncalcareous grey floodplain soil, and Aus.

Just like XGBoost, it is also seen that the set of 10 best
features is different for three different rice ecotypes in the
case of SVR too. Lastly, based on the features found from
RFE, we generated the prediction values of the yield of Aus,
Aman, and Boro. For accuracy, we have calculated RMSE
and R-squared values. Finally, we have applied LIME for
explainability of the SVR model for each rice ecotype.

3.4. Local InterpretableModel-Agnostic Explanations (LIME).
LIME is a model-independent explanation approach that
uses a local (explainable) intermediary model to explain any
machine learning model [41]. 'e technique begins by
creating a fresh artificial dataset of altered samples sur-
rounding the instance of interest, then utilizing the black-
box model as an oracle, obtaining their associated predic-
tions. 'e weighting of the additional data points is de-
pendent on their closeness to the original observation. 'e
new data are then used to perform a feature selection phase,
which selects the features that best explain the model output.
Finally, a basic model is trained and fitted to the newly
picked data, and a conclusion is drawn from it.

Because LIME is a local explainability framework, it
calculates the influence and relevance of each feature on a
local level (i.e., this is done for each prediction). Instead of
providing an overall summary, we wanted to highlight how a
set of features affects an individual yield estimate. 'is way,
we would be able to show how meteorological, agro-
chemical, and soil physiographic factors contribute to yield
prediction and if their relevance is equal or not. In com-
parison to other XAImodels, LIME is an excellent fit to serve
this purpose. Furthermore, the local predictions of LIME
appear to be accurate in their interpretations [42].

3.4.1. Description of LIME. We will give a brief overview of
LIME and how it maintains model-agnosticism. LIME
targets to identify an interpretable model over interpretable
representation also denoted as locally faithful to the clas-
sifier. Lime can be useful in a local approximation of an
interpretable model though it cannot approximate a black
box model globally. Let us denote the original representation
of an instance by x ∈ Rd, and by x′ ∈ Rd′ , we represent a
vector of the interpretable representation.

Formally, we can represent the explanation model as
g: Rd′ ⟶ R, g ∈ G, where G represents a class of poten-
tially explainable models, for example, decision trees, and
linear models. Here, given a model g ∈ G, an explanation in
visual or textual form can be presented to the user. As not
every g ∈ G is simple enough for interpreting,Ω(g) can be a
measure of complexity for g in both soft constraint and hard
constraint.

Now, let f: Rd⟶ R be a model explained in classifi-
cation, and f(x) is the probability indicating x belongs to a
particular class. A proximity measure Πx(z) can be used
between z and x to define locality around x.

Next, we can represent a measure of how unfaithful g is
in approximating f, where the locality defined by Πx is
L(f, g,Πx). If we want to ensure both local fidelity and
interpretability, then we have to have a low Ω(g) that is
enough to be interpretable by a human with minimized
L(f, g,Πx). We can get the explanation ξ(x) generated by
LIME by solving the equation below:

ξ(x) � argmin
g∈G

L f, g,Πx( 􏼁 +Ω(g). (27)

'e formulation given above can be sued with different
fidelity functionsL, explanation families G, and complexity
measures Ω.

4. Result Analysis

'e root mean square error (RMSE) and R-squared (r2)
values will be used to analyze Aus, Aman, and Boro yield
predictions. 'e root mean square error (RMSE) represents
a model’s error in predicting a quantitative value. 'e RMSE
in this study represents the error of the XGBoost and SVR
models while predicting the yield value.'e lower the RMSE
score, the more accurate the research results will be.

'e R-squared (r2) value indicates how well a value fits
on a regression line. 'e r2 value ranges from 0 to 1. 'e
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closer we get to 1 after predicting the yield using XGBoost
and SVR, the more accurate the results will be.

4.1. Result Analysis of Aus Yield Prediction. Some of the
values of the exact value and the predicted values turn
negative after standard scaling, as seen in Table 2. Some
random data are provided in tabular form to provide a quick
overview of the exact value and expected value of Aus yield.
From 2008 to 2017, we have yield values for ten years in our
dataset.

