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Resolving the challenge of flight delays caused by air traffic congestion renders it necessary to explore the mode of congestion
propagation. By applying complex network theory, this article establishes a complex network structure where airspace sectors act
as nodes, and the edges represent traffic flow relationships between sectors. In addition, a cascading failure model is proposed to
analyze the airspace sector network’s invulnerability. +e critical threshold and the sector abnormality rate are determined
according to the cascading failure measurement indexes. Based on the remaining capacity of sector nodes, two optimization
strategies are proposed: adjacent load redistribution strategy and local load redistribution strategy. +e simulation results
demonstrate that the local load redistribution strategy greatly improves the airspace sector network’s invulnerability to
cascading failure.

1. Introduction

An airspace sector is a basic unit of air traffic control, and an
airspace sector network is a complex infrastructure system
that supports air traffic activities and assures their safe ex-
ecution and order. Before the pandemic in 2019, China’s civil
aviation industry has developed rapidly. Since 2015, the air
traffic control bureau has begun to optimize the national
airspace as a whole. In 2019, a total of 52 sectors in North
China Airspace were adjusted. +e flight procedures of 18
civil aviation transport airports in North China have been
changed, especially with the operation of Beijing Daxing
International Airport. 119 civil routes and 237 new way-
points were planned, which greatly increased the complexity
of sector network. At the same time, with the gradual im-
provement of the epidemic situation, the rapid development
of the Chinese air transport industry and the growing de-
mand for air transport services lay increasing stress on the
safe operation of the airspace sector network, thus setting
higher standards for network resilience and operational
efficiency in emergencies. In addition, adverse weather
conditions and frequent military activities in Chinese air-
space aggravate traffic congestion and render airspace sector

operation less efficient. Inefficient operations or low capacity
of an airspace sector may cause congestion in a large airspace
area, causing significant flight delays. +erefore, the safety
and operational efficiency of the airspace sector have
attracted a lot of attention from researchers in various
domains [1–3].

+e complex network theory has a mature methodology
that enables the systematic and scientific study of airspace
sector networks and provides an effective way to reduce the
impacts of sector failure [4, 5]. Invulnerability analysis is one
of the primary applications of complex network theory. It
stems from the pioneering work of Albert et al. [6], who
evaluated networks’ error tolerance and attack vulnerability.
In the early stages, the research on complex network in-
vulnerability was primarily conducted under static condi-
tions, without considering the effect of failed nodes (edges)
on other nodes (edges). However, upon attack, one must not
only consider the changes in the performance due to failed
nodes but also pay attention to the effect of changes in the
fail nodes’ load transfer on the actual network. When a node
is under attack, the state of other nodes in the network also
changes as the load of the failed node is transferred.+e load
transfer may cause more node failures, further transferring
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the load and causing additional failures [7]. +is process is
called the cascading failure of complex networks. It is a
dynamic process, more complicated than static attacks [8].

+eoretical modeling and simulation analysis are im-
portant strategies to study cascading failure. Examples of
cascading failure models include load-capacity models,
coupled image grid models, binary influence models, opti-
mal power algorithm (OPA) models, sandpile models, and
CASCADE models [9]. Motter and Lai first established the
linear relationship between initial load and capacity, de-
riving the cascading failure model called the ML model. +is
model applies betweenness to define the load and uses the
relative value of the network’s largest connected component
to measure the network stability [10]. Since removing nodes
from the network is not practical in real-world applications,
Crucitti et al. proposed a dynamic model based on the edge
transmission efficiency, the Crucitti-Latora-Marchiori
(CLM) model. CLM considers the dynamic behaviors of
both nodes and edges in the network. Instead of deleting the
edges between nodes directly when the nodes are over-
loaded, CLM adopts a strategy to reduce the transmission
efficiency of the edges [11]. Among the cascading failure
models, the ML model is most widely used in real-world
applications, such as grid systems [12], transportation sys-
tems [13], and information communication systems [14].

