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In a congested large-scale subway network, the distribution of passenger flow in space-time dimension is very complex. Accurate
estimation of passenger path choice is very important to understand the passenger flow distribution and even improve the
operation service level. )e availability of automated fare collection (AFC) data, timetable, and network topology data opens up a
new opportunity to study this topic based on multisource data. A probability model is proposed in this study to calculate the
individual passenger’s path choice with multisource data, in which the impact of the network time-varying state (e.g., path travel
time) on passenger path choice is fully considered. First, according to the number and characteristics of OD (origin-destination)
candidate paths, the AFC data among special kinds of OD are selected to estimate the distribution of passengers’ walking time and
waiting time of each platform. )en, based on the composition of path travel time, its real-time probability distribution is
formulated with the distribution of walking time, waiting time, and in-vehicle time as parameters. Finally, a membership function
is introduced to evaluate the dependence between passenger’s travel time and the real-time travel time distribution of each
candidate path and take the path with the largest membership degree as passenger’s choice. Finally, a case study with Beijing
Subway data is applied to verify the effectiveness of the model presented in this study. We have compared and analysed the path
calculation results in which the time-varying characteristics of network state are considered or not. )e results indicate that a
passenger’s path choice behavior is affected by the network time-varying state, and our model can quantify the time-varying state
and its impact on passenger path choice.

1. Introduction

To alleviate the pressure on urban public transport caused by
the increasing demand for urban travel, more and more
cities have built large-scale subway networks, such as
Shanghai, Beijing, Paris, Tokyo, especially in China, about 20
cities with subway operation mileage of more than 100
kilometers. Compared with other sustainable means of
transportation [1–4], the subway has the characteristics of
large capacity [5] and high reliability and is deeply welcomed
by urban residents [6, 7]. While the subway brings conve-
nient travel services to passengers [8], the expansion of the
network and the influx of passenger flow have also brought
new problems to the subway operation, such as crowding
[9, 10], train utilization efficiency [11], ticket revenue

allocation among operators [12, 13], and the uncertainty of
passenger flow distribution caused by the diversity of pas-
senger path choice. To improve service quality and operation
efficiency, operators urgently need to know the distribution
of passenger flow in time and space dimensions [14]. In a
large-scale subway network, the estimation of passenger
path is the basis of calculating passenger flow distribution,
which aims to identify which line they actually take and at
which stations they transfer.)erefore, estimating passenger
path is a subject of great practical significance.

It is very difficult to estimate the passenger travel path in
large-scale subway networks. On the one hand, in order to
improve passengers’ travel experience, the subway operation
service usually adopts “seamless transfer mode”; that is,
passengers do not need to tap-out/tap-in when transferring
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between different lines. In this case, if there are multiple
candidate paths between OD (origin-destination), the pas-
senger’s path choice cannot be observed [15] or recorded.
On the other hand, passenger path choice is affected by
many factors, including travel time, number of transfers,
departure headway, walking time, waiting time, crowding. In
order to depict the impact of these factors on passenger path
choice, based on the utility maximization criterion, using
questionnaires to calibrate the logit parameters is a widely
used traditional method. Raveau et al. [16] proposed a
multinomial logit model to study the path choice behavior of
subway passengers, in which the utility function considers
many factors that affect passengers’ path choice. Later, in
order to characterize the impact of the correlation between
candidate paths on passenger’s path choice, Raveau et al. [17]
extended their research to a C-logit model including a
“commonality factor,” which can better deal with the cal-
culation error caused by a path over-lapping. Literatures
[12, 18] improved the calculation accuracy of the logit model
by adding the transfer cost to the model and establishing
multiclass utility function according to passenger category,
respectively. However, there are many limitations in using a
questionnaire to calibrate parameters, such as (1) collecting
data by conducting surveys is costly both in time and re-
sources [19], (2) due to the influence of survey location and
respondents, the questionnaire results are often limited in
scale and diversity [13], and (3) some key factors (such as
congestion, comfortable) are difficult to quantify [20]. )is
limits the practical application of the logit model.

To overcome the limitations of traditional methods
relying on questionnaires, scholars try to calibrate the pa-
rameters of the logit model by the data-driven method.
Based on AFC (automated fare collection) data, Sun et al.
[13] proposed an integrated Bayesian inference approach to
study passenger path choice behavior. )e core of this ap-
proach is still the logit model, while different from the
traditional method, and it requires very limited information
as input (e.g., passenger travel time from AFC data) but
provides comprehensive posterior knowledge of passenger
path choice. )en, Xu et al. [21] extended this model and
considered the train crowding. However, the above studies
did not consider the impact of time-dependent parameters
(e.g., train timetable) and network time-varying state (e.g.,
path travel time) on passenger path choice.