Table 2 shows data from 2008 to 2017 to give an overview
of the findings. Table 2 shows that the exact value of the Aus
yield in the Gazipur district in 2009 is −0.476492, and the
predicted value using the XGBoost regression model is
−0.49573976, while the predicted value using the SVRmodel
is −0.44002507. 'e XGBoost model’s predicted value is
closer to the actual yield value than the SVR model. We can
also see that in the same district in 2015, the exact value of
Aus yield (after adopting standard scaler) is −0.480832, and
using the XGBoost regression model, we obtain −0.4924866
as the predicted value, and using the SVR model, we get
−0.5309091 as the predicted value. 'e XGBoost model’s
predicted value is substantially closer to the actual yield value
than the SVR model.

Figure 8 shows a visual representation of the real and
predicted values of the Aus yield for the XGBoost model,

while Figure 9 shows a visual representation of the real and
forecasted values of the Aus yield for the SVRmodel.We can
see that the predicted values of Aus yield are pretty com-
parable to the actual values in both figures.

For the XGBoost and SVR models, respectively, Fig-
ure 10 compares the real (Figure 11) value and predicted
value of the Aus yield prediction using box plots. Outliers
have been eliminated from all the box plots to generalize the
comparative studies between real and predicted values.
Figure 10 shows that the minimum scaled real value for Aus

Table 2: 'e exact value and the predicted value of Aus yield in the different districts in different years.

Year District/sub
district

Exact value of
Aus yield (in
metric tons)

Exact value of Aus yield
(after implementing
standard scaler)

Predicted value of Aus yield in
XGBoost (after implementing

standard scaler)

Predicted value of Aus yield in
SVR (after implementing

standard scaler)
2009 Gazipur 4199 −0.476492 −0.49573976 −0.44002507
2016 Mymenshing 57140 1.318526 1.530111 1.48935865
2014 Dhaka 948 −0.586720 −0.60301137 −0.50136886
2011 Narayangonj 1003 −0.566478 −0.54305744 −0.41852786
2016 Narayangonj 327 −0.607776 −0.5964272 −0.57439756
2015 Gazipur 4071 −0.480832 −0.4924866 −0.5309091
2009 Narsingdi 530 −0.600893 −0.59127367 −0.49242472
2014 Gazipur 6324 −0.404441 −0.48209077 −0.5032799
2016 Dhaka 1431 −0.570344 −0.60374486 −0.55784708
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Figure 8: Comparison between Real Values and Predicted Values
of Aus yield for XGBoost.

8
−1.4
−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

37 23 50 9 43 58 61
Row number of dataset

Re
al

 v
al

ue
 an

d 
Pr

ed
ic

te
d 

va
lu

e

68 42 24 59 56 29 6

Real Value Predicted Value

Figure 9: Comparison between Real Values and Predicted Values
of Aus yield for SVR.
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Figure 10: Comparison between real values and predicted values of
Aus yield for XGBoost using box plot.
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yield when applying XGBoost is −0.611878 and the mini-
mum scaled forecasted value is −0.6138531. 'e real and
anticipated values are in the first quartile (Q1) at −0.601334
and −0.59828436, respectively. 'e median values are, re-
spectively, −0.570344 and −0.5819483. 'e actual and
forecasted values have third quartile (Q3) values of
−0.476492 and −0.48761767, respectively. Finally, while
employing XGBoost, the maximum values for the real and
forecast values of Aus yield are 1.926969 and 2.4729662,
respectively.

Figure 11 displays the minimum, first quartile, median,
third quartile, and maximum values of the actual and
predicted values of Aus yield when applying the SVR model.
'e values for the real values’ minimum, first quartile (Q1),
median, third quartile (Q3), and maximum are −0.611878,
−0.601334, −0.570344, −0.404441, and 1.318526. 'e min-
imum, first quartile (Q1), median, third quartile (Q3), and
maximum values for the predicted values using SVR are,
respectively, −0.97566598, −0.56540449, −0.5032799,
−0.43137586, and 1.69320438.

For Aus yield prediction, we observed that XGBoost
outperformed SVR in terms of root mean square error
(RMSE). Table 3 shows that when XGBoost is used, the root
mean square error is 0.236562. In SVR, however, the error is
0.243721. 'e r2 value we have in XGBoost is 0.903298. 'e
r2 score in SVM regression is 0.897356. As can be seen from
the bar chart depiction in Figure 12, XGBoost produces
better results for Aus rice yield prediction than SVR.