+e cascading failure model is also suitable for studies of
complex networks in aviation. In 2011, Eusgeld et al. pre-
sented evaluation methods for different scenarios of
transportation networks. In their work, the author
accounted for the interactions between systems while
assessing the network vulnerability and reliability after
different failures and attacks [15]. In 2018, Clark et al. de-
fined the robustness of the U.S. national airspace system
airport network (NASAN) as loss of critical functions owing
to perturbations. +ey developed and demonstrated an
approach to characterize network robustness quantitatively
and selected the most efficient and effective posthazard
recovery strategies [16]. Recently, Cumelles et al. presented
an algorithm to evaluate the effectiveness of several rules for
selecting alternate departure and arrival airports to affected
flights to reduce the impact of the cascading failure. +e
algorithm was applied to the Oceanic Airport Network to
assess the impact of several incidents, demonstrating that
rules for selecting arrival airports have a significant impact
on reducing the effect of incidents affecting major airports
[17]. In summary, the complex network theory and cas-
cading failure theory have been widely adopted to derive
effective approaches for addressing various problems in
aviation networks. However, few studies systematically
analyze the airspace sector network’s invulnerability to
cascading failure from the perspective of air traffic control to
formulate air traffic congestion optimization strategies.

+is study builds on the traditional load-capacity model
to develop an improved load-capacity model for analyzing
and optimizing airspace sector networks’ invulnerability to
cascading failure. A cascading failure process model is built
for the airspace sector network, and an index is introduced
to quantify the airspace sector network invulnerability to
cascading failure. Finally, from the standpoint of air traffic

control operations, airspace sector strategies of redis-
tributing the adjacent and local loads are proposed and
validated via simulations.

+e paper is organized as follows. Section 2 briefly in-
troduces the cascading failure invulnerability and presents
the developed cascading failure model with measurement
indicators. +e optimization strategy for cascading failure
invulnerability of airspace sector network is presented in
Section 3. +en, the airspace sector network in Northern
China is studied as an example to verify the feasibility of the
proposed strategy. Finally, Section 5 concludes the paper by
summarizing the contributions and discussing the directions
for future work.

2. Cascading Failure Invulnerability of Airspace
Sector Networks

2.1. Construction of Airspace Sector Network. As the smallest
air traffic control units, sectors are the basic units to ensure
aircraft safety, smoothness, and order. Meanwhile, they are
the basic spatial units managed by air traffic controllers. +e
sectors are closely connected, not only spatially but also in
aeronautical information sharing. +e connections and
interactions between sectors give rise to an airspace sector
network comprising multiple cooperative sectors. From the
perspective of air traffic control, this work constructs an
airspace sector network by regarding control sectors as the
network notes and the edges as traffic flows between sectors.
+e adjacency matrix aij 

N×N
represents the spatial sector

network containing N sectors. If there is a direct flight
connection between sector i and sector j, the adjacency
matrix elements are set as aij � aji � 1. Otherwise, the el-
ements are aij � aji � 0.

An example of airspace sector structure is shown in
Figure 1. +e airspace is divided into five control sectors.
Sectors B, C, D, and E comprise airspace below 20700 feet,
while the airspace above 20700 feet is governed by the high-
altitude control sector A. Flights connect all sectors except
sectors A and B (i.e., there is no direct flight connection
between sector A and sector B). Following the aforemen-
tioned method, a network of airspace sectors can be built as
in Figure 2, and its adjacency matrix is

0 0 1 1 1

0 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Severe weather conditions, military activities, equipment
failures, and other unexpected circumstances may cause
network nodes to fail, and the airspace sector network may
consequently enter an abnormal state. Flights in or flying to
the failed sector must return, alternate, or detour and be
reallocated to one of the surrounding sectors. However,
congestion occurs when the traffic volume is greater than the
surrounding sectors’ capacity, triggering new failures. +is
phenomenon causes the redistribution of the flight traffic in

2 Complexity



the entire airspace sector network, leading to congestion in
multiple sectors and even the sector network’s failure. +is
process is called the cascading failure of the airspace sector
network [18].

+e airspace sector network’s invulnerability to cas-
cading failure is the ability of the sector network to reduce
congestion by dredging flight traffic after a cascading failure
so that the network can still maintain an acceptable level of
air traffic control operations.

2.2. Load and Capacity of Airspace Sector Network Nodes.
+is paper uses an improved load-capacity model (the ML
model) [19] to study the cascading failure of airspace sector
networks. Unlike the definition of sector capacity and
controller workload in the traditional sense of civil aviation,
a sector node’s load and capacity are related to the actual
workload of the single sector’s controller and the flight flow
that the sector can accommodate. Furthermore, the two
aspects are combined to determine the load and capacity of
the airspace sector network node and its influence on the
overall network.

