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Reputation detection in traditional distributed systems (e.g., electronic commerce systems and peer-to-peer systems) relies heavily
on the factor of interaction reputation, which can be derived from direct interactions between agents through bidirectional
relationships. However, in the current information diffusion in social network systems (SNS) (e.g., Twitter), the characteristic of
the unidirectional relationship between agents and the decay property of diffusion will result in lacking direct interactions;
therefore, interaction reputations will be difficult to be obtained by agents in a distributed manner. To solve this problem, a novel
distributed reputation detection model following the pattern “from path to individual” (FPTI) is proposed, which can provide a
new reputation factor as an alternative to interaction reputation in such environments. *e main idea is that the positive (or
negative) observation of an information diffusion process increases (or decreases) the belief of the corresponding diffusion path,
which further increases (or decreases) the reputation of each involved agent. *us, the reputation of a target agent can be assessed
by the superimposition of reputations of multiple paths on which this agent has participated in past information diffusion
processes. Furthermore, being aware of agent’s limited capacity for reputation detection in SNS, we then propose the enhanced
FPTI model (eFPTI), which simplifies the detection source to reduce detection costs and achieve the approximate performance as
FPTI. *eoretical analyses and experimental evaluations validate the efficiency and effectiveness of our models and also show
several properties of the models, for example, the robustness for dynamic environments.

1. Introduction

Social network systems (SNS) (e.g., Twitter [1, 2] and
LinkedIn [3]) provide platforms for online information
sharing. Due to the open nature of SNS, some malicious
agents may be involved and engage in malicious behavior
that will influence the performance of these systems [4–8].
An efficient way to address this problem makes use of the
reputation mechanism, which can provide agents with
credits for reference that help them make decisions about
whom to trust and encourage agents to engage in trust-
worthy behavior [5, 7, 9–23].

Generally, the reputation of an agent (an agent in a social
network system is an autonomous entity that can have

interactions with other entities following some interaction
rules; for example, an agent in Twitter can interaction with
other agents following the rules defined by the Twitter client.
It is worth noting that the agent in social network systems
can be either a real user or a software bot) is often regarded
as the assessment of the behaviors of this agent [15]. Some
representative reputation models, for example, Regret
(Regret is named by Sabater and Sierra representing “a
reputation model for gregarious societies”) [16] and FIRE
(FIRE, which is from “fides” and “reputation,” is named by
Huynh et al.) [17], evaluate agents’ reputations by inte-
grating reputation factors from various sources, for example,
direct interaction experiences, exchange of reputation in-
formation, and intrinsic features of agents. Among these
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reputation factors, the interaction reputation of agents,
which is based on direct interactions, is the most crucial
because it not only reflects the trustworthiness of agents
based on direct interaction experiences, but also can be
treated as the basis for reputation information exchange
(e.g., neighborhood reputation [16], witness reputation
[17]). *ese reputation models can perform well in tradi-
tional distributed systems, for example, electronic commerce
systems [13, 15] and P2P systems [24], in which agents have
direct interactions through bidirectional relationships (the
relationship between agents in SNS is the network con-
nection, which is one necessary condition for the behavior
transfer; a bidirectional relationship between a pair of agents
allows bidirectional behavior transfer, which is often con-
sidered as the direct interactions).

However, due to the unidirectional relationship between
agents [1, 25], for example, the follower-following topology
of Twitter [1], and the decay property of diffusion [26] in the
information diffusion scenarios in SNS, direct interactions
between agents may be rare. *is scarcity of direct inter-
actions makes it difficult to determine the interaction rep-
utations of agents. Traditional reputation models that rely
heavily on interaction reputation, for example, Regret [16],
FIRE [17], and P2PRep [24], may be of limited use in such
environments. *is situation will lead to inappropriate
formation of trust between agents and may naturally result
in the increase of malicious behaviors due to the absence of
the effective supervision of agents’ behaviors.

To address this problem, we propose a novel reputation
detection idea to generate a new reputation factor as an
alternative for interaction reputation: a positive observation
of an information diffusion process increases the belief of the
corresponding diffusion path (a path in this paper represents
a queue of agents comprising the information diffusion
pathway), which increases the reputation of each involved
agent, and conversely, a negative observation decreases the
belief of the corresponding diffusion path, which decreases
the reputation of each involved agent. *is method deter-
mines the reputations of agents by following the pattern
“from path to individual” [27]: the reputation of an agent is
evaluated by superimposing the reputations of multiple
paths on which this agent participated in previous infor-
mation diffusion processes. *e key contributions of this
paper are summarized as follows:

(i) *is paper introduces the reputation detection
problem considering the unidirectional relationship
between agents in information diffusion scenarios
in SNS and proposes the detection pattern “from
path to individual” that employs the path reputation
as the intermediate for reputation assessment of
agents.

(ii) To detect path reputations in information diffusion
processes, feedback and feed-forward approaches are
proposed, which utilize crossing situations in in-
formation diffusion to check whether malicious
behavior has occurred or not and then generate the
path reputations.

(iii) To assess the reputations of individual agents from
the obtained path reputations, an aggregation ap-
proach is proposed on the basis of evidence–belief
transformation [28–32], and it especially considers
the suspicion probability for agents in negative ev-
idences of path reputations.

(iv) With the consideration of agents’ limited capacity in
SNS, a filtering method is presented, which can
simplify the detection source to reduce the detection
costs with reputation detection performance
guarantee.

*e remainder of this paper is organized as follows. In
Section 2, we introduce some related research on reputation
detection. In Section 3, we present the problem description
and the novel reputation detection pattern. In Sections 4 and
5, we introduce the FPTI and eFPTI reputation detection
models and conduct theoretical analyses, respectively. *en,
in Section 6, we present experimental results that validate
our models. Finally, we conclude our paper and discuss the
future work in Section 7.

2. Related Work

*e eBay model [18] and the Sporas model [19] are two
typical reputation models in SNS. *e reputation model on
eBay [18] estimates the reputations of agents (buyer or seller)
by the ratings provided by their partners after transactions.
*e rating can be − 1 (negative rating), 0 (neural rating), or
+1 (positive rating). *e reputation of an agent (buyer or
seller), which is the value of the sum of all the ratings on this
agent, is provided on the transaction page attached to the
users’ screen names. It can indicate the reliability of a buyer
or a seller in transactions and can be used as the reference for
whether to trade or not. Similar with the eBay model, Sporas
[19] also evaluates the reputation of an agent by aggregating
the ratings about the agent from others. But by considering
that agents may change their behavior patterns over time,
which is ignored by the eBay model, Sporas assigned more
weight to more recent ratings in the aggregation of repu-
tation evaluation.

Using the eBay [18] and Sporas [19] models, the ratings
for reputation evaluation provided by agents (which can be
also considered as one kind of interaction reputation) can be
generated based on the past experiences of direct interac-
tions between the agents; thus bidirectional relationships
between agents are required. Hence, if direct interaction is
lacking because of unidirectional relationships between
agents [1, 25] and the decay property of diffusion [26], it may
be infeasible for reputation evaluation by using these
models.

*e eBay model [18] and the Sporas [19] model can be
classified as single reputation models that assess agents’
reputations by a single source.*e single reputationmodel is
designed for a specific application scenario and cannot make
full use of various information sources in the system. *us,
with the proposal of the integrated reputation model, the
single reputation models are often used as key components
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to support the reputation aggregation. *ere are many
representative reputation models, such as Regret [16], FIRE
[17], FIRE+ (FIRE+ is an extension of FIRE model proposed
by Qureshi et al., which can avoid collusion attacks ) [20],
DISARM (DISARM is a social, distributed, hybrid, rule-
based reputation model named by Kravari and Bassiliades,
which uses defeasible logic) [21], and AFRAS (AFRAS is
from “a fuzzy reputation agent system” named by Carbo
et al.) [22], can be classified as integrated reputation models
that generate agents’ reputations by integrating many rep-
utation factors.