LIME may be used to analyze both ML models for Aus
yield data and interpret a model around specific observa-
tions. We illustrate the performance of the XGBoost model
for the prediction of Aus yield for a specific data sample in
Figure 13, where the true value is −0.476491707 and the
predicted value is −0.49573976. With an interpretable linear
model, the LIME model finds a local approximation. Fig-
ure 13 shows a list of explanations, each showing the
contribution of each feature to the prediction of the above-
mentioned data sample. 'is allows for local interpretation,

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Sc
al

ed
 v

al
ue

 o
f A

us
 y

ie
ld

Real Value Predicted Value

×
×

Figure 11: Comparison between Real Values and Predicted Values
of Aus yield for SVR using box plot.

Table 3: RMSE and r2 value after Aus yield prediction.

Root mean square error r2 value
XGBoost 0.236562 0.903298
Support vector machine 0.243721 0.897356
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Figure 12: Comparison between the RMSE and R-squared values
of XGBoost and SVR for Aus yield Prediction.
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Figure 13: A plot of LIME model values for the XGBoost model
and Aus yield data.
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Figure 14: A plot of LIME model values for the SVR model and
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as well as determining which features, such as aman,
inundationland_mediumlowland, area, TSP, min_temper-
ature, max_temperature, and Boro will have the most in-
fluence on the prediction.

Figure 14 shows the behavior of the SVR model for Aus
yield prediction for a specific data sample where the true
value is −0.5703435 and the forecast value is −0.55784708.
With an interpretable linear model, the LIME model finds a
local approximation. A number of explanations can be
shown, each indicating the contribution of each aspect to the
forecast of the above-mentioned data sample. 'is enables
local interpretation as well as establishing which changes in
the features aman, area, TSP, humidity, Boro, calcareous
alluvium, and year will have the greatest impact on the
prediction.

4.2. Result Analysis of Aman Yield Prediction. As we
explained in the result part of the Aus yield prediction, after
applying standard scaling to Aman yield data, several of the
real and predicted values have gone negative, as seen in
Table 4. Some random records are presented for Aman yield,
as they were for Aus yield.

In Table 4, we have put some data from 2008 to 2017 to
get an overall idea of the results. Table 4 shows that the exact
value of Aman yield in the Gazipur district in 2009 is

−0.437995, and the predicted value using the XGBoost re-
gression model is −0.4087671, while the predicted value
using the SVR model is −0.52376373. XGBoost’s anticipated
values are closer to the actual yield value than SVR’s. We can
also see that in the year 2013, the exact value of Aman yield
(after applying standard scaler) in the Mymensing district is
2.005489, and we obtain 2.0059824 as the projected value
when using the XGBoost regression model and 1.90912547
while using the SVR model. 'e projected value of the

Table 4: 'e exact value and the predicted value of Aman yield in the different districts in different years.

Year District/sub
district

Exact value of
Aman yield (in
metric tons)

Exact value of Aman yield
(after implementing
standard scaler)

Predicted value of Aman yield in
XGBoost (after implementing

standard scaler)

Predicted value of Aman yield
in SVR (after implementing

standard scaler)
2009 Gazipur 105450 −0.437995 −0.4087671 −0.52376373
2013 Narsingdi 89870 −0.519071 −0.4641888 −0.59059468
2013 Mymensing 575001 2.005489 2.0059824 1.90912547
2017 Tangail 262172 0.377566 0.33152503 0.2555941
2011 Narsingdi 103641 −0.447409 −0.46625412 −0.49485915
2015 Gazipur 101542 −0.458332 −0.4217301 −0.42213914
2009 Narsingdi 89811 −0.519378 −0.46398324 −0.67467042
2011 Narayangonj 18736 −0.889244 −0.8903893 −0.6696109
2016 Narayangonj 9945 −0.934991 −0.91264105 −0.73712858
2016 Dhaka 27419 −0.844058 −0.85871255 −0.7228565
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Figure 15: Comparison between real values and predicted values of
Aman yield for XGBoost.
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Figure 16: Comparison between real values and predicted values of
Aman yield for SVR.
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Figure 17: Comparison between real values and predicted values of
Aman yield for XGBoost using box plot.
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XGBoost model is significantly closer to the true value of the
yield than that of the SVR model.

Figure 15 shows a visual representation of the real and
predicted values of the Aman yield for the XGBoost model,
while Figure 16 shows a visual representation of the real and
forecasted values of the Aman yield for the SVR model. We
can see that the predicted values of Aman yield are pretty
comparable to the actual values in both figures.