Different statistical indicators are used to describe the
complex sector network. Furthermore, they are combined
with the actual operation of air traffic control to give them
practical value. +e indicators’ definitions and meanings are
as follows:

(i) Degree, denoted by ki, refers to the total number of
edges connected to node i and reflects the node’s
importance to the network to a certain extent.
Within this work, degree ki is the number of sectors
that are geographically adjacent to sector i and have
a direct flight connection. +us, the degree reflects
the number of sectors that have a handover
agreement with sector i.

(ii) Strength (Si) is calculated as

Si � 
j∈V(i)

Wij, (2)

where Vi is the set of sectors adjacent to sector i, and
Wij is the number of flights from sector i to sector j.
+e controllers provide air control services for
flights in the sector. +us, Si reflects the busyness of
the sector and is the most important indicator when
studying air traffic congestion.

(iii) Load of the sector node i is denoted by Li and
calculated as

Li � kiSi, (3)

where ki is the degree of sector node i, and Si is the
strength of sector i. Furthermore, l denotes the
average distance between all sectors.+e correlation
analysis demonstrates that the sector strength is
mostly affected by the regional economic level
(passenger demand) and route layout, and it is
unrelated to do the degree value. +erefore, the two
can be used together as parameters affecting the
sector network nodes’ load.

(iv) Capacity of the sector node i is calculated as

Ci � Li + μL
θ
i , (4)

where μ is the extra margin parameter greater than
0, and θ is the extra margin differentiation pa-
rameter between 0 and 1. +e capacity of a network
node is the maximum load that the node can handle.
+e sector’s capacity is the number of flights that the
controller can handle when the work reaches a
certain higher load state, and the actual flow is below
the capacity under normal operation. As seen in (4),
the load of the sector node in the normal state and
the extra margin determine the sector node’s ca-
pacity C, which represents the controller’s ability to
handle the load under normal conditions.

In the traditional MLmodel, the capacity is proportional
to the load. Nevertheless, the sectors’ actual capacity is se-
verely restricted by various factors such as airspace capacity,
navigation equipment, and controller workload. In a sector
node with a small load, the airspace resources and the
controller’s work capacity are often not fully utilized, and
usually have a large extra margin. In contrast, when a sector
node has a large load, the airspace utilization rate and the
controller’s work load are very large. +e extra margin of
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Figure 1: Diagram of airspace sector structure.

A

B

C

D

E

Figure 2: Airspace sector network.
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these sector nodes is small, which is close to the capacity.+e
improved MLmodel adjusts the extra margin differentiation
parameters θ, enabling the differentiation of the different
load sector nodes’ extra margin. When θ is smaller, the extra
margin of the heavily loaded sector node is smaller, and its
load is closer to the capacity.

2.3.Modeling the Cascading Failure Process of a Spatial Sector
Network. In their research on network cascading failure
models, scholars mostly use “normal” and “failure” to de-
scribe the status of network nodes [20]. If the node is in the
“failure” state, the node is directly removed from the net-
work, and the network load is redistributed. After the load
redistribution, the node whose capacity is lower than the
load also obtains the “failure” status. As these nodes are
removed, a new round of cascading failure is triggered.
+is kind of network model that continuously changes its
structure along with the cascading failure process is
widely used in power [21] and information network [22]
research.

However, in airspace sector networks, it is extremely rare
that the sector completely “fails” due to excessive flight
traffic. Usually, it only leads to air traffic congestion in the
control sector, increasing the controller’s workload, low-
ering the service capacity, and decreasing the number of
acceptable flights. When the sector is in the “normal” state,
its load is below the capacity, and its control function can be
fully exercised. In contrast, the sector node in the “failure”
state is the source of cascading failure. +e capacity of such
as sector node drops to zero, and the original load is
redistributed to the surrounding sectors. When a sector
network node’s load is greater than or equal to its capacity,
the sector is reserved in the network, and the sector enters
the third state called the “congestion” state. +e sectors in
this state cannot continue to receive the redistributed load
from other sector nodes and only allows the internal load to
flow out to other sectors.+e outflow process continues until
the sector’s load is equal to the capacity, and the load is
maintained at a state equal to capacity during the cascading
failure. +e “failure” and “congested” states can be collec-
tively referred to as “abnormal” states.

