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It is of great practical significance to fully reveal the global discharge characteristics of neurons in electromagnetic environment
and design effective energy feedback strategy for accurate prediction of neural information. Considering the effect of electro-
magnetic induction, a four-dimensional modified Hindmarsh–Rose (m-HR) neuron model is established, and its discharge
mechanism is revealed by analyzing the existence and stability of equilibrium point of the model. Extensive numerical results
confirm that the model has classical period-doubling bifurcation, period-adding bifurcation, and comb-shaped chaotic structure.
Importantly, a new intermittent energy feedback controller is designed by improving the traditional energy feedback control
strategy, which can effectively modulate the desired discharge modes under the cost-optimal energy consumption. Meanwhile, it
should be emphasized that the intermittent control scheme has a wider range of regulation and robustness, which can be applied to
other dynamical systems to obtain the desired oscillationmodes.,is will improve the beneficial discussion for the construction of
brain-like intelligent network and efficient regulation.

1. Introduction

Complex neuron firing activities and dynamic phenomena
are involved in neural information processing, including
resting state and periodic and chaotic discharge modes
[1–3]. Considering the complex electrophysiological activ-
ities, the most important factor regulating the discharge
activities of nerves is the adaptive adjustment of external
stimuli and electromagnetic induction [4]. Accordingly, a
large number of studies have reported on the dynamic
behavior of neurons and their networks under electro-
magnetic induction feedback [5–8]. In general, positive
feedback induced current or electromagnetic radiation helps
to stimulate neurons to produce multiple patterns of elec-
trical activity [9]. Importantly, Wu and Gu [10] found that
the built-in parameters of the memristor were decisive
factors in regulating the neuron discharge activity. By ap-
propriately selecting the parameter values of the memristor,

the positive feedback memory current inhibited the neuron
cluster discharge activity, while the inhibitory memory
current promoted the neuron electrical activity [11]. Qiao
and An [12] confirmed that magnetic field can induce the
HR neuron model to produce bistable phenomenon, hidden
discharge mode, and even mixed mode oscillation and
further proposed strategies to control hidden discharge
activities. Meanwhile, electric field can also stimulate the
hidden dynamic behavior and multiattractor coexistence of
neurons [13]. Lin et al. [14] found that the Hopfield neural
network has the coexistence phenomenon of hidden ex-
tremely stability and hyperchaotic attractor under electro-
magnetic radiation. Moreover, the type of memristor is also
a key factor leading to multistability of neurons. Bao et al.
[15] realized the feedback mechanism of induced current on
the membrane potential of Morris–Lecar (ML) neuron by
introducing hyperbolic tangent memristor. ,e study found
that the model not only had classical period-doubling
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bifurcation and period-adding bifurcation with chaos bi-
furcation cascade but also revealed its initial value sensitivity
by simulating the fractal structure of the attraction domain.
Li et al. [16] used numerical methods to reveal that discrete
Rulkov neurons with electromagnetic induction feedback
have periodic discharge, transient chaos, and even hyper-
chaotic discharge modes, which mainly depend on the built-
in parameters of the memristor. Peculiarly, Parastesh et al.
[17] explored the hyperchaotic behaviors of the HR neuron
model by introducing the discontinuous electromagnetic
induction effect. Wang et al. [18] explored the complex
chaotic behavior and multistability of an HR neuron with
electromagnetic flux and external excitation. Rajagopal et al.
[19] explored the generation mechanism and control
method of spiral waves in an ML neuron network with
electromagnetic induction. Karthikeyan et al. [20] analyzed
the effect of induced current on bifurcation patterns and
spatiotemporal responses of the coupling network of a
temperature-sensitive ML neuron. It is worth mentioning
that memristors have important applications in stimulating
multistability of continuous and non-smooth systems
[21–23]. Besides, magnetic flux coupling plays a constructive
role in realizing network synchronization and excitation of
spiral waves [24, 25]. ,ese results enrich the dynamic
phenomena of neurons in complex electromagnetic envi-
ronment and provide useful discussion for related physio-
logical experiments. However, how to predict the electrical
activity and global evolution of neurons through local dy-
namic analysis is a field worthy of further exploration, which
is also one of the problems to be discussed in this paper.