In order to further consider the impact of time-de-
pendence and network time-varying state on passenger path
choice behavior, Zhou and Xu [22] combined AFC data and
train timetable data to infer passengers’ path choice. )e gap
between the passengers arriving at the platform at the fastest
walking speed and the first train’s departure that they can
catch was defined as the “surplus time.” )en, a probability
function was constructed with the “surplus time” of each
path’s “boarding plan.” Finally, the path with the highest
probability was assigned to the passenger. However, the
author does not consider the impact of waiting time dis-
tribution on path travel time, which is an important factor
affecting passenger path choice. Similarly, Zhao et al. [23]
proposed a probability model to convert the likelihood of
passengers choosing different paths to the probability of

taking different trains, and the method was verified with the
data collected from the Shenzhen metro system. Li et al. [24]
proposed a synchronous clustering method based on pas-
senger “pure” travel time to calculate passenger path se-
lection. )e “pure” travel time refers to the remaining time
after their access/egress walk time and waiting time are
deleted from their travel time. However, deleting the waiting
time may affect the calculation accuracy of this method in
crowded subway network. Wu et al. [25] presented a density
peaks clustering algorithm (DPCA) to infer passengers’ path
choice. First, passengers among the same OD are clustered
by DPCA according to their travel time and then introduced
a method to estimate the theoretical travel time of each
candidate path considering the uncertain walking time and
transfer time, and finally, according to the similarity between
the cluster center value and the theoretical travel time of the
candidate path, the cluster (with its passenger) and the
candidate path are matched.

)e above studies have made a great contribution to
estimating passenger path choice based on data-driven
method, but it can still be further improved. First, the
probability distribution characteristics of time data are very
important [26, 27], and these studies tend to rely on as-
sumptions rather than statistical analysis. For example, it is
assumed that passenger travel time follows normal distri-
bution or uniform distribution, which will affect the accu-
racy and applicability of the model. Second, affected by
passenger flow and crowding [10, 28] factors, network state
(e.g., path travel time) has significant time-varying char-
acteristics, which will ultimately affect the travel choice and
travel time of passengers. Existing studies rarely explicitly
consider the impact of this feature on passenger path choice.
For example, there are two candidate paths for an OD pair,
namely p1 and p2. )e travel time of p1 in off-peak hours
and peak hours is 5 minutes and 10 minutes, respectively,
and the corresponding travel time of p2 is 10 minutes and 15
minutes, respectively. In this case, if only the passenger’s
travel time (e.g., 10 minutes) is used, it is difficult to ac-
curately infer the passenger’s path choice. If supplemented
by passenger departure time (e.g., peak hours), then p1 is the
most likely choice for passengers. It can be seen that the
time-varying characteristics are helpful to estimate the
passenger path.

To address the research gap mentioned above, this study
proposes a probability model which can explicitly consider
the influence of time-varying characteristics on estimating
the passenger path. )e model takes AFC, train timetable,
and network topology data as inputs. First, the distribution
characteristics of path travel time components such as walk
time and waiting time are studied. )en, in order to
characterize the time-varying state, a method to calculate the
distribution of path real-time travel time is presented. Fi-
nally, a membership function that can consider both the
passenger travel time and the real-time travel time distri-
bution of the candidate path is introduced to infer the
passenger path choice. To highlight the novelty of our work,
some relevant studies are summarized in Table 1 and
compared with our study, in terms of passenger travel time
(A), the real-time travel time of path (B), the probability
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distribution of travel time (C), model and data. )e detailed
contributions of this study are summarized as follows:

(1) We proposed a multisource data-driven method to
estimate passenger walking time and waiting time
and tested the probability distribution characteristics
of relevant time samples by the improved Kolmo-
gorov-Smirnov (KS) method.

(2) According to the composition of path travel time and
the distribution characteristics of walking time and
waiting time, we presented a calculation method of
path travel time distribution. On this basis, we
further presented the calculation method of path
real-time travel time distribution by calculating the
time slot of waiting time distribution, which ex-
plicitly considers the time-varying state of the
network.

(3) A membership function is proposed to evaluate the
correlation between the passenger travel time and
the real-time travel time distribution of each can-
didate path, and the path with the largest mem-
bership degree is assigned to the passenger. In this
way, the previous one-dimensional method that only
considers passenger travel time can be extended to
two dimensions; that is, both passenger travel time
and passenger departure time are considered.

(4) Based on the data collected from Beijing Subway, the
influence of time-varying characteristics of the route
on estimating passenger path choice is analysed.

)e rest of the paper is organized as follows: Section 2
states the problem and the necessary assumptions. Section 3
introduces the estimation method of walking time/waiting
time probability distribution, first. On this basis, the general
formula of path travel time distribution and passenger path
estimation method is given. As an illustration, we apply the
proposed model on the Beijing Subway network as a case
study in Section 4 and compared the calculation results in
which the time-varying characteristics of network states are
considered or not. Finally, we conclude our study, sum-
marize our main findings, and discuss future research di-
rections in Section 5.