Within this work, the following assumptions are made
about the cascading failure of the airspace sector network:

(1) During the connection failure period, the sectors’
capacity is fixed;

(2) During the cascading failure, once a sector enters the
“abnormal” state, it no longer changes its state;

(3) +e airspace sector network utilizes an equal load
redistribution method in which the load exceeding
the sector node’s capacity is evenly distributed to the
adjacent sector nodes.

Based on the presented analysis and assumptions, the
cascading failure process of an airspace sector network is
divided into the following four stages.

(1) Normal stage: each sector node’s load is lower than
the capacity, and all nodes are in the “normal” state.

(2) Initial failure stage: when an emergency occurs, and a
sector is temporarily closed, the corresponding
sector network node enters the “failure” state. +is
sector’s traffic and its functions in the sector network
are distributed to surrounding sectors (i.e., the sector
node’s load is distributed to adjacent sector nodes).

(3) Failure propagation stage: due to the newly added
load, several surrounding sector nodes’ load may
become greater than or equal to their inherent ca-
pacity, changing these nodes’ states from “normal” to
“congestion.” As the node enters the “congestion”
state, it distributes the load exceeding its capacity to
the adjacent sector nodes in the “normal” state.+en,
a new round of failure propagation commences.

(4) Failure ending stage: spreading the cascading failure
over the airspace sector network is terminated when
one of the following situations is encountered: (a) a
balanced state is reached.+e load of all sector nodes
is below their capacity, and no further load redis-
tribution processes occur. (b) +e network is judged
to be in a state of collapse. A certain sector node’s
load exceeds its capacity, and all adjacent sectors are
in an “abnormal” state. +us, the load exceeding the
node’s capacity cannot be redistributed to other
sectors.

Based on the assumptions and analysis of the cascading
failure process, the airspace sector network’s cascading
failure process is constructed as follows:

Step 1. In the normal stage, each sector node’s load and
capacity satisfy Li <Ci.

Step 2. A certain sector enters the “failure” state.

Step 3. According to the equal load redistribution method,
the load of the node in the failed sector is evenly distributed
to all adjacent sectors, reducing the load and capacity of the
node in the failed sector to zero.

Step 4. In the failure propagation stage, the sector nodes that
have changed from “normal” to “congested” are detected,
and the load exceeding their capacity is evenly redistributed
to the adjacent sector nodes in the “normal” state. +ese
loads of these sector nodes increases as:

ΔL �
Li − Ci

Ni

, (5)

where Ni is the number of adjacent sectors in the “normal”
state.

Step 5. +e relationship between the load and capacity of all
sector nodes in the “normal” state is determined. If there is a
sector node for which Li ≥Ci and Ni > 0, the sector’s state
changes from “normal” to “congestion,” and the process
returns to Step 4. Otherwise, Step 6 is executed.
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Step 6. In the failure ending stage, if there are sector nodes
for which L>C and N � 0, the airspace sector network is in
a state of collapse. In contrast, if L≤C for all sector nodes,
the airspace sector network reached a balanced state.

2.4. Cascading Failure Invulnerability Index. According to
the established relationship between the sector node’s load
and capacity (equation (4)), μ reflects the sector node’s
ability to handle the load when θ is constant.+e larger the μ,
the smaller the cascading failure influence. When μ is suf-
ficiently large, the sector node’s capacity is much larger than
the load, and any sector failure does not cause a cascading
failure. In contrast, if μ is small, the extra margin of all sector
nodes is very small, and a failure of a sector node with a small
load can cause cascading failure or even the entire network
collapse. Adjusting parameter μ, one can obtain the critical
threshold (μτ). Namely, when μ≥ μτ , the failure of the sector
node with the largest load does not cause the collapse of the
entire network. However, when μ< μτ and the sector node
with the largest load fails, the entire network collapses. +us,
critical threshold μτ evaluates the airspace sector network’s
invulnerability to the cascading failure. Under the premise of
preventing the network collapse, when μτ is smaller, the
requirement for the additional margin of the sector node
capacity is lower. When the sector node’s capacity is small,
the equipment, personnel, and economic costs invested in
the sector are low, and the network cascading failure is more
resilient.