In the Regret model [16], which is implemented in
transaction scenarios, the reputations of agents are com-
puted from three dimensions: the individual dimension, the
social dimension, and the ontological dimension. *e in-
dividual dimension component of Regret presents the so-
lution for obtaining the interaction reputation of agents, the
social dimension component presents the solutions for
producing the indirect reputation factors, and the onto-
logical dimension component can combine different types of
reputation factors into a new factor. *e FIRE model [17]
integrates four types of reputation factors that are derived
from direct interaction experiences, witness information,
role-based relationships, and certified information. It has
been tested in provider and consumer games. *e FIRE-
+model [20] is devised to avoid collusion attacks that
cannot be avoided by the Fire model; it also mainly focuses
on the sources of direct and witness-based interaction ex-
periences, but through a graph construction of witness
ratings and various interaction policies (direct interaction
policy, witness interaction policy, and connection decision
policy), collusion among agents can be effectively detected.
DISARM [21] introduces a distributed reputation system
considering the relationships among agents as a network;
DISARM proposes the use of defeasible logic combining the
direct and witness information to support accurate repu-
tation assessment. Wu et al. [23] introduce an artificial
neural network-based reputation bootstrapping approach,
which establishes the reputation of an agent by explicit
evidences (direct interaction experiences) and implicit ev-
idences (information that may be relevant with perfor-
mance) in order to solve the reputation detection problem of
newly deployed agents. *e AFRAS model [22] introduces
the fuzzy logic to represent the agent’s reputation; the
evaluation of the reputation value of an agent depends on
not only the direct interactions, but also the recommen-
dations from other agents of the society.

In these integrated reputation models, the interaction
reputation derived from direct interactions can be the most
important factor in reputation evaluation. It could be
possible to produce some of the indirect reputation factors in
these models (e.g., the social dimension reputation in Regret
[16] and the witness and certified reputation in FIRE [17],
FIRE+ [20], etc.) on the basis of the interaction reputation.
However, the studies on these models did not consider the
situation that direct interactions were lacking. *is situation
will not only cause a problem of infeasible interaction
reputation generation, but may also make it impossible to
determine some indirect reputation factors. In contrast, our

models proposed in this paper provide solutions for solving
this crucial problem.

3. Problem Description and Our Solutions

Diffusion is a common phenomenon in agents’ collective
behavior in SNS [33–40]. In previous studies, interaction
reputations have often been generated from agents’ obser-
vations and evaluations of other agents’ behaviors
[16, 18, 24]. In information diffusion processes (the spread of
messages through agents in the network), the diffused
messages can serve as the measure of the behaviors of agents.
Moreover, in current SNS, for example, Twitter [1], messages
spreading through agents (users) contain not only the
message texts, but also the information of the spreading
paths (e.g., the @ behavior in Twitter [1, 25]). *is char-
acteristic coincides with the characteristic of the diffusion
process of chain letter messages [41]. In information dif-
fusion process, there are two types of agent behaviors when
diffusing messages: (a)malicious behavior: the agent tampers
with the idea or content of some messages it received and
diffuses them intentionally or unintentionally [42]; (b)
proper behavior: the agent diffuses some messages it received
with no tampering. To benefit the readers with a quick
reference, the major notations of this paper are listed in
Table 1.

3.1. ProblemDescription. Given a SNS, N�<A, E>, where A
is the set of agents, ∀<ai, aj> ∈E indicates the existence of an
edge directed from agent ai to aj.*e distributed reputation
detection problem in information diffusion scenarios can be
described as follows:

Mi⟶ ri(j)􏼈 􏼉, (1)

where Mi represents the local message storage of agent ai in
the information diffusion process, and ri (j) represents the
reputation of aj produced by ai. Mi consists of the messages
sent by ai and the messages ai received from others. (Note
that the messages sent by ai include not only the messages
wrote by ai but also the messages ai received from others and
diffused by itself.)

Based on (1), the process of generating interaction
reputations can be simply represented by the following (for
brevity, messages with the same ID are labelled by their
diffusion paths in the remainder of this paper.):

mij, miji􏽨 􏽩 ∈Mi⟶ ri(j), (2)

where mij indicates one message diffused from ai to aj and
miji is the response ofmij from aj. By observing the response
from aj, ai can evaluate or update the reputation of aj.

However, [mij, miji], which actually represents the direct
interaction in information diffusion, must rely on a bidi-
rectional relationship between ai and aj, i.e., ∃<ai,aj>, <aj,
ai> ∈E. *us, due to the unidirectional relationship between
agents in information diffusion, [mij, miji] cannot be ob-
tained. Moreover, even if a bidirectional relationship exists,
because of the decay property of information diffusion, [mij,
miji] may also be missing due to the absence of miji.
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To solve this problem, a natural approach is to introduce
some intermediates for producing the reputations of agents
from the message storage. *is approach is described as
follows:

Mi⟶ Intermediates{ }i⟶ ri(j)􏼈 􏼉. (3)

*e intermediates introduced should meet the following
requirements: (1) the intermediate can effectively reflect the
agents’ behaviors in information diffusion processes; and (2)
the intermediate can be simply achieved by agents from their
local message storage.

*en, the reputation detection problem in information
diffusion scenarios in SNS can be divided into three
subproblems:

(i) An appropriate intermediate should first be
introduced.

(ii) Approaches for obtaining the intermediates should
be proposed.

(iii) A mechanism for transforming the intermediates
into the reputations of agents should be devised.

3.2. Our Solutions. To solve the above problems, we propose
the reputation detection pattern “from path to individual.”
*e main idea is that the reputations of agents can be de-
tected according to the observations of their behaviors
through the information diffusion paths; hence, the positive
(or negative) observation of an information diffusion pro-
cess increases (or decreases) the belief of the corresponding
diffusion path, which further increases (or decreases) the
reputation of each involved agent.

(i) To solve the first subproblem, we introduce the
concept of path reputation (PR) as an intermediate
for reputation detection that can meet the re-
quirements for a detection intermediate. (1) Path
reputations represent the evidence space for the
information diffusion paths, which are past obser-
vations of the concatenations of agents’ behaviors
along the paths. For this reason, each path repu-
tation can partially represent the behavior feature of
each agent along the path. (2) Path reputations can
be simply detected by agents from their local
message storages using path reputation detection
approaches described below.

(ii) To solve the second subproblem, feedback and feed-
forward approaches (see Section 4.1) are proposed
for path reputation detection. *e central idea of
these approaches is to find {[m]}i⊆Mi that can be
used to produce path reputations. Here, {[m]}i
represents the message subsets of Mi. *e feedback
and feed-forward approaches utilize the crossing
situations in message spreading processes to find
appropriate {[m]}i, which can provide opportunities
for checking whether malicious behaviors exist in
the diffusion processes.

(iii) To solve the third subproblem, the aggregation
approach (see Section 4.2) that can transform the
path reputations into reputations of agents is de-
vised. Negative evidence in path reputation can only
partially reflect the disbelief of each involved agent
because the evidence is the observation of the
concatenation of agents’ behaviors along the path;
that is, the negative evidence may only be caused by
the malicious behaviors of partially involved agents.
*us, in the transformation, the suspicion proba-
bility that can revise the weight of negative evidence
for each agent involved is considered.

Figure 1 shows the reputation detection pattern of “from
path to individual.”*e reputation detection can be operated
synchronously with the operations of information diffusion.
When some information diffusion actions result in an up-
date of the local message storage of an agent, the agent can
use the path reputation detection component (feedback and
feed-forward) to update local path reputations and then
update reputations of agents using the aggregation com-
ponent. In Figure 1, the two dashed boxes represent the
reputation detection process and the information diffusion
process, respectively, and the arrow between them indicates
their synchronous relationship.

4. Reputation Detection Model: From Path to
Individual (FPTI)

4.1. Path ReputationDetection. Path reputation is composed
of two essential parts: (1) the path information, which in-
dicates the track of message spreading from one agent to
another (which is actually created based on the information
diffusion pathway), and (2) the evidence space, which

Table 1: Major notations.

Notation Description
A *e set of agents in the system
E *e set of edges in the system; <ai,aj>∈E indicates the existence of an edge directed from agent ai to aj
ri (j) *e reputation of aj assessed by ai
Mi *e local message storage of agent ai
mo#i

*emessage with diffusion path o#i, where o indicates the origin agent of this message, i indicates the agent ai, and “#” represents
the upstream path of ai

mo#i∗i
*e message with diffusion path o#i∗i, where o indicates the origin agent of this message, i indicates the agent ai at the crossing

position, and “#” and “∗” represent the upstream and downstream paths of ai, respectively
PR *e path reputation PR�<path, (p, n)>, (p, n) is the corresponding evidence space
PRFPRk

j *e path reputation factor of PRk for agent aj
εPRk

j *e suspicion probability of agent aj for the negative evidence of PRk
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contains both positive and negative evidences for the ob-
servations of information diffusion along the path. (Positive
evidence is derived from the positive observation, which
indicates that it is observed that no malicious behavior has
been involved during the information diffusion process, and
vice versa.) *e path reputation is defined as follows:

PR � 〈path, (p, n)〉, (4)

where path indicates the path information, and (p, n) is the
corresponding evidence space, defined by the number of
pieces of positive evidence (p) and negative evidence (n).