Generally, the oscillation of the system depends on the
continuous supply and release of energy, and accordingly,
the state stability of the system can be helped by appro-
priately adjusting the feedback of energy [26]. Song et al.
[27] found that the energy storage of neurons depends on
external stimuli and electrical patterns, and periodic or
chaotic discharge states contribute to the rapid release of
energy. Yang et al. [28] showed that high-frequency
electromagnetic radiation has a smaller impact on nervous
system than low-frequency electromagnetic radiation,
while low-frequency electromagnetic radiation with large
amplitude is conducive to energy injection and induced
discharge mode transformation. Guo et al. [29] proposed
the energy feedback control chaos strategy and confirmed
that proper energy regulation can effectively suppress
chaos and make it reach the desired periodic oscillation
state. Wu et al. [30] designed an energy feedback method
to properly control the hidden attractor and verified the
effectiveness of the modified scheme based on extensive
numerical simulations. What is noteworthy is that An and
Qiao [31] disclosed the bistable features, global bifurcation
structure, and mixed mode oscillation of HR neurons
under electromagnetic induction, and a new energy
feedback method was proposed to eliminate hidden dis-
charge activities.

In conclusion, the above discussion verifies the internal
constraint relationship between energy and oscillation mode
of the system. Nevertheless, how to improve the efficiency of
energy feedback control? It is worthy of further investigation

to achieve the regulation of system oscillation state under the
small energy loss, and this is another issue that deserves our
attention.

,e organization of this paper is as follows. In Section 2,
considering the electromagnetic induction effect, the m-HR
neuron model under the action of magnetic field is estab-
lished. In Section 3, the existence and stability conditions of
the equilibrium point of the model are determined, and the
relationship between the stability region of the equilibrium
point and the discharge mode is analyzed. Meanwhile, the
global dynamics characteristics of the model are revealed
based on the two-parameter bifurcation diagram and its
maximum Lyapunov exponential diagram. In Section 4, the
intermittent energy feedback strategy is proposed, and the
high efficiency of the method is verified. Finally, the relevant
research conclusions are summarized.

2. Model Description

Tsaneva et al. [32] constructed the m-HR neuron model on
the basis of the classical HR neuronmodel [33] and provided
it with more abundant discharge modes and global bifur-
cation laws while maintaining a simple mathematical
structure [34]. Considering that neural information involves
complex electromagnetic environment in the process of
processing, this paper realizes the feedback modulation of
flux variable on membrane potential by introducing mag-
neto-memristor, and its dynamic system expression is

_x � − s − ax
3

+ x
2

  − y − bz + I + Ie,

_y � ε x
2

− y ,

_z � u sa1x + b1 − kz( ,

_ϕ � k1x − k2ϕ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where x, y, z, and ϕ representmembrane potential, potassium
ion current fast variable, calcium ion current slow variable,
and flux variable, respectively. ,e feedback memory current
of electromagnetic field to membrane voltage is Ie; in order to
realize the coupling of flux variable and membrane potential,
its mathematical expression is Ie � − k0(α + 3βϕ2)x, where k0
is the electromagnetic radiation intensity and α and β are the
built-in parameters of the memristor. In addition, a, b, a1, b1,
k, s, ε, and u are important parameters in regulating the
electrical activity of neurons. During the numerical calcula-
tion, the reference values of parameters are selected from Ref.
[32], which are expressed as a � 0.5, b � 1, a1 � − 0.1,
b1 � − 0.045, k � 0.2, s � − 1.61, ε � 1, u � 0.01, I � 0,
k0 � 0.1, k1 � 0.9, k2 � 0.5, α � 0.1, and β � 0.02.