+e critical threshold can be used to evaluate the net-
work’s invulnerability to cascading failure only from the
final state of the system. For actual control work, airspace
sectors usually have greater redundancy to deal with
emergencies and ensure safety. +erefore, the situation
where the overall control system collapses is very rare. When
the cascading failure does not cause the network collapse
(i.e., when μ> μτ), another measurement index—the sector
abnormality rate (SAR)—is used to evaluate the invulner-
ability. SAR is the ratio of the number of sectors in an
“abnormal” state to the total number of sectors in the normal
phase of the airspace after a cascading failure of the airspace
sector network. +us,

SAR �
N
∗

N
, (6)

where N∗ denotes the number of “abnormal” sectors and N

is the total number of sectors. When the airspace sector
network system is in a balanced state, a smaller SAR implies
that more sectors are in a “normal” state, available to be used
by the controller when clearing congestion. Consequently,
the network operation is smoother and the cascading failure
resilience is higher.

3. Optimization of the Cascading
Failure Invulnerability

When a sector node fails, it is necessary to optimize the
cascading failure process to reduce its destructiveness, re-
duce the probability of the network collapse, and minimize

the number of congested sectors. In general, there are two
main optimization methods for the network’s invulnera-
bility to cascading failure:

(1) Change the network topology by adding or deleting
edges (points). Increasing the number of edges ho-
mogenizes the network structure, whereas reducing
the edges directs the transmission path [23].

(2) Optimize the load redistribution strategy. According
to the network node information, the load is dis-
tributed in a specific proportion to fully utilize the
resources [24].

Due to the civil aviation transportation particularities, it
is difficult to optimize the network’s invulnerability to
cascading failure by changing the network topology. Spe-
cifically, airspace sector structure and air routes are difficult
to change. Further, since pilots must follow the controller’s
instructions to fly along the designated air routes, it is
impossible to increase the edges (points) of the network.
Simultaneously, the distance scale of civil aviation is vast.
+e time and economic cost of closing a sector or an air
route are huge. +us, due to the difficulty and cost of closing
a sector or an air route, it is impossible to reduce the net-
work’s edge (point) [25].

+is work employs an optimized load redistribution
strategy to optimize the airspace sector network’s resilience
to cascading failure. +is optimization method is direct and
rapid. Furthermore, it is convenient for the controller to
make a response plan when a sector failure first occurs, thus
promptly reducing the destructiveness caused by cascading
failure.

When an airspace sector is in the “failure” or “conges-
tion” stage, a good controller should not redistribute the
flight traffic evenly to adjacent sectors. Instead, the controller
should be acquainted with the surrounding sectors’ situation
and allocate the flights according to a certain proportion
based on the relationship between the sectors’ flow and
capacity. In this manner, one can make full use of airspace
resources and reduce the probability of “congestion” in other
sectors [26, 27].

+is work adopts an adjacent load redistribution strategy
based on the remaining capacity and a local load redistri-
bution strategy to optimize the airspace sector network.

3.1. 4e Adjacent Load Redistribution Strategy. +e sector
controller obtains the adjacent sectors’ flight traffic situation,
thereby determining the difference between the adjacent
sector nodes’ capacity and load, i.e., the remaining capacity
Ri � Ci − Li. +e remaining capacity represents the sector
node’s capacity to accept additional load. +e load is dis-
tributed according to the proportion of the adjacent nodes’
remaining capacities, thus utilizing the adjacent sectors’
space resources and preventing the load concentration in a
certain sector while other sectors remain relatively idle. +e
described procedure is named the adjacent load redistri-
bution strategy based on the remaining capacity of the sector
nodes [28, 29].

+e strategy steps are as follows:
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(a) Normal stage of the airspace: all sector nodes’ load
and capacity satisfy Li <Ci.

(b) Initial stage of the cascading failure: the capacity of
the sector in the “failure” state drops to zero.
According to the proportion of the adjacent sectors’
remaining capacity, the load (L) of the failed sector
node is distributed to all adjacent sectors, and the

adjacent sector node’s load increases as
ΔLif � Lf(Ci − Li)/n∈Aj

(Cn − Ln), where Aj is the
set of all sectors adjacent to the failed sector.