For the malicious behavior of tampering in information
diffusion, we find that the key factor in detecting the path
reputation is to find an appropriate subset of messages to
check the correctness of messages that can further generate
evidences for their information diffusion paths. In this
paper, we utilize the subset of messages whose diffusion
paths form a crossing situation, because some messages in
such a subset can be treated as a standard for checking the
correctness of the other messages. Based on the checking
results, the path reputations of their diffusion paths can be
generated. For this reason, the messages to be compared in a
given subset should have the same ID.

In summary, two types of crossing situations in infor-
mation diffusion can be utilized:

(1) *e feedback cross, which is created by a single
diffusion path that forms a loop (Figure 2). *e
corresponding message subset is represented by
[mo#i, mo#i∗i], where o indicates the origin agent of
this message, i indicates the agent ai at the crossing
position, and # and ∗ represent the upstream and
downstream paths of ai, respectively.

(2) *e feed-forward cross, which is created by multiple
diffusion paths joining up (Figure 3). *e corre-
sponding message subset is represented by [mo#i,
mo#’i, . . ., mo#’’i], in which the messages all have the
same ID but have different diffusion paths.

*e feedback and feed-forward detection approaches are
described in the following sections, with an emphasis on
how to provide the checking standard for the feedback and
feed-forward crosses.

4.1.1. Feedback Detection. *e feedback detection approach
utilizes the feedback crossing situation to generate path
reputations. Figure 2 gives an example of a feedback cross. A
feedback cross is formed by a single diffusion path of a
message having being diffused to cross agent ai at some time
in the past (mo#i) and diffused to ai again after several
diffusion steps (mo#i∗i). *e message mo#i is a previous copy
of mo#i∗i; thus, it is used as the standard to check the relative
correctness of mo#i∗i, that is, to check whether this message
has been tampered with or not along the downstream path
after mo#i.

In feedback detection, agents first seek feedback message
subsets in their local message storages; then, they check the
correctness of the message texts in each message subset; and
finally, they generate path reputations of the downstream
paths based on the checking results.

Figure 2 is an example for feedback detection. To find the
feedback message subset, the agents need to find the message
whose diffusion path already contains itself twice in its local
message storage, i.e., ∃mo#i∗i ∈Mi. If mo#i∗i can be found, the
previous version of messagemo#i∗i must also be contained in
Mi, i.e., ∃mo#i ∈Mi (See Figure 2). *us, the feedback
message subset [mo#i, mo#i∗i] is built. By comparing the texts
of the two messages mo#i and mo#i∗i, evidence for the
downstream path “∗” can be generated. If there is no dif-
ference, a piece of positive evidence is added to the
downstream path, i.e., p� p+ 1, and the number of pieces of
negative evidence, n, remains unchanged; otherwise, a piece
of negative evidence should be added, i.e., n� n+ 1, and the
number of pieces of positive evidence, p, remains
unchanged.

4.1.2. Feed-Forward Detection. *e feed-forward detection
approach can generate path reputations by utilizing feed-
forward crossing situations. A feed-forward crossing situ-
ation is formed by multiple diffusion paths joining up. *e
corresponding messages have the same ID but different
diffusion paths.

*us, the feed-forward message subset is represented by
[mo#i, mo#’i, . . ., mo#’’i,]. To simplify the analysis, the feed-
forward message subset is divided into paired messages. For
instance, the feed-forward message subset [mo#i,mo#’i,mo#’’i]
can be divided into [mo#i, mo#’i], [mo#’i, mo#’’i], and [mo#i,

upstream
agent

cross agent downstream
agent

spreading 
direction of the 
message

comparison path to be 
detected

o

mo#i*i

mo#i

ai

Figure 2: Example for feedback path reputation detection.

Aggregation

Write
messages

Diffuse
messages

Receive
messages

Upstream
neighbors

Downstream
neighbors

Feedback

Feed-forward
Path 

Reputations
Reputations

of agents

Local Message
Storage

Input: messages

Ouput: reputations

Information diffusion

Path reputation detection Aggregation from path reputation 
to individual reputation

Reputation detection

Figure 1: Reputation detection pattern “from path to individual.”
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mo#’’i]. Based on the different path relationships, the feed-
forward detection approach is studied for two types of paired
messages:

(i) *e entire diffusion path of one message overlaps
with part of the path of another message, as shown in
Figure 3(a);

(ii) *e diffusion paths of the two messages both have a
nonoverlapped part with each other, as shown in
Figure 3(b);

Crossing situation (a) can be used to produce the path
reputation of the nonoverlapped part of the longer diffusion
path. *is use is reliable within feed-forward detection
because the message with the shorter diffusion path can be
treated as the local standard for comparison to check the
relative correctness of the other message. Figure 3(a) is an
example for crossing situation (a). If there is no difference
between the texts of the two messagesmo#i andmo#’’i, a piece
of positive evidence is added to the path to be detected, i.e.,
p� p+ 1, and the number of pieces of negative evidence, n,
remains unchanged; otherwise, a piece of negative evidence
should be added, i.e., n� n+ 1, and the number of pieces of
positive evidence, p, remains unchanged.

Crossing situation (b) can produce the path reputations
of the nonoverlapped part of the message diffusion paths
under the condition that the two messages have the same
texts. Here, we assume that if a message has been tampered
with by different agents, the texts will not be the same; that is,
collusion between agents is not considered in this paper.
*us, if the two messages have the same texts, it is presumed
that neither message has been tampered with through the
nonoverlapping part of the diffusion paths. However, if the
texts are different, the crossing situation (b) cannot take
effect. Figure 3(b) is an example for crossing situation (b). If
there is no difference between the texts of the two messages
mo#’i and mo#’’i, a piece of positive evidence is added to each
path to be detected, i.e., p� p+ 1, and the number of pieces of
negative evidence, n, remains unchanged; otherwise, the
numbers of pieces of positive evidence and negative evi-
dence, p and n, both remain unchanged.

*e procedures for executing feed-forward detection are
similar to those for feedback detection. For brevity, the
procedures are not presented here. Unlike feedback detec-
tion, feed-forward detection can detect the upstream paths of
cross agents.

4.2. Aggregation from Path Reputation to Individual
Reputation. After path reputation detections are executed,
agents need to transform the path reputations obtained into
individual reputations of agents. First, the belief of the path
reputation for each agent involved should be calculated.
*en, the reputation of a target agent can be evaluated by
superimposing the belief values of the multiple paths on
which this agent has participated in past information dif-
fusion processes.

4.2.1. Path Reputation Factor Calculation. *e path repu-
tation factor (PRF) can be used to reflect the belief of path
reputation for each agent involved. Below, agent aj is
considered as the target agent for demonstration purposes.

*e main idea in calculating the path reputation factor is
to transform the evidence space of the path reputation into a
belief value. In each PR, if the positive and negative evi-
dences are treated equally in the transformation, the belief of
this PR for each agent will be underestimated, because the
negative evidence may be not caused by the action of aj but
rather by other agents within the path. For this reason, the
suspicion probability of negative evidence for aj needs to be
taken into account. *erefore, the path reputation factor is
defined as follows, based on the framework of evi-
dence–belief transformation [28–32].