Figure 17 use box plots to compare the actual Figure 18
value and anticipated value of the Aman yield prediction for
the XGBoost and SVR models, respectively. In using
XGBoost, the minimum-scaled real value for Aman yield is
−0.934991, and the minimum scaled predicted value is
−0.91264105, as shown in Figure 17. 'e first quartile (Q1)
values of the real and predicted values of Aman yield are,
respectively, −0.7085155 and −0.680206225. 'e corre-
sponding median values are −0.479548 and −0.43538284.
'ird quartile (Q3) values for the actual and predicted values
are −0.0302145 and −0.037292635, respectively. 'e maxi-
mum values for the real and forecasted values of the Aman
yield when using XGBoost are 2.384269 and 2.327917,
respectively.

'e SVR model’s predicted and actual values for Aman
yield are shown in Figure 18 along with their minimum, first
quartile, median, third quartile, and maximum values. 'e
true values’ minimum, first quartile (Q1), median, third
quartile (Q3), and maximum values, respectively, are
−0.934991, −0.572973, −0.479355, −0.377922, and 2.005489.
'e minimum, first quartile (Q1), median, third quartile
(Q3), and maximum values for the projected values using
SVR are, respectively, −0.81097272, −0.67467042,
−0.52376373, −0.37076501, and 1.90912547.

In the case of Aman yield prediction, we observed that
XGBoost outperformed SVR in terms of root mean square
error (RMSE). Table 5 shows that when SVR is used, the root
mean square error is 0.179802. However, the error in
XGBoost is 0.093824, which is significantly better than SVR.

We have an r2 value of 0.968023 in SVR. 'e r2 value in
XGBoost is 0.991293. As shown in Figure 19, XGBoost
outperforms SVR in predicting Aman rice production.

LIME may be used to interpret a model around specific
observations for both ML models for Aman yield data just
like Aus yield data. 'e behavior of the XGBoost model for
the prediction of Aman yield for a given data sample is
explained in the following example (Figure 20), where the
true value is 2.00548906, and the forecasted value is
2.0059824. With an interpretable linear model, the LIME
model finds a local approximation. Figure 20 shows a list of
explanations, each indicating the contribution of each at-
tribute to the prediction of the above-mentioned data
sample. 'is allows for local interpretation and identifies
which changes in the features Boro, TSP, inunda-
tionland_mediumlowland, humidity, area, and Aus will have
the strongest influence on the forecast.

Figure 21 shows the behavior of the SVR model for
Aman yield prediction for a specific data sample where the
true value is 2.00548906, and the forecasted value is
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Figure 18: Comparison between real values and predicted values of
Aman yield for SVR using box plot.

Table 5: RMSE and r2 value after Aman yield prediction.

Root mean square error r2 value
XGBoost 0.093824 0.991293
Support vector machine 0.179802 0.968023
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Figure 19: Comparison between the RMSE and R-squared values
of XGBoost and SVR for Aman yield prediction.
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Figure 20: A plot of LIME model values for the XGBoost model
and Aman yield data.
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1.90912547. Using an interpretable linear model, the LIME
model finds a local approximation. We may see a list of
explanations that indicate the contribution of each feature to
the prediction of the above-mentioned data sample. 'is
enables for local interpretation and the determination of
modifications in the features Boro, Aus, inunda-
tionland_mediumlowland, TSP, area, and min_temperature
which will have the most influence on the prediction.

4.3. ResultAnalysis of BoroYield Prediction. Just like we have
discussed in the result section of Aus and Aman yield
prediction, after using standard scaling, some of the values of
the exact value and the predicted value have become negative
for Boro yield values, which is shown in Table 6. As pre-
viously shown in both Aus and Aman yield, some random
records are also shown for Boro yield.

In Table 6, we have put some data from 2008 to 2017 to
get an overall idea of the results. Table 6 shows that the exact
value of Boro yield (after applying standard scaler) in
Kishoregonj district in 2014 is 0.666120, and we get
0.6954153 as the projected value using the XGBoost re-
gression model and 0.46376287 as the forecast value using
the SVRmodel.'e XGBoost predicted value is considerably

closer to the true value of the yield than the SVR model
predicted value.We can also see that the exact value of Aman
yield (after applying Standard Scaler) in the Gazipur district
in 2015 is −0.662959, and we obtain −0.6235179 as the
predicted value when using the XGBoost regression model
and −0.72536924 while using the SVR model. Similar to the
previous sample data, the XGBoost model’s predicted value
is closer to the true value of the yield than the SVR model.