2. Problem Description

In the subway system, passengers’ transaction information is
recorded in the AFC system, specifically including the
check-in time, check-out time, origin station, and destina-
tion station, but does exclude their transfer station and path

information. )erefore, when there are multiple candidate
paths between anOD pair, it is impossible to directly identify
passenger path through AFC data. As shown in Figure 1,
there are two paths from XD to CWM, and they are (1) XD-
XWM-CWM and (2) XD-DD-CWM. )ey all include one
transfer, and the travel distance is similar, so it is impossible
to identify passengers’ path choice directly.

)e passenger travel time (obtained from the check-in
and check-out time in AFC data) refers to the time spent by a
passenger on a specific path between these OD. Hence,
passenger travel time can be regarded as an observation of
the travel time of this path. From a statistical point of view,
when a random variable obeys a certain probability distri-
bution, this variable should be within the confidence interval
of the distribution. In other words, if we can know the travel
time probability distribution of each candidate path, we can
calculate the most likely path for passengers according to the
confidence level of passenger travel time in the travel time
distribution of each path.

)e observation set is the basis for estimating the
probability distribution of path travel time. For the ODs with
only one candidate path, the travel time of passengers be-
tween this OD can be regarded as the travel time observation
value of this unique path. However, when there are multiple
paths between ODs, due to the lack of path information in
AFC data, the travel time observation set of each candidate
path between such ODs cannot be directly obtained. In other
words, AFC data cannot directly estimate the path travel
time distribution between such ODs. )erefore, how to
estimate the path travel time distribution between multipath
ODs through the single path OD (with a determined ob-
servation set) is the key to our study.

To that end, we first classify the OD in the network.
According to the number of candidate paths and the path
characteristics, the OD can be divided into three categories:
(1) type-I OD, which means that there is only one candidate
path, and passengers do not need to transfer in travel; (2)
type-II OD refers to that there is only one candidate path but
the O station and D station are not on the same line so that
passengers have to transfer in travel; (3) type-III OD pair has
multiple candidate paths. Take part of the Beijing Subway
network in Figure 1 as an example; NLSL-FXM belongs to
type-I OD; NLSL-FCM belongs to type-II OD; NLSL-CWM
and FCM-JGM belong to type-III OD.

According to the above analysis, we know that the path
travel time observation set of type-I OD can be obtained
directly, so our goal is to infer the passenger path choice
between type-III ODs with type-I ODs. To bridge these two
types of OD, we need to analyse the travel time composition

Table 1: Characteristics of relevant works in comparison with our work.

Publications A B C Model Data
[13] Yes No Assumption-based Logit AFC
[22] Yes No Assumption-based Probability model AFC, timetable
[24] Yes No Assumption-based Clustering AFC, timetable
[25] Yes No Assumption-based Clustering AFC, timetable
[29] Yes No Assumption-based Logit RP data +AFC
Our study Yes Yes Data fitting, KS test Probability model AFC, timetable, network topology
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of passengers. As shown in Figure 2, passengers’ travel time
on a specific path includes in-vehicle time, walking time, and
waiting time. )at is, the path travel time of all kinds of OD
is composed of these parts. )erefore, we can use the ob-
servation set between type-I OD to estimate the time
components and then use these time components to esti-
mate the travel time distribution of the path between type-III
OD. Finally, the passenger path choice is estimated by means
of the passenger travel time and the probability distribution
of path travel time. Usually, the train runs according to the
timetable, so the in-vehicle time is fixed; walking time can be
divided into access time, transfer time, and egress time. )e
egress time can be calculated according to the timetable data
and passenger check-out data. Nevertheless, it is unable to
distinguish between waiting time and access/transfer time.
Considering that the walking time is a linear function of
walking distance and walking speed, if we assume that the
walking speed of the same passenger in a trip is consistent,
we can calculate the access time and transfer time according
to the egress time and channel distances. )is assumption is
reasonable, although, in practice, some passengers may
prolong their walking time due to channel congestion when
check-in or transfer; the extended time can be regarded as
part of the waiting time. )e waiting time of passengers is
affected by factors such as train departure frequency and the
number of people waiting at the platform, which has strong
randomness; that is, the waiting time at the platform has a
significant time-varying characteristic. )at is, each time
component can be decomposed and estimated.

To sum up, based on AFC data, train timetable, and
walking distance of subway platform, a passenger path es-
timation model considering time-varying travel time is
proposed in this paper. First, based on type-I OD, the
passenger walking time distribution and the waiting time
distribution of each platform are estimated. )en, according
to the path constituent elements, a method to restore the

travel time distribution of each candidate path between type-
III OD is proposed. Finally, taking the passenger check-in
time, travel time and the real-time travel time distribution of
each candidate path as parameters, a membership is in-
troduced to estimate passenger path choice. )e calculation
flow is shown in Figure 3. To facilitate the subsequent
analysis and modeling, the following assumptions are
proposed:

(i) A1: Egress time is not affected by passenger traffic
congestion but is only related to passenger walking
speed and walking distance.

(ii) A2: )e walking speed of the same passenger is
consistent in different stages of a trip.

(iii) A3: )e distance between the ticket gates and the
platform is the same at the same station.