Let PRp

k and PRn
k denote the number of pieces of positive

and negative evidence of PRk, respectively. *e path repu-
tation factor of PRk can be defined as follows:

PRFPRk

j �
PRp

k + 1 − εPRk

j􏼐 􏼑PRn
k

PRp

k + PRn
k + 1

, (5)

where εPRk

j denotes the suspicion probability of agent ai for
the negative evidence of PRk. *us, (1 − εPRk

j )PRn
k denotes

the partial belief based on the negative evidences.
In our model, the detection process is executed inde-

pendently by each agent, none of whom can know the
behavior of others (i.e., whether other agents behave
properly or maliciously). *us, the probabilities of other
agents behaving maliciously are considered to be 0.5 to
reflect neutral opinions. *us, we have the following:

Theorem 1. 4e suspicion probability of each agent for
negative evidence is

upstream
agent

cross agent spreading
direction of the
message

comparisonorigin agent downstream
agent

path to be
detected

(a) (b)

o ai aio

mo#”i
mo#”i

mo#i mo#’i

Figure 3: Example for feed-forward path reputation detection.
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εPRk

j �
􏽐

l− 1
x�0C

x
l− 1

􏽐
l
x�1 C

x
l

, (6)

where l is the length (number of agents) along the path of
PRk(l≥ 1) and Cx

l indicates the combination in discrete
mathematics, which means the number of subsets including x
elements from a set of l distinct items.

Proof of 4eorem 1. From the perspective of discrete
mathematics, the suspicion probability for aj for each in-
stance of negative evidence should be equal to the ratio of the
quantity of combination q that aj may behave maliciously,
no matter how others behave, to the quantity of all possible
combinations q′.

q � C
0
l− 1 + C

1
l− 1 + · · · + C

l− 1
l− 1 � 􏽘

l− 1

x�0
C

x
l− 1,

q′ � C
1
l + C

2
l + · · · + C

l
l � 􏽘

l

x�1
C

x
l .

(7)

*erefore, the suspicion probability is represented by the
ratio q/q′, i.e., 􏽐

l− 1
x�0C

x
l− 1/􏽐

l
x�1 Cx

l □
From (6), it is observed that the suspicion probability is

negatively correlated to the length of the path. If the length is
shorter, the suspicion probability of negative evidence for
each agent will be higher. According to (6), the suspicion
probability for an agent ranges from 0.5 to 1.0. If the length
of the path of PRk is 1, the suspicion probability should have
the maximum value of 1.0, and if the length of the path is
infinite, the suspicion probability should have the minimum
value of 0.5. □

4.2.2. Reputation Aggregation. *e idea for the aggregation
to evaluate the reputation of the target agent is to consider
the superposition of its related path reputation factors
(Figure 4). However, the extent of each path reputation
factor to be referred to should be different because of their
different amounts of evidence.

For this reason, we also investigate the weight of the PRF
by considering that the more evidence the PRF is based on,
the more dependable it should be. *us, more evidence will
lead to a higher weight value of a PRF. Based on Jøsang’s

uncertainty proposition in [28, 29], we can define the weight
of the PRF of PRk as follows:

w PRFPRk

j � 1 −
1

PRp

k + PRn
k + 1

�
PRp

k + PRn
k

PRp

k + PRn
k + 1

. (8)

By considering the weight of each PRF, the reputation of
aj is equal to the weighted mean value of all its related path
reputation factors. *e larger the weight of a PRF is, the
more reliable it is for aggregation purposes. *us, the
reputation of aj as calculated by ai is as follows:

ri(j) �
􏽐∀PRk∈PR[j]PRF

PRk

j × w PRFPRk

j

􏽐∀PRk∈PR[j]w PRFPRk

j

, (9)

where PR [j] is the set of all relevant path reputations of aj.
PR [j] belongs to PRi, which is the set of path reputations
produced by ai.

4.3. Analyses of the FPTI Model

4.3.1. Detection Accuracy. *e expected reputation of agent,
ri (j), is computed by aggregating all the related path rep-
utation factors. According to (9), we have the following:

Δj ≤ max
1≤x≤|PR[j]|

e
x
pa, (10)

where ∆j is the reputation detection error of aj and ex
pa is the

detection error (difference) between the path reputation
factors PRFj and the actual reputation factor ARj. (Here, the
actual reputation factor means the belief of the agent cal-
culated by its real behavior history for each path reputation.)
For this reason, we analyze the detection error epa between
each PRFj and ARj below.

We set ARj � bpj/(bpj+ bnj+ 1) to be the actual reputa-
tion factor of aj here (which is proposed by Jøsang [28] to
represent the belief value of an agent), where bpj and bnj
represent the real number of past proper and malicious
behaviors, respectively, of aj in PRFj. *e total number of
pieces of evidence in the path reputation factor PRFj equals
(bpj+ bnj), i.e., PRp + PRn � bpj+ bnj. Note that PRp ≥ 0,
PRn ≥ 0, bpj≥ 0, and bnj≥ 0.

Theorem 2. 4e detection error between the path reputation
factor and the actual reputation factor of aj is as follows:

epa � 1 − εj􏼐 􏼑 −

1 − εj 􏽑
ak∈Apa− aj

ωk
⎛⎝ ⎞⎠⎛⎝ ⎞⎠bpj − 1 − εj􏼐 􏼑

bpj + bnj + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

(11)

where Apa represents the set of agents comprising the path of
PRFj, ωk is the probability of other involved agent ak behaving
properly within PRFj, 0≤ωk≤ 1, and bpj and bnj represent the
real number of past proper and malicious behaviors, re-
spectively, of aj in PRFj.

PR1
<path1, (p1, n1)>
PR2
<path2, (p2, n2)>

r (j)

path1

path2

ai aj

PRF PR1

j

PRF PR2

j

Figure 4: Example for aggregation from path reputations to in-
dividual reputations of agents. (*e aggregation is taken by agent ai;
and aj is the target agent).
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Proof of 4eorem 2.

epa � PRFj − ARj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
PRp

+ 1 − εj􏼐 􏼑PRn

PRp
+ PRn

+ 1
−

bpj

bpj + bnj + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(12)

All the proper behaviors of agents within the path can
generate one instance of positive evidence, while one or
more agents behaving maliciously will generate one instance
of negative evidence. Suppose that the probability of other
involved agents ak behaving properly is ωk (0≤ωk≤ 1). We
then have the following:

PRp
+ PRn

� bpj + bnj � Ω,

PRp
� bpj 􏽙

ak∈Apa− aj

ωk
⎛⎜⎝ ⎞⎟⎠,

PRn
� bpj + bnj − bpj 􏽙

ak∈Apa− aj

ωk
⎛⎜⎝ ⎞⎟⎠.

(13)

Hence, epa � |(bpj( 􏽑
ak∈Apa− aj

ωk) + (1 − εj)(Ω − bpj( 􏽑
ak∈Apa− aj

ωk)))/(Ω + 1) − bpj/(Ω + 1)|, � |(1 − εj) − ((1 − εj( 􏽑
ak∈Apa− aj

ωk))bpj− (1 − εj))/(bpj + bnj + 1)| □
From (11), we find that the detection error epa should

have the minimum value (epa � 0) when bpj and bnj satisfy
(1 − 􏽑

ak∈Apa− aj

ωk)εjbpj � (1 − εj)(bnj + 2).

Significantly, we observe one property of the detection
accuracy of the FPTI model from (11). In addition to the
parameters bpj and bnj, which reflect the behavior pattern of
aj, the detection accuracy is also influenced by the param-
eters εj and ωk, where εj is mainly determined by the length
of the corresponding diffusion path from equation (6); that
is, the number of other involved agents and ωk indicates the
probability of other involved agents behaving properly in
diffusion processes along this path. *us, we have the fol-
lowing: □

Property 1. *e detection accuracy of the FPTI model is
contextually influenced; that is, the detection accuracy of the
FPTI model is determined not only by the behavior pattern
of the target agent, but also by the number of other involved
agents in the diffusion paths and their behavior patterns.

Based on Property 1, we arrive at the following con-
clusions, according to (11).

(i) If bnj> bpj, the larger the difference between them,
the greater the degree to which the error epa is
influenced by the suspicion probability εj. Assuming
that bnj>> bpj and bnj is infinite, epa should equal
1 − εj.

(ii) If bpj> bnj, the larger the difference between them,
the greater the degree to which the error epa is
influenced by both the suspicion probability εj and

the probability of other agents behaving properly, ωj.
Assuming that bpj>> bnj and bpj is infinite, epa
should equal (1 − 􏽑

ak∈Apa− aj

ωk)εj.

*us, the more maliciously an agent behaves, the de-
tection accuracy is more likely to be influenced by the
number of other involved agents in the diffusion paths; and
the more properly an agent behaves, the detection accuracy
is more likely to be influenced by both the number and the
behavior patterns of other involved agents in the diffusion
paths.