(c) Propagation stage of the cascading failure: the sector
nodes that change the state from “normal” to
“congestion” distribute the load exceeding their
capacity to the adjacent sector nodes in the normal

All of the sector nodes meet Li < Ci
VS

S

the capacity of sector in the failure state is
dropped to 0

the adjacent sector node increases the load ΔLif =
Lf (Ci –Li )

Σn∈Aj (Cn –Ln )

the sector nodes meet ″Li –Ci ″ change from the ″normal″ state
to the ″congestion″ state

the adjacent sector nodes in the normal state increases 

(Cm –Lm) (Ci –Li )
Σn∈Aj*(Cn –Ln )

=the load ΔLim

″normal″ sector nodes
meet L>C and N>0

L>C and N=0

NO

NO

Yes

Yes

Yes

L<=C
the air space sector
network reaches a

balanced state

the air space sector
network is in a state

of collapse

Figure 3: +e flowchart of the adjacent load redistribution strategy based on the nodes’ remaining capacity.
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state. +ese sector nodes’ loads increase as
ΔLim � (Cm − Lm)(Ci − Li)/n∈A∗

j
(Cn − Ln), where

A∗j is the set of “normal” sectors adjacent to the
“congestion” sector.

(d) Ending stage of the cascading failure: if there are
sector nodes for which L>C and N � 0, the airspace
sector network collapses. Otherwise (i.e., if all sector
nodes L≤C), the airspace sector network reaches a
balanced state.

+e specific implementation flowchart of the adjacent
load redistribution strategy based on the nodes’ remaining is
shown in Figure 3.

3.2. Prejudged Partial Load Redistribution Strategy Based on
Remaining Capacity. +e controllers cannot only assess

the adjacent sectors’ situation but also learn the traffic and
capacity status of multiple sectors in the surrounding
airspace through the control center’s announcements.
When congestion occurs in the surrounding sectors, the
flights entering the congested area should follow the flow
control strategies implemented in advance to alleviate the
congestion [31].

Unlike the adjacent load redistribution strategy, the
distribution range of the prejudged partial load redistri-
bution strategy based on the sector nodes’ remaining ca-
pacity is not limited to adjacent nodes. Rather, it comprises
all normal sectors in the local airspace whose distance (i.e.,
the shortest path length) to the failed or congested sector is
not greater than l. +us, l is the distribution radius. Note that
air controllers can distribute the load to the sector nodes
more than one sector away (i.e., l> 1). +e controller issues

All of the sector nodes meet Li < Ci

the capacity of sector in the failure state is
dropped to 0

the sector nodes meet ″Li –Ci ″ change from the ″normal″ state
to the ″congestion″ state

the sector node within the surrounding distribution radius l 
Lj (Ci –Li )/Lα

ij

Σg∈Nl*j (Cs –Ls)/Lα
ig

=increases the load ΔLij

the sector node within the surrounding distribution radius l 
(Lj –Cj) (Ci –Li )/Lα

ij

Σg∈Nl*j (Cs –Ls)/Lα
ig

=increased the load ΔLij

″normal″ sector nodes
meet L>C and Nl>0

END

NO

Yes

Figure 4: +e flowchart of the prejudged partial load redistribution strategy based on the nodes’ remaining capacity.

Complexity 7



an announcement when the sector enters an “abnormal”
state. +e surrounding sectors’ controllers then command
and control the flights about to enter the “abnormal” sector,
directing them to enter “normal” sectors more than one
sector away, bypass the congestion, or return to alternate
landings. +e prejudged partial load redistribution strategy
greatly reduces the sector network’s cascading failures and
improves the network invulnerability [32].

However, due to the limitations in predictive ability,
information flow delays, and bypass cost restrictions, the
controller’s ability to allocate flights based on the adjacent
sectors’ conditions is greater than that of allocating flights
based on the nonadjacent sectors’ situation.

Once sector j enters the “abnormal” state, the load is
distributed to all normal sector nodes within the distribution
radius based on the distance-related distribution ratio
denoted by Rij. +e specific distribution ratio formula is as
follows [33–35]:

Rij �
Ci − Li( /lαij

g∈N∗
lj

Cs − Ls( /lαig
, (7)

where lij represents the shortest distance between sectors, α
is an adjustable parameter greater than 1, (Ci − Li)/lαij is the
remaining capacity that node i can allocate, and g∈N∗

lj
(Cs −

Ls)/lαig is the sum of the remaining capacities that can be
allocated locally in the failed node’s surroundings. Now,ΔLij

is the load distributed by node i within the failed node’s
distribution radius:

ΔLij �
Lj − Cj  Ci − Li( /lαij
g∈N∗

lj
Cs − Ls( /lαig

. (8)

+e strategy steps are as follows:

(a) Normal stage of the airspace: all sector nodes satisfy
Li <Ci.