(iv) A4: Ignoring the time spent by passengers boarding
and alighting the train.

3. Methodology

3.1. Probability Distribution of Walking Time. According to
the previous analysis, walking time includes three kinds:
access time, transfer time, and egress time. )e egress time
can be obtained from the passenger travel records between
type-I OD. )erefore, the estimation method of egress time
distribution is given first. )en, the calculation method of
access time and transfer time distribution is derived based
on the egress time distribution.

)e passenger i between type-I OD pair u − v, whose
check-in time at platform u and check-out time from the
platform v are t

tapin
i and t

tapout
i , respectively, and Figure 4

shows all the possible trips of this passenger. )e horizontal
axis is the passenger’s travel time, and the vertical axis
represents their location. )e access time is the time pas-
senger spends from the access ticket gate to the origin

NLSL

Line1
Line2 Line4 Line5

FCM

FXM XD

XWM

LJHT DSK

DD

CWM

JGM

Figure 1: Partial diagram of Beijing Subway network.
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Figure 2: Passenger travel diagram by subway.
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platform. Waiting time is the dwell time passenger spends at
the platform before boarding. Denote tarrj,v as the arrival time
of train j ∈ J to the platform v, and the egress time is equal to
the time spent between tarrj,v and t

tapout
i . It can be seen from

Figure 4 that there are three potential trips (2,3,4) run in the
range of t

tapin
i and t

tapout
i , but the access/egress time reserved

for passenger i by train 2 does not meet the walking speed
consistency assumption (see assumption “A2”), so only train
3 and 4 are feasible.

When passenger i has more than one feasible trip, each
trip j corresponds to an egress time τei,j,v, namely:

τe
i,j,v � t

tapout
i − t

arr
j,v , τe

i,j,v > 0. (1)

According to the previous assumption that the walking
speed of passengers is consistent when egress time is equal to
τei,j,v, the corresponding access time τai,j,u can be expressed as
follows:

AFC,Train Timetable,
Network Topology Data

Probability Distribution of Walking Time

Probability Distribution of Waiting Time

Probability Distribution of Path Travel Time

Path Inference Model

Passenger Path Choice

Type-I OD
with unique trip

Type-I OD
with multi-trip

Type-III OD

Figure 3: Calculation flow of passenger path choice.
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Figure 4: Diagram of passenger trips between Type-I OD
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τa
i,j,u � τe

i,j,v · ηu,v, ηu,v > 0, (2)

where ηu,v � da
u/d

e
v is the distance ratio to the entrance

channel and the exit channel, and da
u and de

v are the entrance
channel distance of the platform u and the exit channel
distance of platform v, respectively.

Obviously, if the trip j is feasible for passenger i, its
departure time t

dep
j,u from platform u must satisfy

t
tapin
i + τai,j,u ≤ t

dep
j,u . (3)

Meanwhile, from Figure 4, it can be seen that if passenger
i has only one feasible trip, the egress time can be uniquely
determined by the equation (1). )erefore, based on such
passengers’ egress time, the egress time probability distri-
bution of the corresponding platform can be fitted. How-
ever, having only one feasible trip means that passengers’
check-out time should be between the arrival time of his/her
unique feasible trip j and of neighbour follow-up train j + 1,
namely:

t
arr
j,v < t

tapout
i ≤ t

arr
j+1,v. (4)

Equation (4) means that the upper limit of such pas-
sengers’ egress walking time cannot exceed the trains’
headway when passengers leave the departure platform, but
this may lead to a deviation in the estimation of walking
time. In Beijing Subway, the off-peak hours’ headway is
about 4minutes, which is long enough for most passengers
to walk from the platform to the ticket gate. )erefore, using
the AFC data with only one feasible trip in the off-peak hours
can effectively reduce the deviation of estimating the pas-
senger’s egress time. Since the walking speed changes rel-
atively small in different periods, we take the off-peak hours’
walking time distribution to represent the whole day’s
walking time distribution.

Assuming that all passengers between type-I OD u − v

satisfying equations (1) and (3), and having one feasible trip
during off-peak hours, the sample space of their egress
walking time is Γev � τe

i,j,v|i ∈ I, j ∈ J&j + 1 ∉ J . Referring
to the existing research [13, 27, 30, 31], this study uses the
normal distribution [13, 30], logarithmic normal distribu-
tion [31], and gamma distribution [27] to fit the egress time
of the 644 platforms in the Beijing Subway network and uses
the improved KS (Kolmogorov-Smirnov) method [32] to
test the fitting result. Table 2 gives the corresponding KS test
statistical results.