4.3.2. Feasibility of FPTI Model. In this section, we analyze
the conditions for the implementation of FPTI in the fol-
lowing. Given a SNS, N�<A, E>, where A is the set of
agents, ∀<ai, aj>∈E indicates the edge directed from agent ai
to aj. Let Pij be a directed path from ai to aj.*en, we have the
following theorems.

Theorem 3. Let C�<AC, EC> be a subnetwork of N, where
AC⊆A, EC⊆E. If C is a simple cycle (a cycle with no repe-
titions of agents or edges), then ai ∈AC can perform feedback
detection of FPTI.

Proof of 4eorem 3. C�<AC, EC> is a simple cycle and a
subnetwork of N.*us, ai ∈AC must be a tail of an edge <ai,
ax>∈EC, and a head of an edge <ay, ai>∈EC where ax,
ay ∈AC; and there exists a directed path Pxy from ax to ay.
Hence, a message can be diffused initially from ai, then
through Pxy, and finally back to ai, where C is the basis on
which the feedback cross can form, and ai is the cross agent
of such feedback cross. *erefore, ai ∈AC can perform
feedback detection of FPTI. □ □

Theorem 4. Let D�<AD, ED> be a subnetwork of N, where
AD⊆A, ED⊆E. If D is acyclic (with no cycle), ai, ax ∈AD, and
∃Pxi, Pxi’⊆D, then ai can perform feed-forward detection of
FPTI.

Proof of 4eorem 4. D�<AD, ED> is acyclic and a sub-
network of N, and ai, ax ∈AD. Hence, if ∃Pxi, Pxi’⊆D, then
Pxi≠ Pxi’. Pxi and Pxi’ provide two different paths for in-
formation diffusion from ax to ai, and there exist non-
overlapped parts between them. *us, a message can be
diffused respectively through Pxi and Pxi’ and finally reach ai,
so that a feed-forward crossing situation can be formed and
ai is the cross agent. *erefore, ai ∈AD can perform feed-
forward detection of FPTI. □ □

5. Enhanced FPTI Reputation Detection Model

In Section 4, we have presented the FPTI model for repu-
tation detection in information diffusion scenarios in SNS.
However, in SNS, the capacity of agents is often limited, for
example, the limited capacity of communication [43], and
the limited capacity of executing tasks [5, 7]. Hence, the
limited capacity of agents in reputation detection should also
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be taken into account. As the load of the agent’s local
message storage increases during the information diffusion
process, the detection costs of FPTI sustained by the agents
should be larger. *erefore, in this section, we investigate
how to achieve satisfactory detection performance but with
lower detection costs.

In FPTI, the number of messages used for detection is
the key parameter that determines the detection costs. *us,
we design a message filtering method to filter a limited
number of messages that are of highest usability for repu-
tation detection from the agent’s local message storage. *e
message filtering method promotes the FPTI model to the
enhanced FPTI (eFPTI) model (see Figure 5).

5.1. Message Usability Evaluation. In eFPTI, the effect of the
filtered messages on reputation detection can directly de-
termine the reputation detection performance. *us, to
improve the performance of eFPTI, the different effect of the
messages on reputation detection should be measured.
Hence, we define the detection value of the message to reflect
its effect on reputation detection. *e factors that can reflect
the effect of a message on detection performance in FPTI
have been shown in Table 2. *ese factors jointly determine
the detection value of a message.

Let Sm
1 , S

m
2 , S

m
3 and Sm

4 be the outputs of the four factors in
Table 2 for the message m, respectively. *e detection value
of message m can be defined as

Vm � S
m
1 α · S

m
2 + β · S

m
3 + c · S

m
4( 􏼁, (14)

where α, β, and c are parameters, which reflect the im-
portance of the factors, respectively, shown in Table 2, and
α + β + c � 1, α> β> c.

Besides the detection value for reputation detection, the
elapsed time of a message, since it has been received, also
needs to be taken into account, because of the timeliness of
information diffusion (limited lifetime of the diffusion of the
message [44]). If a message has been stored for longer time
than other messages, it is considered to have lower prob-
ability to be used for reputation detection.

*erefore, jointly considering the detection value and
the elapsed time, we give the definition of usability of a
message. Let Tm denote the elapsed time of the messagem; ψ
is an attenuation function (0≤ψ ≤1), and the value of ψ (x)
decreases monotonically as x increases. *e usability of m is
defined as

Um � ψ Tm( 􏼁 · Vm. (15)

5.2. Usability-Based Filtering. When agents intend to filter
messages for reputation detection, they can refer to the
usability of each message in their local message storages Mi
and then filter the messages with the highest usability for
eFPTI.

*e filtering method is called usability-based filtering and
can be described as follows.

[Step 1] Before ai makes reputation detection, the
usability of each message in Mi should be calculated
according to (15).

[Step 2] *en, the messages can be sorted according to
their usability values.
[Step 3] Finally, the set of messagesMi’ with the highest
usability will be filtered for eFPTI, where ∀m′ ∈Mi

′,
∀m″ ∈Mi − Mi

′, Um′ >Um″ and |Mi
′|< |Mi|.

After usability-based filtering, the messages, which are
most useful for reputation detection in eFPTI, can be
available, while the other worthless messages can be ex-
cluded from the reputation detection.

5.3. Analyses of the Enhanced FPTI Model

5.3.1. Detection Cost. *e detection costs of reputation
detection following the pattern “from path to individual” are
composed of the following two parts: (1) the detection costs
from the detection source (the messages used in detection)
to the path reputations, and (2) the detection costs of ag-
gregation from path reputations to individual reputations of
agents.

*e path reputation detection can be conducted by firstly
executing the feedback detection and then executing the
feed-forward detection in turn. For the feedback detection, it
only needs to check the diffusion path of each recently
received message after last detection and update the cor-
responding path reputation if it meets the conditions (details
can be seen in Section 4.1.1); thus, the time complexity is O
(μ·k), where μ is the number of messages received after the
last detection, and k� |E|/|A| is the average degree of the
system (considering that the length of the information
diffusion path can be effectively estimated as proportional to
the average degree of the system). For the feedforward
detection, it needs to check the diffusion path of each re-
cently received message by comparing with the messages in
the local storage and update the related path reputations if it
meets the conditions (details can be seen in Section 4.1.2); let
|M| be the number of messages in the local storage, and the
time complexity is O (μ|M|k2), since the time complexity of
generating the detection region (paths) and updating the
evidence space is O (k2). Hence, the time complexity of path
reputation detection is O (μ|M||k|2).

*e reputation aggregation transforms the path repu-
tations into individual reputations of agents by firstly cal-
culating the path reputation factors for each agent involved
and then evaluating each agent’s reputation by super-
imposing the belief values of multiple paths on which this
agent has participated in past information diffusion pro-
cesses. After path reputation detection, there will be as most |
M|(|M| + 1) pieces of path reputations (|M| for feedback
detection and |M|2 for feed-forward detection); hence, the

Information
diffusion

Reputation detection
(FPTI)

Usability-
based

filtering

eFPTI

Detection source
simplification

Figure 5: *e enhanced FPTI model (eFPTI).
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time complexity for the calculation of path reputation
factors for each agent involved is O (|M|2|k|). *en, for each
agent, the reputation aggregation is conducted by super-
imposing the belief values of the multiple paths it involved;
and the time complexity is O (|A||M|2). Hence, considering
that k<< |A| in real social networks, the time complexity of
reputation aggregation is O (|M|2|A|).

*e detection costs of reputation detection following the
pattern “from path to individual” are composed of (a) the
detection costs of path reputation detection, and (b) the
detection costs for reputation aggregation. *erefore, the
time complexity of the presented FPTI model is O (μ|M|
k2 + |M|2|A|). Moreover, the time complexity of eFPTI is O
(μ|M′|k2 + |M′|2|A|), where |M′| is the number of messages
filtered, while the usability-based filtering is O (|M′|log|M′|);
thus, the detection costs can be reduced effectively because |
M′| can be much smaller than |M|.

5.3.2. Detection Performance. Let |Mi
′| be the limited

number of messages in usability-based filtering, let ŧ denote
the time interval between each implementation of eFPTI to
detect agents’ reputations (here, we assume the time interval
is uniform), and let τ represent the probability that a
message can be engaged in the formation of crossing situ-
ation. *en, the following theorem can be derived:

Theorem 5. 4e optimal limited number of messages of
usability-based filtering is |Mi

′|OPT � (Em·ŧ)·τ, where Em is the
expected number of messages stored into the local message
storage in a time unit.