3. Stability of Equilibrium Point and Its Global
Bifurcation Model

3.1. Stability Analysis. Actually, the firing mode of neurons
is closely related to its equilibrium stability, that is, the stable
equilibrium point has a resting state, while the unstable
equilibrium point will stimulate the firing activity. Setting
_x � _y � _z � _ϕ � 0, then it can be inferred that
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− s − ax
3

+ x
2

  − y − bz + I + Ie � 0,

x
2

− y � 0,

sa1x + b1 − kz � 0,

k1x − k2ϕ � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

According to (2), the zero-point equation is

F(x) � Q0x
3

+ Q1x
2

+ Q2x + Q3 � 0, (3)

where

Q0 � as − 3βk0k
2
1/k

2
2 ,

Q1 � − (s + 1),

Q2 � − a1bs/k + k0α( ,

Q3 � − bb1/k + I.

⎧⎪⎪⎪⎪⎪⎨
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(4)

If F(xe) � 0, the equilibrium point of system (1) is
Pe � (xe, x2

e , (sa1xe + b1)/k, k1xe/k2).
Let F1 � Q2

1 − 3Q0Q2, F2 � Q1Q2 − 9Q0Q3, and
F3 � Q2

2 − 3Q1Q3, so the total discriminant is
Δ � F2

2 − 4F1F3 and the equilibrium point of system (1)
exists in the following three cases.

When Δ> 0, system (1) has only one equilibrium point,
which is expressed as

xe � − Q1 −
���
X1

3


+
���
X2

3


( ( ,

ye � x
2
e ,

ze � a1sxe + b1( /k,

ϕe � k1xe/k2,
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(5)

where X1,2 � A1Q1 + 3Q0(− F2 ±
���������

F2
2 − 4F1F3



)/2.
When Δ � 0, system (1) has two equilibrium points,

which are expressed as

xe1
� − Q1/Q0 + Y, xe2

� − Y/20,

yei
� x

2
ei

,

zei
� a1sxei

+ b1 /k,

ϕei
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(6)

where i � 1, 2, Y � F2/F1 (F1 ≠ 0).
When Δ< 0, system (1) has three equilibrium points,

which are expressed as

xei
� − Q1 − 2

��
F1


cos((2πi + θ)/3)( /3F0,

yei
� x

2
ei

,

zei
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(7)

where i � 1, 2, 3, θ � arccosT, T � (2F1Q1 − 3Q0F2)/2
��

F3
1



,
F1 > 0, − 1<T< 1.

,e stability of system (1) at equilibrium point Pe �

(xe, ye, ze, ϕe) is determined by the Jacobian matrix J, which
is expressed as

J �

3asx
2
e − 2sxe − k0 α + 3βϕe(  − 1 − b − 6k0βxeϕe

2xe − 1 0 0

a1su 0 − ku 0

k1 0 0 − k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

In order to facilitate the analysis of the stability of
equilibrium point and bifurcation behavior of system (1), I

and k0 are selected as bifurcation parameters, and the other
parameters are taken as reference values. Based on Matcont
software [35], stability distribution of the equilibrium point
of system (1) can be quickly obtained, as visible in
Figure 1(a), where I-1, I-2, and I-3 regions represent the
stable nodes, stable focal point, and the unstable focal point,
respectively. Further, the Hopf bifurcation is identified by
red curve. It can be seen that complex equilibrium stability
regions are distributed on the parameter plane, in which the
I-2 region is transformed into the I-3 region through Hopf
bifurcation behavior. Interestingly, Figure 1(b) reveals that
the unstable equilibrium can excite various discharge modes
in the I-3 and 4 regions, in which different colors represent
different discharge states, and different discharge modes are
distinguished by corresponding numerical values. For ex-
ample, the number 0 represents the quiescent state, the
numbernn denotes the period-n (n � 1, 2, · · · , 19) discharge
state, and the white area indicates the higher periodic dis-
charge activities or chaos. It can be seen that Figures 1(a) and
1(b) have good complementarity, and together they reveal
the built-in mechanism of the neuron to produce complex
discharge activities.