It can be seen that the lognormal distribution has the best
fitting effect on the sample space. )erefore, it is safe to
assume that passengers’ egress time follows lognormal
distribution Γev ∼ LogN(μe

v, σe
v), where μev and σev are the

logarithmic mean and standard deviation of the egress
walking time, which can be estimated from the egress time
sample space by using the MLE (maximum likelihood es-
timation) method. In this way, we can get the occurrence
probability P(τei,j,v) of the egress time τei,j,v by discretizing the
fitted probability distribution density; that is,

P τe
i,j,v − ε< t≤ τe

i,j,v + ε  � 
τe

i,j,v
+ε

τe
i,j,v

−ε
f(t)dt, (5)

where ε is the time granularity, such as 1 second; f(t) is the
probability density function of the egress time, which is in
the following form:

f(t) �
1

t
���
2π

√
σev

exp −
ln t − μev( 

2

2 σev( 
2

⎛⎝ ⎞⎠. (6)

Suppose the influence of channel congestion and other
factors on the access time is not considered. In that case,
according to equation (2), the access time sample space Γau of
the platform can be expressed as the scalar multiplication of
the walking distance coefficient and the sample space Γev of
the egress time.

Suppose Γau obeys lognormal distribution
Γau ∼ LogN(μa

u, σa
u), where μa

u and σa
u are the logarithmic

mean and standard deviation of the access time of platform
u. In practice, the extension of access/transfer walking time
caused by congestion can be regarded as a part of the
subsequent waiting time connected with it. )erefore, this
treatment will not affect the estimation of feasible trips.

As a special kind of access time (the walking time
passengers spend between the arrival platform and the next
departure platform), the main factor affecting the transfer
time is also the channel distance. )erefore, the distribution
Γcu1,u2 ∼ LogN (μc

u1,u2, σc
u1,u2) of transfer time from the

platform u1 to the platform u2 can be calculated by the same
method, where μc

u1,u2 and σc
u1,u2 are the logarithmic mean

and standard deviation of the walking time from the plat-
form u1 to the platform u2.

3.2. Probability Distribution of Waiting Time. )e uncer-
tainty of platform waiting time is mainly manifested in two
aspects. On the one hand, the waiting time at the same
platform varies in different periods. On the other hand,
different platforms’ waiting time is different in the same
period. )e waiting passengers include the new check-in
passengers, transfer passengers, and stranded passengers.
Generally speaking, the boarding probability of the waiting
passengers on the platform has nothing to do with their
types. )e earlier the passengers arrive at the platform, the
easier for them to choose the vantage position and more
likely to board, especially when the arriving train’s
remaining capacity is not enough to load all of them.
)erefore, the waiting time distribution of new passengers
can represent all passengers’ waiting time distribution on the
platform.

It can be seen from Figure 4 that when passenger i takes
the trip j, his/her waiting time τwi,j,u at the departure platform
u is

τw
i,j,u � t

dep
j,u − t

tapin
i + τa

i,j,u , τw
i,j,u ≥ 0, j ∈ Ji. (7)

Substituting equations (1) and (2) into the above
equation, we can get the following results:
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τwi,j,u � t
tapout
i − t

tapin
i − τei,j,v 1 + ηu,v  − τbj,u,v, j ∈ Ji, (8)

where τbj,u,v � tarrj,v − t
dep
j,u is the running time of train j from

platform u to platform v. In an urban rail transit network,
the train’s running time between two platforms on the same
line is usually fixed, that is, τb

j,u,v � τb
u,v � C. )erefore, in

equation (8), τwi,j,u can be abbreviated as the function of τei,j,v.
Let P(τw

i,j,u) be the waiting time probability of passenger i

at the platform u when he/she takes trip j. From the above
analysis, we can know that P(τw

i,j,u) equals to the likelihood
of passengers’ corresponding egress walking time; that is,

P τwi,j,u  � P τei,j,v � t
tapout
i − t

arr
j,v , j ∈ Ji, (9)

where the egress walking time probability P(τei,j,v) is given by
equation (5).

Equation (9) is normalized, that is,
P′(τwi,j,u) � P(τwi,j,u)(

Ji

j�1P(τwi,j,u))− 1.
)e discrete value of waiting time is equal to the product

of waiting time generated by different trips and its corre-
sponding normalized probability. )erefore, the sample
space of the platform waiting time can be expressed as
follows:

Γwu � 
Ji

j�1P
′ τw

i,j,u τw
i,j,u|i ∈ I . (10)

Since the platform waiting time changes rapidly, we split
the operation time by a short time (such as 30minutes), and
then, we get 22600 periods in total for 644 platforms in the
Beijing Subway network. Similarly, the waiting time dis-
tribution is fitted based on different probability distributions
[13, 27, 30, 31], and the fitting results are tested by improved
KS method [32]. Table 3 shows the KS test statistical results
of the waiting time distribution.

We can know that lognormal distribution is the best fit
for samples, so we assume that the waiting time at platform u

follows the lognormal distribution with μw
u and σw

u as log-
arithmic mean and standard deviation, and the two pa-
rameters can be estimated from the sample space Γwu . For the
platform with fewer passengers, a fixed value (such as the
corresponding period’s headway) is used as the waiting time
for passengers at the platform.

3.3. Probability Distribution of Path Travel Time. )e above
analysis obtains the travel time distribution of each part of
the path. For the convenience of expression, we number each
section/subpath’s travel time in chronological order. So, if
there are k ∈ K candidate paths between any type-III OD,
according to Figure 2, the travel time of path k can be written
as the sum of each subpaths’ travel time.