Proof of 4eorem 5. *e usability-based filtering aims to
achieve the best reputation detection performance with the
lowest detection costs.*us, (1) the messages that are valuable
for reputation detection should be available after filtering; (2)
the limited number of messages in usability-based filtering
should be the minimum. Assume that such minimum
number is |Mi

′|min. In a time interval, Em·ŧ is the number of

messages received by an agent; thus, (Em·ŧ)·τ can just be the
number of messages, which can form the crossing situations
that are valuable for reputation detection in eFPTI, so that we
can have |Mi

′|min� (Em·ŧ)·τ. *erefore, if the eFPTI model is
implemented uniformly in such interval, the aim mentioned
can be satisfied if |Mi

′|OPT � |Mi
′|min� (Em·ŧ)·τ. □

6. Experimental Validation and Analyses

*e proposed reputation detection models (FPTI and
eFPTI) are validated by experimental evaluations from the
following perspectives:

(i) Feasibility & Effectiveness: we evaluate the reputa-
tion detection performance of our models (FPTI
and eFPTI) by using Twitter datasets [45], and we
also compare the performance of our two models.

(ii) Properties: we first confirm the robustness of the
models in different types of dynamic environments.
*en, we test the effect of the key parameter, sus-
picion probability, in the models.

(iii) Applicability: we test the applicability of our models
by implementing the models into a typical appli-
cation scenario in information dif-
fusion—misinformation suppression.

6.1. Experimental Settings. *e information diffusion sce-
narios were constructed according to themodel presented by
Gruhl et al. in their research on information diffusion
through blogspace [33]. *e details of the information
diffusion process in our experiments are described below,
and one sketch of the diffusion process is shown in Figure 6.
In the information diffusion scenarios considered in this
paper, the upstream neighbors of an agent ai represent the
agents that can diffuse messages to ai, and the downstream
neighbors of ai represent the agents that can receive mes-
sages diffused by ai.

Table 2: Factors for evaluating the detection value of a message.

Factors Measures Importance∗ (reason)

Has the message been used for
producing path reputation? (F1)

Yes, decreases the value of the
message (Sm

1 � 0) Most important
(A message can have little chance to make further advantage

for reputation detection if it has been used yet)No, increases the value of the
message (Sm

1 �1)

Whether the message can be utilized
by the feedback detection? (F2)

Yes, increases the value of the
message(Sm

2 �1) Very important
(feedback cross can be reliable for path reputation detection)No, decreases the value of the

message(Sm
2 � 0)

Whether the message can be utilized
by the feed-forward detection? (F3)

Yes, increases the value of the
message(Sm

3 �1) Important
(feed-forward cross cannot be as reliable as feedback cross for

path reputation detection)No, decreases the value of the
message (Sm

3 � 0)

*e diffusion path length of the
message. (F4)

Longer length indicates the message
has a higher value;

Fair
(*e length of the diffusion path mainly influences the
reusability of the corresponding path reputation for

reputation aggregation)
Shorter length indicates the message

has a lower value (Sm
4 �1 − 1/l)
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At the initial state, agents write messages, with proba-
bility pw. At the successive states, agents have the oppor-
tunity to receive those messages, with probability pr. Agents
who receive a message can choose whether to diffuse it with
diffusion probability pd. *en, by considering the decay
property of information diffusion [26], pr decreases
according to a decreasing function of the time elapsed, which
is pr �Χ (t′ − t)× pr

′, where t is the time at which the message
was initially diffused by the upstream agent, t′ is the current
time, Χ (t′ − t) is a function that decreases from 1.0 to 0.0 as
(t′ − t) increases, and pr

′ is the inherent probability of agents
receiving messages. *erefore, in the experiments, for each
time step, each agent has an opportunity to write messages,
receive messages, and diffuse messages, with probabilities of
pw, pr
′, and pd, respectively.*e decreasing functionΧ (t′ − t)

for receiving probability modification is set to 1/(t′ − t)2.
*e default reputation rd for each agent is set randomly

ranging from 0.0 to 1.0. 1 − rd is the probability that the agent
will behave maliciously; for instance, if the rd of an agent is
0.7, there is a 30% probability that it will engage in malicious
behavior at each time step. Moreover, in the eFPTI model,
the limited number of message filtering methods, |Mi

′|, is set
to 20.

6.2. Feasibility andEffectiveness of theModels. In this section,
we validate the feasibility and effectiveness of our models by
using Twitter datasets extracted by Greene and Cunningham
[45]: Football (FB), which is the network dataset, consists of
248 football players and clubs active on Twitter and 3819
edges among them, Olympics (OLY), which is the network
dataset consists of 464 Twitter accounts of athletes and
organizations in London 2012 Summer Olympics and 10642
edges among the accounts, Politics-ie (POL), which is the
network dataset of Twitter users including 348 Irish poli-
ticians and political organizations and 16856 edges among
these users, and Rugby (RUG), which is the dataset of 854
international Rugby Union players, clubs, and organizations
active on Twitter and 35757 edges among them. *e details
of the datasets are shown in Table 3.*e datasets include not
only the data of network structure, but also the retweeting
data among Twitter users, that is, the users and edges ac-
tually observed in the retweeting processes, which can be
also used to investigate the feasibility of our models.

6.2.1. Feasibility Tests for Path Reputation Detection. To
validate the feasibility of FPTI and eFPTImodels, we first use
the retweeting data (including retweeting relations between
paired users and corresponding retweeting weights) to

construct real retweeting paths through Twitter users, which
are represented by retweeting networks among users. *en,
feasible feedback and feed-forward crosses in the retweeting
networks, which can support the implementation of repu-
tation detection of the presented FPTI and eFPTI models,
have been investigated in depth-first order [46] and breadth-
first order [47], respectively.

Figures 7(a) and 7(b) show the number of feedback and
feed-forward crosses discovered from the retweeting net-
works of the four Twitter datasets. *e results show that
there are a great number of feasible feedback and feed-
forward crosses (even in FB retweeting network with the
least nodes and relations) that can be sufficient to support
the path reputation detection of FPTI and eFPTI models;
namely, the discovered crosses can satisfy the conditions for
reputation detection demonstrated by *eorems 2 and 3.
Moreover, by comparing the results in Figures 7(a) and 7(b),
we find that the numbers of feasible feed-forward crosses in
retweeting networks can be much larger than that of
feedback crosses; it indicates the higher feasibility of feed-
forward detection of our models in path reputation detec-
tion. In conclusion, verified by the retweeting data from the
Twitter datasets, there are feasible information diffusion
structures that can support the implementation of the
presented FPTI and eFPTI models for reputation detection
in information diffusion scenarios.

6.2.2. Coverage and Accuracy Tests. To test the effectiveness
of our models, we first introduce the following baseline
model. 4e ideal interaction model (Ideal model): in this
model, each activity of an agent can be ideally observed by
the agent’s neighbors immediately as if they have direct
interactions during the whole process. In fact, this model
cannot be applied in real information diffusion scenarios,
but it can be set as the standard (upper bound) for per-
formance evaluation.

*e effectiveness tests have been conducted in infor-
mation diffusion scenarios (see Section 6.1) on Twitter user
networks shown in Table 3. *e parameters for information
diffusion are set as follows: pw � 0.05, pr

′� 0.1, and pd � 0.1.
*e results are obtained at the 500th step of the information
diffusion processes.

(1) Coverage Tests. Coverage tests focus on what per-
centage of the agents in the network can be detected by the
reputation model. *e detection coverage is defined as
Cov� |A′|/|A|, where |A′| is the number of agents whose
reputations have been detected, and |A| is the total number
of agents in the network.

Table 3: Summary of datasets [45].