3.2. Two-Parameter Bifurcation Analysis. Surely, in the
complex physiological environment, there are many factors
that affect the firing activity of neurons and lead to the
change of the benchmark parameters of the system, while
stimulating a variety of firing patterns. As a result, the study
of electrical activity and bifurcation behavior in multipa-
rameter space has important practical reference value.When
s ∈ [− 1.70, − 1.55], b1 ∈ [− 0.060, − 0.030], Figures 2(a) and
2(b) display the bifurcation diagram and the largest Lya-
punov exponent, respectively, which confirms that the
system has complex discharge mode and self-organization
law. It can be seen that there is a large range of period-1
spiking region in the lower right part of the parameter plane,
and with the gradual increase of parameters s and b1, system
(1) has a period-doubling bifurcation behavior and then
eventually tends to comb-shaped chaotic region. Interest-
ingly, a large number of tongue-shaped periodic regions
exist in the upper right region of the parameter plane and are
embedded in the comb chaotic region by means of period-
doubling bifurcation and bifurcation segmentation.

Tomore intuitively reveal the self-organization rules of these
tongue-shaped periodic regions, let b1 � − 0.1789s − 0.3221
ands ∈ [− 1.70, − 1.55], that is, along the direction shown by
the black line in Figure 2(a), with the gradual increase of
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parameter s, the inter-spike interval (ISI) bifurcation dia-
gram and the largest Lyapunov exponential diagram of
system (1) are shown in Figures 3(a) and 3(b), respectively.
,e bifurcation sequence of the membrane potential x is as
follows: period-2 bursting ⟶ chaos via period-doubling
bifurcation ⟶ the chaotic state is transformed into pe-
riodic 3 bursting state by tangent bifurcation ⟶ it leads to
chaos again through period-doubling bifurcation ⟶ . . .

⟶ finally, the cluster discharge or chaotic state with
higher period leads to the classical period-adding bifurcation
with chaos mode [36]. ,is is also the internal reason why
system (1) has the comb-shaped chaotic structure. Fur-
thermore, the corresponding time of membrane potential x

at points A, B, C, and D in Figure 2(a) is depicted in
Figures 4(a)–4(d), respectively, so it can be known that
system (1) is in period-3, period-5, period-7, and chaotic
discharge state, respectively.

Similarly, in the parameter plane shown in Figures 2(c)–
2(e), system (1) also has tongue-shaped periodic region and
comb-shaped chaotic structure, in which its corresponding
periodic region becomes narrower with the increase of the
number of active periodic of bursting. Note that this bi-
furcation feature is common in all kinds of dynamical
systems [37–39]. More precisely, Figure 2(c) manifests that
the discharge mode mainly depends on parameter u for
I ∈ [0, 0.04], where the smaller the value of u is, the larger
the corresponding period or chaos appears. Further, when
I ∈ [0.04, 0.05], parameter u has little effect on the bifur-
cation structure, whereas the inverse period-doubling bi-
furcation pattern occurs with the increase of parameter I.
Figure 2(d) exhibits period-doubling bifurcation behavior
with the increase of parameter b1 ∈ [− 0.055, − 0.053]. Ac-
cordingly, when b1 ∈ [− 0.053, − 0.040], the period-adding
bifurcation with chaos pattern is excited under the control of
parameter u. Interestingly, as visible in Figure 2(e), pa-
rameter b also plays a decisive role in inducing the comb-
shaped chaotic structure. In particular, for
s ∈ [− 1.54, − 1.46], u ∈ [0.004, 0.022], system (1) as shown in
Figure 2(f ) only has periodic bursting pattern, and the