(b) Initial stage of the cascading failure: the capacity
of the sector node in the failure state equals zero.

According to the remaining capacities of the sectors
within the distribution radius l, the failed sector
node’s load (L) is distributed, and the receiving
nodes’ load increases (ΔLij).

(c) Propagation stage of the cascading failure: the sector
nodes that change from “normal” to congested state
distribute the load exceeding its capacity to the
normal sector nodes within the surrounding dis-
tribution radius l. +ese nodes’ loads increase as
ΔLij � (Lj − Cj)(Ci − Li)/lαij/g∈N∗

lj
(Cs − Ls)/lαig.

(d) Ending stage of the cascading failure: if L>C and
N � 0 for a sector node, the airspace sector network
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Figure 5: Structure of the North China controlled airspace sector.
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Figure 6: +e North China controlled airspace sector network.

Table 1: Statistical characteristics of the North China sector
network.

No. Sector Degree Intensity Load
1 Hohhot 01 4 283 1132
2 Hohhot 02 3 261 783
3 Taiyuan 01 3 447 1341
4 Taiyuan 02 5 475 2375
5 Taiyuan 03 3 256 768
6 Taiyuan 04 7 272 1904
7 Beijing 01 8 823 6584
8 Beijing 02 5 1923 9615
9 Beijing 03 6 626 3756
10 Beijing 04 7 708 4956
11 Beijing 05 4 343 1372
12 Beijing 06 4 406 1624
13 Beijing 07 3 378 1134
14 Beijing 08 3 924 2772
15 Beijing 09 5 884 4420
16 Beijing 10 4 636 2544
17 Beijing 11 6 623 3738
18 Beijing 12 3 456 1368
19 Beijing 13 4 544 2176
20 Beijing 14 3 578 1734
21 Beijing 15 4 1203 4812
22 Beijing 16 4 1656 6624
23 Beijing 17 4 1320 5280
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collapses. If all sector nodes meet the L≤C re-
quirement, the airspace sector network reaches a
balanced state [36].

+e specific implementation flowchart of the prejudged
partial load redistribution strategy based on the nodes’
remaining capacity is shown in Figure 4.

4. Simulation Analysis

+e airspace under the jurisdiction of the North China
Regional Control Center was selected to derive the empirical
data sample. More precisely, the network of North China
control sectors (see Figure 5). was constructed based on the
flight data of one day during peak hours in 2019 (see
Figure 6).

+rough software simulation and statistics, the North
China sector network was found to have a total of 23 nodes
and 53 edges, with relatively close connections between
different sectors. +e average clustering coefficient of the
North China sector network equals C� 0.465, meaning that
the average probability of a connection between any two
sectors is 46.5%. Using the Warshall–Floyd algorithm, the
average path length of the North China sector network is
calculated as L� 2.581, indicating that a flight from any
sector of North China passes through three sectors on av-
erage or receives the services of three controllers to reach the
destination sector [37, 38].

4.1. Cascading Failure Simulation Analysis. First, the degree
and strength of each sector in the North China sector
network were calculated, and each sector’s load was obtained
according to the relationship between the load and these two
parameters (equation (4)). +e results are shown in Table 1.

As seen in the table, the Beijing 02 sector has the largest
load, and its failure has the greatest impact on the network’s
cascading failure. +erefore, this work explores the North
China sector network’s invulnerability to cascading failures
due to the Beijing 02 sector’s failure. Taking θ � 0.9, μ � 2.7

as examples, when the Beijing 02 sector node “fails,” its load
is evenly redistributed to Taiyuan 02, Taiyuan 04, Beijing 01,
Beijing 03, and Beijing 04, increasing their loads by 1923.
However, loads of Beijing 03 and Beijing 04 sectors exceed
their capacity, and “congestion” occurs. +e excess load is
distributed to the “normal” sector nodes adjacent to them,
namely Taiyuan 01, Taiyuan 03, Beijing 01, Beijing 03, and
Beijing 10. Upon redistribution, most of these sector nodes’
loads do not exceed their capacity, and the network is
rebalanced. However, the load of Beijing 03 exceeds its
capacity. After additional redistribution, the network rea-
ches balance [39]. Here,

SAR �
4
23

� 0.174. (9)

By adjusting the sector nodes’ extra margin differenti-
ation parameters θ in the simulation, one can study the
parameter’s effect on the network’s cascading failure per-
formance. +e following values were selected: 0.9, 0.8, and
0.7 (Figure 7). As shown in Figure 7, when parameter μ is
small, the extra margin of each sector node is minimal. Once
the sector node with the largest load fails, a large load flows
to the surrounding sector nodes.With the propagation of the
cascading failure, the load locally converges to one sector
node as its surrounding sectors enter the “congested” state.
Unable to relieve the additional load, the entire network
collapses.