τk � 

Lk

l�1
τk,l, (11)

where l ∈ Lk is the sections’ order number of path k.
According to the previous analysis, the subpath travel

time τk,l can be regarded as independent of each other.
Beaulieu et al. [33] pointed out that when random variables
obey lognormal distribution, the sum of random variables
also obeys lognormal distribution. )erefore, the travel time
τk of path k follows the lognormal distribution with μk and
σk as parameters, and μk and σk are equal to the logarithmic
mean and standard deviation of τk, respectively.

According to the Wilkinson method [33], the first/
second moments of the path travel time equal the first/
second moments of the sum of the subpaths’ travel time,
respectively. )erefore,

E τk(  � E 

Lk

l�1
τk,l

⎛⎝ ⎞⎠, (12)

E τk( 
2

  � E 

Lk

l�1
τk,l

⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠. (13)

According to the nature of lognormal distribution, there
are

E τk(  � exp μk +
σ2k
2

 , (14)

E τk( 
2

  � exp 2μk + 2σ2k . (15)

Substituting equations (14) and (15) into equations (12)
and (13), respectively.

exp μk +
σ2k
2

  � 

Lk

l�1
E τk,l  ,

exp 2μk + 2σ2k  � 

Lk

l�1
E τk,l  

2

+ cov 

Lk

l�1
τk,l, 

Lk

l�1
τk,l

⎛⎝ ⎞⎠.

(16)

Since the subpaths’ travel time is independent of each
other, their covariance is 0. )erefore, we can derive μk and
σk as follows:

Table 2: )e KS test statistical result of egress time distribution.

Normal distribution Lognormal distribution Gamma distribution
Count 364 450 432
Ratio 56.52% 69.88% 67.08%
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σ2k � ln


Lk

l�1 exp σ2k,l  − 1 exp 2μk,l + σ2k,l  


Lk

l�1δl exp μk,l + σ2k,l/2   
2 + 1⎛⎜⎝ ⎞⎟⎠,

δl �

1, if σk,l ≠ 0,

0, if σk,l � 0,

⎧⎪⎨

⎪⎩

(17)

μk � ln 

Lk

l�1
xp μk,l +

σ2k,l

2
 ⎛⎝ ⎞⎠ −

σ2k
2

, (18)

where μk,l and σk,l are the logarithmic expectation and
standard deviation of subpaths’ travel time.

)e probability density function of path travel time can
be expressed as

f τk, μk, σk(  �
1

σkτk

���
2π

√ exp −
ln τk − μk( 

2

2 σk( 
2

⎛⎝ ⎞⎠. (19)

3.4. Path Inference Method. )e results and discussion may
be presented separately, or in one combined section, and
may optionally be divided into headed subsections.

Before estimating the passenger’s path choice, it is
necessary to estimate the travel time distribution of each
candidate path. Suppose the theoretical travel time of path
k ∈ K between a type-III OD is τk, and according to equation
(11), τk is the sum of in-vehicle time, walking time, and
waiting time under ideal conditions, so it is usually shorter
than the actual travel time of path k. Hence, if path k was the
feasible path of passenger i, his/her travel time should be not
less than τk, namely:

τk ≤ t
tapout
i − t

tapin
i . (20)

To calculate the real-time travel time distribution of the
path k, it is necessary to estimate the real-time waiting time
distribution of each departure platform, that is, to calculate
the time slot when passengers arrive at different platforms.
Assuming that path k includes m ∈M departure platforms,
passenger i arrives at themth departure platform at time twk,m,
and the time offset relative to twk,m is Δτk,m � twk,m − t

tapin
i (see

Figure 4). Denote Lk,m as the number of subpaths before
departure platform m; then from (11), the offset can be
approximated as the sum of themean of Lk,m subpaths’ travel
time before he/she arriving at platform m, namely:

Δτk,m ≈ 

Lk,m

l�1
E τk,l . (21)

)e interesting time period is divided into S equal time
slots, and the length of each one is Δs. Denote sm as the time

period of passenger i arrives at platform m, so
sm � t

tapin
i + Δτk,m) · Δs− 1; therefore, the waiting time

distribution of the platform m follows
τwm,sm

∼ LogN(μwm,sm
, σwm,sm

), μwm,sm
and σwm,sm

are the loga-
rithmic mean and standard deviation of the waiting time of
platform m in the period sm. Substituting them into equa-
tions (18), and (19), the real-time travel time distribution
parameters μ

k,t
tapin
i

and σ
k,t

tapin
i

of path k at time t
tapin
i can be

obtained.
According to the above analysis, there is a specific de-

pendence between passengers’ travel time and the candidate
paths’ real-time travel time. And the membership function
in fuzzy set theory can better deal with this situation. For
example, literature [34] proposed a fuzzy power Heronian
function to deal with multicriteria decision-making prob-
lems. Considering that the passenger travel time of the same
OD pair obeys the lognormal distribution, this study con-
structs a lognormal distribution membership function in the
following form to estimate the similarity between the pas-
senger’s travel time τAFC

i and the real-time travel time
distribution of each candidate path. )at is, the membership
degree is equal to the discrete value of the passenger travel
time on the probability distribution of each candidate path.