transformation of various discharge modes is realized by
period-adding bifurcation without chaos. More precisely,
along the direction from top to bottom of the parameter
plane, its bifurcation sequence is as follows: period-4
bursting ⟶ period-5 bursting ⟶ . . . ⟶ finally it
tends to higher periodic bursting activities. Moreover, when
I ∈ [0, 0.06], k1 ∈ [0, 1.0], system (1) only has a large range
of periodic and chaotic discharge regions, as illustrated in
Figure 2(g).,e periodic regions on the left and right sides of
the parameter plane lead to the chaotic region through
period-doubling bifurcation. When I ∈ [0, 0.06],
k2 ∈ [0.2, 1.0], it can be seen from Figure 2(h) that system (1)
only has a tongue-shaped period-5 bursting region em-
bedded in the chaotic region. ,ese numerical results fully
reveal the global dynamic characteristics of system (1) and
provide a useful discussion for the accurate prediction of
neural discharge activity and evolution. It should be noted
that Figures 3(a) and 3(b) illustrate the dynamics details of
Figure 2(a). Since the quiescent state is transformed into
various discharge modes throughHopf bifurcation behavior,
which indicates that there is no Hopf bifurcation behavior in
Figure 2(a) (i.e., there is no quiescent state region).

4. Intermittent Feedback Control Based on
Hamiltonian Energy

,e different firing modes of neurons are closely related to
the energy flow, and the continuous supply and release of
energy is the key to maintain the system oscillation. For any
autonomous dynamical system _X � f(X), f(X) can be
decomposed into f(X) � fc(X) + fd(X) based on Helm-
holtz theory [20], where fc(X) represents the vortex field,
which has no effect on the direction of the phase trajectory of
the system movement, and its relationship with the Ham-
iltonian energy H satisfies ∇HTfc(X) � 0. However, fd(X)

indicates the gradient field, which can constrain the phase
trajectory of system operation and satisfy _H � ∇HTfd(X).
,us, system (1) can be expressed as follows:
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Figure 1: ,e local dynamics and global response of system (1) for I ∈ [− 0.4, 0.6], k0 ∈ [0, 1.2]. (a) ,e stability distribution diagram.
(b) Bifurcation diagram, where diverse discharge modes are identified by different color areas.
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Figure 2: Dynamic details of system (1) for different parameter combinations: (a) s ∈ [− 1.70, − 1.55], b1 ∈ [− 0.06, − 0.03]; (b) the largest
exponent of (a); (c) I ∈ [0, 0.05], u ∈ [0.002, 0.018]; (d) b1 ∈ [− 0.055, − 0.040], u ∈ [0.002, 0.018]; (e) I ∈ [0, 0.05], b ∈ [0.2, 2]; (f )
s ∈ [− 1.54, − 1.46], u ∈ [0.004, 0.022]; (g) I ∈ [0, 0.06], k1 ∈ [0, 1.0]; (h) I ∈ [0, 0.06], k2 ∈ [0.2, 1.0].
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� fc(X) + fd(X).

(9)

It can be obtained from ∇HTfc(x) � 0 that

(− y − bz − ϕ)
zH

zx
+ φx

2zH

zy
+ u sa1x + b1( 

zH

zz
+ k1x

zH

zϕ
� 0. (10)

,e following equation can be obtained from (8):

(− y − bz − ϕ)
zH

zx
� φx

2zH

zy
,

(− y − bz − ϕ)
zH

zx
� u sa1x + b1( 

zH

zz
,

(− y − bz − ϕ)
zH

zx
� k1x

zH

zϕ
,

(11)

and then one can get
1
3
φx

3
+
1
2
(− y − bz − ϕ)

2
� 0,

ub

2sa1
sa1x + b1( 

2
+
1
2
(− y − bz − ϕ)

2
� 0,

1
2
k1x

2
+
1
2
(− y − bz − ϕ)

2
� 0.

(12)

,e preliminary result can be obtained as follows:

H(x, y, z) �
1
3
φx

3
+

bu

2sa1
sa1x + b1( 

2

+
1
2
(y + bz + φ)

2
+
1
2
k1x

2
.