Dataset Users Edges Retweeting
users

Retweeting
edges

Football (FB) 248 3819 234 1350
Olympics
(OLY) 464 10642 440 3740

Politics-ie
(POL) 348 16856 307 3019

Rugby (RUG) 854 35757 827 12472

Set of neighbors Write message

Agent

Receive message

Diffuse message

pr

pd

pw

rd

Local 
Message
Storage

message
tampering

1-rd

Upstream
neighbors

Downstream
neighbors

Figure 6: *e experimental environment settings.
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If employing the ideal model, all the activities of the
agents can be ideally observed by their neighbors (which is
actually impossible in reality), so that the coverage of the
ideal model can keep 1.0 during all the periods. Hence, the
results of detection coverage by using the ideal model are
omitted here. Table 4 shows the results of the detection
coverage of our models (FPTI and eFPTI) in Twitter net-
works. From Table 4, we find that, using FPTI model, the
detection coverage can be equal or greater than 0.74; and in
the networks of POL and RUGwith relatively higher average
degree, the detection coverage can be larger than 0.95, which
is close to the optimal results. *en, using eFPTI model, the
detection coverage can be closer to that using FPTI model if
the average degree of the users is higher; in the POL and
RUG networks, the performance loss of eFPTI model can be
very low, and the coverage can achieve 0.9. *e performance
loss using eFPTI is caused by the message filtering intro-
duced in Section 5.

(2) Accuracy Tests. Let erx be the difference between the
detected reputation of an agent and its default reputation set
initially. *e detection accuracy is defined as Acc� 􏽐∀erx∈{er}
(1 − erx)/|{er}|, where {er} is the set of erx.*e initial erx in the
simulation is set to 0.5.

Figure 8 reports the accuracy test results.*e ideal model
can obviously have the best performance on detection ac-
curacy. *ere are two reasons: (1) each activity of an agent
can be ideally observed by the agent’s neighbors immedi-
ately; and (2) the transformation of ideal model from the
observed evidences (neighbors’ activities) into agents’ rep-
utations is set to uniform, which coincides with our ex-
perimental settings of agents’ behavior pattern. Hence, the
ideal model can have a very high accuracy in reputation
detection (close to 0.9 in FB and OLY networks, and close to
0.95 in POL and RUG networks).

In Figure 8, we can find that the detection accuracy
employing our models can achieve 0.7 on the Twitter user
networks.*e performance gap between our models and the
ideal model is mainly caused by (1) the incomplete infor-
mation that agents can only obtain in the information
diffusion processes, (2) and the transformation error from

path reputation into reputations of agents. For the former
aspect, the ideal model can have complete information of
agents’ behaviors in the reputation detection that is actually
impossible in reality; then, for the latter aspect, as introduced
before, it is very difficult to estimate the reputations of agents
from the obtained path reputation because of the concate-
nation of agents’ behaviors through paths in information
diffusion scenarios. *erefore, compared with the ideal
model, the detection employing FPTI and eFPTI models can
be considered to be of high accuracy and satisfying.

6.2.3. Comparison between Our Two Models. In this section,
we compare our presented eFPTI model with the FPTI
model. Besides the detection coverage and accuracy, we also
compare the detection costs of the two models. Figure 8
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Figure 7: Feasibility validation of path reputation detection of the presented models. (a) Feedback detection. (b) Feed-forward detection.

Table 4: Detection coverage in twitter networks.

Dataset FPTI eFPTI
Football (FB) 0.747 (±0.023) 0.586 (±0.036)
Olympics (OLY) 0.798 (±0.014) 0.718 (±0.015)
Politics-ie (POL) 0.960 (±0.006) 0.939 (±0.006)
Rugby (RUG) 0.980 (±0.002) 0.975 (±0.003)
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Figure 8: Detection accuracy in twitter networks.
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shows that the eFPTI model can perform as well as the FPTI
model on the reputation detection accuracy in all the tested
Twitter networks; then, Table 4 indicates that the eFPTI
performs a little worse on the detection coverage than the
FPTI model, and the performance of eFPTI can be closer to
that of FPTI if the network average degree is larger. Finally,
in Figure 9, we observe that the reputation detection costs of
eFPTI are much lower than those of FPTI in the tested
networks. *ese results validate the advantage of eFPTI.
*erefore, the eFPTImodel reaches the expected objective to
achieve satisfactory performance of reputation detection
with lower detection costs.

In conclusion, the presented FPTI and eFPTI models
both achieve the corresponding objectives for reputation
detection in information diffusion scenarios in SNS, which
are verified by several Twitter datasets. *e FPTI model
performs well on the detection coverage and accuracy; the
detection coverage ranges from 0.74 to 0.98, and the de-
tection accuracy can be up to 0.7. *e eFPTI model also
achieves satisfying performance on detection coverage and
accuracy that are close to those of FPTI model in most of the
cases, and it can have much lower costs in reputation
detection.

6.2.4. Comparison with the Representative. We compare the
presented FPTI and eFPTI models with the representative

reputation model, the direct interaction model (DI) [17, 18]
in this section. *is benchmark model uses the direct in-
teraction experiences among agents to assess their reputa-
tions. It is often considered as the most important
component in most of the integrated reputation models,
such as Regret [16], FIRE [17], and FIRE+ [20], and can also
be used as the source to generate the indirect reputation
factors in these models.

*e experiments are conducted in a specially set envi-
ronment where forming bidirectional relationships are fa-
cilitated by setting the same probability to construct the
relations in both directions between paired users. In the
traditional direct interaction model, the agents evaluate the
reputations of their neighbors by their direct interaction
experiences during the whole information diffusion process.

Figures 10(a) and 10(b) show the results of the de-
tection coverage and accuracy of the presented models and
the DI model, respectively. From Figures 9(a) and 9(b), we
observe that the presented FPTI and eFPTI models can
have much better performance than the DI model on the
detection coverage and accuracy. *e performance ad-
vantage of our models on the detection coverage compared
with the DI model is large, which is nearly 0.75; and then,
for the detection accuracy, our models can be 0.13 higher
than the DI model (only the agents that can be detected are
considered).
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Figure 9: Comparison of the proposed reputation detection models (FPTI vs. eFPTI) on the detection costs. (a) Detection costs in FB
network. (b) Detection costs in OLY network. (c) Detection costs in POL network. (d) Detection costs in RUG network.
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*e potential reasons for the observed results are as
follows: (1) compared with the DI model, our models can
detect much more evidences of the agents’ behaviors by
using path reputation detection through a large amount of
diffusion crosses during the information diffusion process,
while the DImodel can only obtain evidences from the direct
interaction experiences, which largely restrict the detection
scope and the evidence quantity; (2) then, because more
evidences can lead to more accurate assessment of the
agents’ reputations, the less evidence quantity of the DI
model will lead to a lower detection accuracy. In fact, there is
another explanation that can be easier to understand: the DI
model can be just considered as a special case in the feedback
detection of the FPTI and eFPTI models when the path
length of the feedback cross is 2. In conclusion, the direct
interaction reputation model cannot be well adapted to the
information diffusion scenarios considered in this paper.
*is also gives an insight into the problem that traditional
models may have in the information diffusion environment.

6.3. Key Properties of the Models. We investigate the key
properties of the presented models: (1) the robustness in
dynamic environments, and (2) the effect of suspicion
probability in the presented models. For the convenience of
property investigation, the initial network for information
diffusion is constructed according to the random social
network model [48], which initially contains 500 nodes, and
the average degree of the initial networks is 10. *e pa-
rameters for information diffusion are set as follows: pw

� 0.1, pr
′� 0.2, and pd � 0.2.

6.3.1. Robustness for Dynamic Environments. *e dynamic
environments in the experiments are set as follows:

(i) Agent behavior pattern reset (dynamic type i): the
probabilities of agents to behave maliciously can be
dynamically reset; namely, the values of their default
reputations are reassigned; in this robustness test,
the probabilities of all the agents in the system to
behave maliciously are reassigned randomly.

(ii) Network relationship rewiring (dynamic type ii): the
network relationships of the system can be dy-
namically rewired; namely, old relationships be-
tween agents can be destroyed, and, at the same
time, new relationships will be created; in this ro-
bustness test, there is a 50% probability of rewiring
for each edge in the system by selecting paired
agents randomly.

(iii) New agent entrance (dynamic type iii): considering
the open environment, agents can dynamically
enter the system and construct relationships with
other agents; in this robustness test, new agents, the
number of whom is 10% of the initial number of
agents, will join the system (i.e., 50 new agents will
join the system for each dynamic change).

We also set the mixed dynamic environments (dynamic
type i+ ii+ iii) to test the robustness of ourmodels (FPTI and
eFPTI).*e dynamic changes of the system are conducted at
the 100th, 200th, 300th, and 400th steps of the experiments,
respectively.