Fk τAFCi  � P τAFCi − ε< t≤ τAFCi + ε  � 
τAFC

i
+ε

τAFC
i

−ε
fk(t)dt,

fk(t) �
1

t
���
2π

√
σ

k,t
tapin
i

exp −
ln t − μ

k,t
tapin
i

 
2

2 σ
k,t

tapin
i

 
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, k ∈ K,

(22)

where ε is the time granularity, such as 1 second; μ
k,t

tapin
i

and
σ

k,t
tapin
i

are the logarithmic mean and standard deviation of
real-time travel time distribution of path k at time t

tapin
i ,

respectively. Denote Δi,k � |ln t − μ
k,t

tapin
i

|, which represents
the difference between the logarithm of passenger travel time
and the logarithmic mean of the path real-time travel time,
the smaller Δi,k is, the greater fk(t) is. When Δi,k is the same,
the greater σ

k,t
tapin
i

is, the greater fk(t) is, indicating that the
passenger travel time has higher confidence in the real-time
travel time distribution of path k.

According to the principle of maximum membership
degree, the passenger path between type-III OD pairs
considering the time-varying characteristics of network state
can be determined by the following formula:

k � argmax Fk τAFC
i  , k ∈ K. (23)

4. Case Study and Comparison

For the purpose of model illustration and verification, we
apply the proposed model to Beijing Subway network. )e

Table 3: )e KS test statistical result of waiting time distribution in different periods.

Normal distribution Lognormal distribution Gamma distribution
Count 11662 16334 16170
Ratio 51.60% 72.27% 71.55%
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network (as of 2017) consists of 19 lines with 608 km, serving
370 stations including 56 transfer stations. It serves about 5.4
million trips per day. Most of the passengers use smart card
or mobile phone to pay the ticket, and the transactions
would be recorded by the AFC systems, including the check-
in and check-out stations and corresponding times.

We use a typical weekday AFC in October 2017 for the
model application. As the punctuality rate of train operation
exceeds 99.9% (refer to the report of Beijing Rail Transit
Operation Co., Ltd.), we choose the planned timetable on the
same day as AFC data as the input timetable. Walking
distance is mainly obtained by two methods: (1) Baidu map
(map.baidu.com) and (2) field investigation.

We select a typical OD pair (TTYB-CYM) for analysis and
comparison, as shown in Figure 5. )e relevant walking
distances have been indicated in the figure (A represents the
access walking distance, T represents the transfer distance,
andE represents the egress walking distance). Yen’s algorithm
[35] is adopted to generate candidate paths. To generate a
high-quality path set in the complex Beijing Subway network,
we introduce two auxiliary rules to Yen’s algorithm, which are
(1) dominance coefficient, that is, the ratio of travel time of
path k to travel time of path k − 1 should be within a rea-
sonable threshold, and otherwise, stop; (2) relative transfer
number limit, that is, compared with the transfer times of the
shortest circuit, the transfer number of path k should be
within a reasonable threshold, and otherwise, stop. In this
case, we set the dominance coefficient and relative transfer
number as 1.5 and 2, respectively. Hence, there are three
candidate paths between this OD, namely:

Path 1: TTYB->YHG (Line 5 to Line2)->CYM;
Transfer 1 time, the theoretical travel time is about 2179
seconds.
Path 2: TTYB->DS (Line 5 to Line6)->CYM; Transfer
1 time, the theoretical travel time is about 2430 seconds.
Path 3: TTYB-> LSQ (Line 5 to Line13)->DZM (Line
13 to Line2)->CYM; Transfer 2 times, the theoretical
travel time is about 2540 seconds.

4.1. Waiting Time Estimation. )e platform waiting time is
an important indicator to measure the performance of the
subway network. It can reflect the network congestion and
passengers’ dwell time in different time periods. Figure 6
shows the average waiting time at different transfer plat-
forms between TTYB-CYM. )e observation period is 6:
00∼16:00, and the peak hours are 7:00∼ 9:00.

We found that in the peak hours (7:00∼ 9:00), the
waiting time of YHG and LSQ is close to the train headway,
respectively. )at is, most passengers can board the first
train they can catch after they arrive at the platform. )e
waiting time of DS and DZM is significantly longer than
their train headway, which indicates that passengers may be
stranded. )is may be caused by the platform overcrowding
or the limited capacity of arriving trains. Whatever the
reason, passengers’ choice behavior will be affected. In
addition, from the whole time period, the changing trend of
waiting time and train headway is not consistent, indicating

that the waiting time is affected by many factors and has an
obvious random characteristic.