(13)

To ensure the uniqueness of Hamiltonian energy, it is
important and necessary to verify the relation
_H � ∇HTfd(x). ,us, the derivative of Hamiltonian energy

H can be obtained:

_H(x, y, z) � φx
2

+ bu sa1x + b1(  + k1x  _x +(y + bz + ϕ) _y + b(y + bz + ϕ) _z +(y + bz + ϕ) _ϕ

� φx
2

+ bu sa1x + b1(  + k1x  − s − ax
3

+ x
2

  − y − bz + I + Ie + ϕ − ϕ  +(y + bz + ϕ) φ x
2

− y  

+ b(y + bz + ϕ) u sa1x + b1 − kz( (  +(y + bz + ϕ) k1x − k2ϕ( 

� φx
2
(− y − bz − ϕ) + bu sa1x + b1( (− y − bz − ϕ) + k1x(− y − bz − ϕ)

+ φx
2

+ bu sa1x + b1(  + k1x  − s − ax
3

+ x
2

  + I + Ie + ϕ  +(y + bz + ϕ)φx
2

+(y + bz + ϕ)(− φy) + b(y + bz + ϕ) u sa1x + b1( (  + b(y + bz + ϕ)(− ukz)

+(y + bz + ϕ)k1x +(y + bz + ϕ) − k2ϕ( 

� φx
2

+ bu sa1x + b1(  + k1x  − s − ax
3

+ x
2

  + I + Ie + ϕ  +(y + bz + ϕ)(− φy)

+ b(y + bz + ϕ)(− ukz) +(y + bz + ϕ) − k2ϕ( 

� ∇HT
fd(X).

(14)

In order to reduce the energy loss in the control process
and improve the control effect of Hamiltonian energy, it is
necessary to improve the traditional energy feedback con-
troller. Two types of energy feedback control model are
applied to system (1) based on energy (9) as follows:

_x � − s − ax
3

+ x
2

  − y − bz + I + Ie(ϕ) − Γi(H),

_y � φ x
2

− y ,

_z � u sa1x + b1 − kz( ,

_ϕ � k1x − k2ϕ,

_H � ∇HT
fd(x) − nH,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where Γi(H), (i � 1, 2), denote the traditional Hamiltonian
energy feedback controller and intermittent feedback con-
troller, where their expressions are defined as
Γ1(H) � mHx, Γ2(H) � m(θ(H − Hmin) + θ(Hmax − H))x,
respectively. θ(χ) represents the Heaviside function, in
which θ(χ) � 0 for χ ≤ 0 and θ(χ) � 1 for χ > 0. It can be seen
that only when H ∈ [Hmin, Hmax], the controller Γ2(H) can
operate intermittently, which reduces energy consumption
and improves energy utilization efficiency at the same time.
Furthermore, m represents the feedback gain of Hamilto-
nian energy on the membrane potential x. n is the adaptive
adjustment intensity of the energy controller, which is the
key to ensure the stability of the controller. Importantly, the
periodic mode or chaotic discharge activities of system (1)
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can be effectively regulated by adjusting parameters m and n.
Meanwhile, the neuron absorbs or releases energy to achieve
the evolution of the neuron firing patterns.

It is important to control the periodic oscillations of
neurons effectively to maintain the effective transmission,
reception, and response of physiological information in the
nervous system.When (s, b1) � (− 1.655, − 0.039), system (1)
is in period-3 bursting state, and its corresponding time
response is shown in Figure 4(a). Accordingly, it is necessary
to explore the control effect of the traditional controller
Γ1(H). When m ∈ [0, 0.20], n ∈ [0, 2.0], the results in
Figure 5(a) confirmed that system (10) can produce a wide
range of quiescent state, bursting activities with a period of
4–19, and even chaotic state, which implies that controller
Γ1(H) can effectively adjust the discharge modes of system
(1) by applying appropriate feedback stimulus. Importantly,
to improve its control efficiency and reduce energy loss, let
Hmin � − 0.1 and Hmax � 0.1, and the control effect of
controller Γ2(H) on system (1) is illustrated in Figure 5(b).
Compared with Figure 5(a), its periodic oscillation region is
significantly larger, in which the control parameters can be
adjusted more widely. Accordingly, the region of its qui-
escent state and chaotic oscillation is small, which indicates