SAR corresponding to each critical threshold μτ in the
figure is not high. However, even when most of the sectors
are in the “normal” state, the network may collapse. +is
result indicates the network’s inability to smooth out the
local load, which is the main reason for the cascading failure
and collapse of the airspace sector network [40].

4.2. Simulation Exploration of Optimization Strategy.
When a sector fails, the equal distribution strategy is typi-
cally adopted. Following this approach, the sector traffic is
evenly distributed to sectors adjacent to the failed node.
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Figure 7: Simulation analysis diagram of the cascading failure.
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Within this work, two strategies simulating the cascading
failure process are adopted and compared with the equal
distribution strategy [25, 26].

Figure 8 shows the cascading failure results of the North
China sector network before and after the optimization
strategy is adopted upon the failure in the Beijing 02
sector. +e parameters of prejudged partial load redis-
tribution are set to l � 2, α � 4. Adopting either the
adjacent or the local load redistribution strategies im-
proves the network’s situation compared to the one
yielded by the equal distribution. Similarly, critical
threshold μτ is reduced, with the critical threshold of the
prejudged local load redistribution strategy being
smaller than that of adjacent allocation. +e prejudged

local load redistribution strategy distributes the excess
load to more peripheral sector nodes, making full use of
local airspace resources. With μ> μτ , the network rea-
ches a balanced state. At this time, the sectors directly
allocated by the failed sector are all in a congested state.
At the critical threshold, the network will collapse only
when more nodes are congested, and the sector ab-
normality rate is relatively high.

Overall, the adjacent and prejudged local load re-
distribution strategies improve the sector network’s
invulnerability to cascading failure compared to the
equal distribution strategy, and the effect of the pre-
judged local load redistribution strategy is more
pronounced.
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Figure 8: SAR value under different allocation strategies. (a) θ� 0.6, (b) θ� 0.7, (c) θ� 0.8.
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5. Conclusion

Building on the complex network theory, this paper rep-
resents control sectors as nodes and establishes the edges
based on the flight connections between adjacent sectors to
construct a control sector network. +rough modeling, the
cascading failure and invulnerability optimization strategy
of the airspace sector network is analyzed, yielding the
following breakthroughs and achievements.

(1) +is work presents the first study of the airspace
sector network’s cascading failure invulnerability.
+e cascading failure process in sector nodes is
represented using three states (“normal,” “failure,”
and “congested”), and the process is analyzed over
four stages. +e analysis of the changes in the air-
space sector network’s cascading failure invulnera-
bility index revealed the bottleneck of air traffic
congestion. Furthermore, the optimization strategy
is proposed.

(2) +e strategies of adjacent load redistribution and
prejudged local load redistribution are proposed to
improve the network’s cascading failure invul-
nerability. With the increase in margin parameter
μ, the effectiveness of the local load redistribution
strategy increases, improving the network failure
invulnerability.

+is work is the first to establish a control sector network
model and analyze its characteristics from the air traffic
management perspective. While verifying the network re-
liability, we also found some loopholes in the current net-
work structure, that is, even if the overall network capacity is
sufficient, the network’s inability to smooth out the local
load will still lead to cascading failure. +e cascading failure
risk caused by the failure of key nodes is greater. +erefore,
for key sectors, making emergency plans corresponding to
the sector with the help of load redistribution strategy can
effectively help air traffic controllers deal with emergencies.
As a result, the paper proposes suggestions for solving air
traffic congestion. +is paper also has some limitations. +is
paper focuses on the static index of SAR to evaluate the
cascading failure model, but transient dynamics also plays an
important role in network quality evaluation. +erefore, in
future research, on the one hand, we will study the role of
transient dynamics on the quality of network [40]. On the
other hand, research efforts will be directed at expanding the
sample size, improving the cascading failure model’s validity
to closely match the operation of air traffic control and
simulating the propagation mechanism of air traffic con-
gestion more realistically.
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