Figure 11 shows the performance of the reputation
detection of our models (FPTI and eFPTI) in these dynamic
environments. In Figure 11(a), when the probabilities of
agents to behave maliciously are dynamically reset, the
reputation detection accuracy decreases dramatically. *e
reason is that the past observations for the agents’ reputation
estimation can not reflect their behavior pattern after reset.
Such situation makes a challenge of fast convergence of
reputation detection. But from the plot, we can see that the
detection accuracy of our models can recover soon after a
short period of time and converge to the former state. In
Figure 11(b), we observe that the network relationship
rewiring of the system does not have an obvious impact on
the performance of our models. *e potential reason is that,
after relationship rewiring, the past observations that can be
used for reputation detection can also reflect the behavior
pattern of engaged agents. *us, our models are robust in
this type of dynamic environments where network rela-
tionships may be rewired. Figure 11(c) indicates the ro-
bustness of our models in the environments where new
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Figure 10: Reputation detection performance of the presented models (FPTI and eFPTI) vs. the direct interaction model (DI). (a) Results of
detection coverage. (b) Results of detection accuracy.
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agents can enter. We find that when new agents enter the
systems, the detection coverage and accuracy have been both
influenced. Unlike the dynamic of agent behavior pattern
reset, the detection coverage of our models in this type of
dynamic environment has obvious fluctuations. But from
this plot, we can observe that our models can recover soon
and also achieve the expected results. Figure 11(d) shows the
test results of our models in the mixed dynamic environ-
ments. With several dynamic situations combined in the
environment, the detection coverage and accuracy of our
models both have obvious fluctuations. But similar to the
results in previous dynamic environments, our models can
also be robust in this mixed dynamic environment and can
achieve good performance. In conclusion, the presented
models (FPTI and eFPTI) are robust for the reputation
detection in several dynamic environments where agents
may dynamically change their behavior patterns, network
relationships may be rewired, and new agents may enter the
system.

6.3.2. Effect of Suspicion Probability in Reputation
Aggregation. In this section, we aim to confirm the effect of
suspicion probability introduced in our models. We first
ignore the suspicion probability in our models (FPTI and
eFPTI) and then employ such modified models to perform
the same tests as those in previous section. By comparing the
corresponding results, the effect of the suspicion probability
can be proved. Here, we only compare their detection ac-
curacy performance, because the modification (ignoring the
suspicion probability) cannot influence the detection
coverage.

Figure 12(a) shows that there is a large performance
difference between the original models and the modified
models without considering the suspicion probability. *e
detection accuracy of modified models is nearly 0.11–0.13
lower than that of the original models. Such results obviously
indicate the benefit of considering suspicion probability in
reputation aggregation.

*en, in Figure 12(b), we can see how the suspicion
probability takes effect in the reputation detection. We first
give the definition of the error distribution ratio (EDR) as
follows: EDR�Nerr-n/Nerr-p, where Nerr-n and Nerr-p repre-
sent the number of negative detection and positive detection,
respectively. *e positive (negative) detection indicates that
the detected reputation of an agent is higher (lower) than its
default reputation set initially. In Figure 12(b), the EDRs of
the modified models are much larger than those of the origin
FPTI and eFPTI models; namely, there are much more
negative detections when not considering the suspicion
probability. *is validates the aim of introducing suspicion
probability into reputation detection, which is to revise the
effect of obtained negative evidences on reputation aggre-
gation. If no such revision has been carried out, agents’
reputations could be significantly underestimated.

6.4. Applicability of the Models on Misinformation
Suppression. In this section, we apply our models (FPTI and
eFPTI) in information diffusion scenarios and test the effects
of agents’ reputations detected by our models on misin-
formation suppression. A threshold method utilizing the
detected reputations is used to suppress the influence of
malicious behaviors. Let Im be the ratio of the number of
messages that have been tampered with, thus taking mis-
information to the total number of messages in the system,
and Im
′ be the ratio of the number of messages that take

misinformation to number of messages after the suppression
approach is implemented. *e details of the threshold
method are described below. Let Au and Ad be the set of
upstream and downstream neighbors of an agent ai, and let ri
(j) be the reputation of aj evaluated by ai. *e agent ai can
first set the threshold values α and β for upstream and
downstream neighbors, respectively, and then, it can only
receive messages from Au

′ and diffuses messages toAd
′, where

Au
′ ⊆Au, Ad

′ ⊆Ad, ∀ ri (au
′)> α (au

′ ∈Au
′), and ∀ ri (ad

′)> β
(ad
′ ∈Ad
′). In the experiments, we set α and β to be equal to

0.7.
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Figure 11:*e robustness tests of the FPTI and eFPTI models in different types of dynamic environments. (a) Agent behavior pattern reset.
(b) Network relationship rewiring. (c) New agent entrance. (d) Mixed dynamic environment.
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For example, let Au � {a1, a2, a3} be the set of upstream
neighbors of agent ai; that is, there are edges directed from
the agent a1, a2 and a3 to ai, respectively, and ri (a1)� 0.35, ri
(a2)� 0.76 and ri (a3)� 0.91; let Ad � {a4, a5, a6, a7} be the set
of upstream neighbors of agent ai; that is, there are edges
directed from the agent ai to a4, a5, a6 and a7, respectively,
and ri (a4)� 0.21, ri (a5)� 0.83, ri (a6)� 0.96 and ri (a7)�

0.62. If the threshold value for upstream neighbors α is set to
0.7, then the agent ai can only receive messages from a2 and
a3 for misinformation suppression; and if the threshold
value for downstream neighbors β is set to 0.7, then the agent
ai can only diffuse messages to a5 and a6 for misinformation
suppression.

Figure 13 provides insight into the effect of the repu-
tations detected by our models in weakening the influence of
malicious behaviors in information diffusion. *is plot first
shows that, with no suppression on malicious behaviors, Im
increases rapidly in the early stages and then gradually tends
towards stability; that is, the number of messages tampered
with increases as the total number of messages increases.

*en, from the results implementing the suppression ap-
proach, we can see that a gradual decrease in Im occurs after
the suppression approach is implemented at the 400th ex-
ecution step. Finally, at the 800th step, the results obtained
using the suppression approach can be much better. (*e
percentage of misinformation after misinformation sup-
pression based on the reputation detection results by FPTI
and eFPTI declined by 30.4% and 20.6%, respectively).

7. Conclusion and Future Works

We present a novel distributed reputation detection pattern
“from path to individual,” which can overcome the problem
that it may be difficult or impossible to determine interaction
reputations in the absence of direct interactions in scenarios
of information diffusion in SNS. *e main idea is that the
positive (negative) observation of an information diffusion
process increases (decreases) the belief of the corresponding
diffusion path, which further increases (decreases) the
reputation of each involved agent.

Based on the detection pattern “from path to individual,”
we then propose the FPTI and eFPTI models. *e FPTI
model effectively addresses the following issues for the
diffusion in SNS: (a) how to detect path reputations from
information diffusion process, and (b) how to aggregate
obtained path reputations into reputations of agents. Fur-
thermore, the eFPTI (enhanced FPTI) model is proposed in
order to address an additional important issue: how to ef-
fectively reduce the detection costs on the premise that
satisfactory detection performance can be achieved.

*rough theoretical analyses and experimental evalua-
tions, we have shown that, in information diffusion sce-
narios in SNS, (1) the presented models (FPTI and eFPTI)
can be effective and efficient in reputation detection, (2) the
reputations of agents determined using the presented
models can be considered as appropriate alternatives to
interaction reputations, and (3) the obtained agents’ repu-
tations are valuable for suppressing the influence of mali-
cious behaviors.
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Figure 12: *e effects of suspicion probability in the proposed models on (a) the detection accuracy, and (b) the error distribution. (a)
Results of detection accuracy. (b) Results of error distribution ratio.
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In future work, we plan to extend our model in the
following ways:

(i) Collusion between agents is not currently considered
in the model. However, agents in social network
systems may collude to achieve their selfish goals
[49]. For this reason, we plan to extend ourmodel for
reputation detection in the future to consider col-
lusion between agents in information diffusion
scenarios in SNS.

(ii) Recently, the multiplex nature of social networks has
received considerable attention [50, 51]. *is feature
of social networks suggests that it may be useful to
study reputation models that suit the characteristics
of multiplex social network systems. *us, we also
plan to extend ourmodel to multiplex social network
systems by considering their particular network
characteristics, for example, diverse relative bias for
diffusion in different network layers [51] and the
relevance of connectivity between multiple network
layers [52].
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