that the control effect of controller Γ2(H) on periodic os-
cillation is obviously beneficial to controller Γ1(H), and its
control process consumes less energy. To display the control
effect of controller Γ2(H), for convenience, n � 0.2 is se-
lected. Figures 6(a)–6(d) manifest the time responses of the
membrane voltage and Hamiltonian energy of system (10)
under different feedback gains, when parameter m is fixed to
0.04, 0.08, 0.12, and 0.16, respectively. It is observed that the
energy depends critically on the parameters of the system
and the corresponding electrical activities. Meanwhile, since
each firing pulse is an energy-consuming process, the energy
decreases, while the energy in the corresponding quiescent
state increases. Moreover, it should be emphasized that the
periods of these electrical activities are consistent with their
Hamilton energy, indicating that it is feasible to determine
the discharge modes of neuronal systems by analyzing the
energy. ,ese results indicate that higher periodic bursting
can be excited by increasing the strength of feedback gain m.

,e chaotic oscillations of neurons have an important
effect on the cognition, memory, and physiological activities
of various organisms. Consequently, it is of great application
value to achieve the desired stable discharge states by
controlling the chaotic discharge mode of neurons. For
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Figure 5: Discharge mode evolution diagram of system (10) under different controllers Γi, (i � 1, 2). When (s, b1) � (− 1.655, − 0.039),
(a) evolution diagram under Γ1; (b) evolution diagram under Γ2. When (s, b1) � (− 1.585, − 0.055), (c) evolution diagram under Γ1; (d)
evolution diagram under Γ2.
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(s, b1) � (− 1.585, − 0.055), system (1) is in chaotic bursting
state, and its corresponding time response is exhibited in
Figure 4(d). Similarly, Figures 5(c) and 5(d) show the dis-
charge evolution diagrams under the control of controllers
Γ1(H) and Γ2(H), respectively. Although the two controllers
can effectively control chaotic discharge states and make
them excite various discharge modes, the range of cycle
region in Figure 5(d) is obviously larger, indicating that the
control effect of controller Γ2(H) is obviously better than
that of controller Γ1(H). Meanwhile, the energy con-
sumption of the controller can be limited in the process of
regulating the firing activity of neurons. In Ref. [12], the
subcritical Hopf bifurcation stability of the e-HR neuron
model was controlled by the washout filter to eliminate
bistability (or hidden electrical activities). In this paper,
however, the desired discharge modes are controlled by
designing Hamilton intermittent feedback scheme. As a
result, it can be seen that the control methods and objectives
in this paper are completely different from those in Ref. [12].

5. Conclusion

In this paper, the local stability and global bifurcation
features of the m-HR neuron model under electromagnetic
induction are studied, and an efficient Hamiltonian energy
feedback controller is improved to achieve the desired
electrical activities. Firstly, the equilibrium stability and
Hopf bifurcation behavior of the system are explored based
on Matcont software, which is of great application to ac-
curately predicting the firing modes of neurons. Further, the
internal relationship between the equilibrium stability and
the discharge pattern is disclosed, in which the stable
equilibrium induced a quiescent state. Correspondingly, the
stable equilibrium point becomes unstable by Hopf bifur-
cation, resulting in various discharge modes being excited
(see Figure 1(b)). Secondly, it is confirmed that system (1)
has the classical comb-shaped chaotic structure and period-
adding bifurcation mode in the multiparameter spaces via
multiple numerical tools, including the two-parameter
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Figure 6: When n � 0.2, the discharge mode of system (10) and the responses of Hamiltonian energy under the feedback adjustment of
controller Γ2(H): (a)m � 0.04; (b)m � 0.08; (c)m � 0.12; (d)m � 0.16.
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bifurcation and the largest Lyapunov exponential diagrams.
Finally, the traditional Hamiltonian energy controller is
improved, in which the controller can not only effectively
adjust the periodic bursting, leading to producing higher
periodic bursting modes, but also suppress chaotic discharge
behavior and make it produce a wide range of periodic
oscillation mode under the intermittent feedback. Impor-
tantly, this provides far better feedback than traditional
persistence controllers, with a wider range of adjustable
parameters and less energy loss. Moreover, we will further
investigate the synchronization of coupled systems or net-
works with mismatched parameters by intermittent energy
feedback.
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