Figure 22 shows a visual representation of the real and
predicted values of the Boro yield for the XGBoost model,
while Figure 23 shows a visual representation of the real and
forecasted values of the Boro yield for the SVR model. We
can see that the anticipated Boro yield levels are pretty
comparable to the actual values in both figures.

For the XGBoost and SVR models, respectively, Fig-
ure 24 uses box plots to compare the actual value and
projected value of the Boro yield forecast. As shown in
Figure 24, the minimum scaled real value for Boro yield
using XGBoost is −0.757245, and the minimum scaled
forecasted value is −0.68641835. Real and Figure 25 pre-
dicted Boro yield first quartile (Q1) values are, respectively,
−0.716653 and −0.5806098. 'e median values are
−0.672888 and −0.5209967, respectively. 'e actual and
predicted values had third quartile (Q3) values of 0.646698
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Figure 21: A plot of LIME model values for the SVR model and Aman yield data.

Table 6: 'e exact value and the predicted value of Boro yield in the different districts in different years.

Year District/sub
district

Exact value of
Boro yield (in
metric tons)

Exact value of Boro yield
(after implementing
standard scaler)

Predicted value of Boro yield in
XGBoost (after implementing

standard scaler)

Predicted value of Boro yield in
SVR (after implementing

standard scaler)
2014 Kishoregonj 707864 0.666120 0.6954153 0.46376287
2016 Mymenshing 1074189 1.688652 1.2599084 2.37932189
2013 Mymensing 936015 1.302964 1.4743396 1.6461434
2012 Gazipur 250778 −0.609756 −0.65754485 −0.57692833
2015 Gazipur 231718 −0.662959 −0.6235179 −0.72536924
2009 Narsingdi 212482 −0.716653 −0.5726305 −0.62422939
2014 Gazipur 228161 −0.672888 −0.5806098 −0.74941032
2016 Narsingdi 197940 −0.757245 −0.68641835 −0.84958871
2017 Mymenshing 1072834 1.684870 1.3707266 2.30537822
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and 0.4803284, respectively. When employing XGBoost, the
real and predicted maximum values of the Boro yield are
1.68487 and 1.4743396, respectively.

From Figure 25, we can observe the minimum, first
quartile, median, third quartile, and maximum values of
the actual and anticipated values of Boro yield when using
the SVR model. 'e true values’ minimum, first quartile
(Q1), median, third quartile (Q3), and maximum values,
respectively, are −0.757245, −0.716653, −0.672888,
0.646698, and 1.68487. While the minimum, first quartile
(Q1), median, third quartile (Q3), and maximum values for
the projected values using SVR are, respectively,
−0.84958871, −0.74941032, −0.62422939, 0.48604702, and
2.30537822.

We have found better results in root mean square error
(RMSE) while using SVR compared to XGBoost for Boro
yield prediction. From Table 7, we can observe that the root
mean square error is 0.227616 while using XGBoost. But in
SVR, the error is 0.232760, which is slightly more than

XGBoost. In XGBoost, the r2 value we have got is 0.934234.
In SVR, the r2 value becomes 0.931228. So, XGBoost gives
slightly better results for Boro rice yield prediction
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Figure 24: Comparison between real values and predicted values of
Boro yield for XGBoost using box plot.
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Figure 25: Comparison between real values and predicted values of
Boro yield for SVR using box plot.

Table 7: RMSE and r2 value after Boro yield prediction.

Root mean square error r2 value
XGBoost 0.227616 0.934234
Support vector machine 0.232760 0.931228
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Figure 26: Comparison between the RMSE and R-squared values
of XGBoost and SVR for Boro yield Prediction.
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Figure 22: Comparison between real values and predicted values of
Boro yield for XGBoost.
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Figure 23: Comparison between real values and predicted values of
Boro yield for SVR.
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compared to SVR, as we can clearly observe from the bar
chart representation in Figure 26.

For the interpretability of both the ML models for Boro
yield data, LIME can be used to interpret a model around
specific observations. In the following example (Figure 27),
we explain the behavior of the XGBoost model for the
prediction of Boro yield for a particular data sample where
the real value is −0.66295908 and the predicted value is
−0.69751798. 'e LIME model finds a local approximation
with an interpretable linear model. From Figure 27, we can
observe a list of explanations, reflecting the contribution of
each feature to the prediction of the particular data sample
mentioned above. 'is provides local interpretability, and it
also allows us to determine that the changes in the features
aman, noncalcareous grey floodplain soil, inunda-
tionland_mediumlowland, noncalcareous alluvium, TSP,
and Aus will have the most impact on the prediction.

In Figure 28, we can observe the behavior of the SVR
model for the prediction of Boro yield for a particular data

sample where the real value is −0.60975640, which gives a
predicted value of −0.57692833. 'e LIME model finds a
local approximation with an interpretable linear model. We
can observe a list of explanations, reflecting the contribution
of each feature to the prediction of the particular data sample
mentioned above. 'is provides local interpretability, and it
also allows us to determine that the changes in the features
aman, inundationland_mediumlowland, noncalcareous al-
luvium, TSP, and humidity will have the greatest impact on
the prediction.

5. Discussion

'e presented results show the performance of the proposed
model for the yield prediction of three rice ecotypes (Aus,
Aman, and Boro) using a dataset that included meteoro-
logical, agro-chemical, and soil physiographic parameters.
We have observed that all three parameters have a role in the
yield forecast while utilizing LIME to demonstrate
explainability. In terms of prediction, the ML models we
deployed produced fairly decent results.

In the case of the comparison between the two ML
models, XGBoost predicts more accurate yield values for the
three main rice ecotypes (Aus, Aman, and Boro) according
to the results. It has a better fit to the data than SVR. One of
the reasons for XGBoost doing well is that it is an ensemble
method. It makes decisions using multiple trees; therefore, it
builds strength by repeating itself. We also have the base
learner splitting the solution space into a collection of hyper-
rectangles for every tree ensemble. 'e ensemble will per-
form well if this is close to the underlying truth, or even an
adequate approximation. Additionally, it makes use of
parallel processing. It also supports regularization, which
helps to reduce the adjusted loss function and avoid over-
fitting and underfitting.

6. Conclusion

'is study successfully developed a system that can predict
the yield for all three different rice ecotypes of Southeast Asia
and can also produce the explainability of the system. Along
with the conventional data preprocessing, the main focus
was on feature selection. Two different approaches were
applied to finally reduce the feature number to 10. Initially,
heat map was used to reduce the number of features from 43
to 16, and then finally, RFE was applied to further reduce the
feature count to 10.'e sets of features selected for each kind
of rice ecotype were different for both the ML models, and
there were a total of 6 sets of features for three rice ecotypes
and two ML models. However, there were some common
features among the six sets of features, and those were the
principal features for the yield prediction. 'e RMSE and
R-squared values for each type of rice ecotype for both the
ML models were satisfactory. Additionally, an XAI model
called LIME was applied to show the explainability of the
two ML models. 'e most impactful features for yield
prediction of different rice types were found while using
these two different ML models. 'e most impactful features
are a combination of meteorological, agro-chemical, and soil
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Figure 28: A plot of LIME model values for the SVR model and
Boro yield data.
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physiographic factors and do not contain only one type of
feature. 'erefore, the proposed system can help in yield
prediction for three different rice ecotypes not only in a
precise manner but also provides an explanation behind
those prediction models. Apart from the model’s positive
aspects, it also has a certain drawback. 'e study focused on
a few distinct regions in Bangladesh. It would be preferable
to include each district of Bangladesh. 'ere are some
possible future directions along with this study. 'ere is an
opportunity to do further research by adding more sections
to develop the system. For instance, water management, seed
management, and soil management can be added to dem-
onstrate “precision agriculture” in terms of paddy more
precisely. Furthermore, other factors that may contribute to
produce better yield are disease detection and pesticide
management. A large amount of out-turn is lost every year to
the attack of different diseases and the usage of improper
pesticides. In the future, these two fields can be explored.
Moreover, other ML techniques can be applied in the future
for better accuracy, and we can also apply other explainable
AI models to show the interpretability of the models used.
Furthermore, in the future, this concept of yield prediction
and explainability of the model used can be applied to other
crops as well.
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