4.2. Path Inference Results and Comparison. Figure 7 illus-
trates the paths’ travel time and the result of passenger path
inference in the observation period. )e horizontal axis
represents the observation period, and the vertical axis
represents the time. )e solid line represents the travel time
of each candidate path between TTYB-CYM, and the dot/
triangle/diamond represents the passengers’ path choice. For
example, the dot indicated by the red arrow is the AFC data
of a passenger and the path inference result. His/her check-
in time and travel time are 7:05:31 and 2487 s, respectively,
and the choice estimated by our model is path 1.

We can observe that (1) the travel time of path 1 and path
2 increases significantly during peak hours, while that of
path 3 changes less. (2) Most passengers choose path 1 and
path 2 with a short travel time, and few passengers choose
path 3, which is consistent with the field survey investiga-
tion. (3) )e distribution of passenger travel time in peak
hours is compact, while that is relatively scattered in other
periods. In the whole observation period, the average pas-
senger travel time in peak hours is significantly longer than
that in off-peak hours. )erefore, it is necessary to take the
time-varying characteristics of path travel time into con-
sideration when calculating passenger path choice.

Next, two comparative scenarios are designed to further
analyse the impact of time-varying characteristics on esti-
mating passenger path choice. In scenario 1, we apply our
model to the Beijing Subway network. In scenario 2, we
apply a static model to estimate passengers’ path choice, in
which the time-varying waiting time is replaced by the line’s
headway. Table 4 shows the comparison of passenger path
inference results under two different scenarios.

Scenario 1: )e calculation result shows that more than
90% of passengers tend to choose path 1 and path 2 with
a shorter travel time and fewer transfer times during peak
hours. And passengers prefer path 1 to path 2. Echoing
this result, it can be seen from Figures 5 and 6 that the
transfer distance and the waiting time of path 1 (platform
YHG) are better than those of path 2 (platform DS).
Scenario 2: )e result shows that more passengers
choose path 2 during peak hours, which is inconsistent
with the field survey. )e reason for this phenomenon
is that the waiting time in peak hours is much longer
than the headway (Figure 6). Hence, if the time-varying
waiting time is not considered, the passengers’ actual
travel time will be underestimated, which leads to the
illusion that passengers prefer the path with a longer
time. In the off-peak hours, the proportion of choosing
path 1 increases but still less than 50%, while the
proportion of passengers choosing path 3 is close to
20%, which is not reasonable either. According to our
field survey, the transfer distance and travel time of
path 3 are very unfriendly to passengers, so 20% is not a
reliable proportion. )is indicates that the waiting time
is a key component to path travel time, which is very
important for estimating the passenger path.
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In summary, no matter in peak hours or off-peak hours,
the proportion of passengers choosing path 1 and path 2
travel exceeds 90% in both scenarios, which indicates that
passengers tend to choose the path with fewer transfer times
and shorter travel time. In scenario 1, the proportion of
passengers who choose path 1 in peak hours is lower than
that in off-peak hours, while the changing trend of passenger
proportion of the other two paths is opposite. According to
the user equilibrium, all passengers tend to choose the
“advantage” path with shorter travel time and fewer transfer
times, which leads to a sharp increase in waiting time and

congestion/crowding of the “advantage” path. )en, the
passengers who are sensitive to congestion/crowding or
waiting time will seek the so-called “disadvantage” path
instead, until no passengers can find a better path than their
current one. In other words, in the peak hours, due to the
waiting time and congestion/crowding, the attraction of line
1 is reduced, so some passengers turn to choose path 2 or
path 3 instead. At this time, passengers’ path choices reach
an “equilibrium” state. In off-peak hours, with the decrease
of passenger flow, the influence of waiting time and con-
gestion/crowding on path 1 is weakened, so the passenger

TTYB LSQ YHG DS

CYMDZM

Line 5

Line 13 Line 2 Line 6

Am = 150 m Tl5,l13 = 230 m Tl5,l2 = 100 m

Tl13,l2 = 400 m

Tl5,l6 = 240 m

El2 = 200 m

El6 = 230 m

Figure 5: Candidate paths between TTYB and CYM
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Figure 6: Average waiting time at transfer platforms.
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path choice reaches a new “equilibrium” state. )at is, in off-
peak hours, the proportion of choosing path 1 is higher than
that in peak hours. In short, passenger path choice is a
complex time-varying dynamic equilibrium. When calcu-
lating their path, the influence of time-varying network state
on passenger path choice must be considered.

5. Conclusions

In this study, we propose a probability model to infer
passenger path choice in which the time-vary characteristics
of network state are explicitly considered. )e model takes
AFC, train timetable, and network topology data as input
parameters and can provide a number of network perfor-
mance indicators including passenger path choice, waiting
time distribution, path travel time probability distribution.
To that end, we propose a method to estimate the real-time
travel time probability distribution of path based on mul-
tisource data. On this basis, a logarithmic membership
function that can simultaneously consider passenger travel
time and network state is introduced to infer the passenger

path choice. Finally, a case study was conducted with the
data collected from Beijing Subway to demonstrate the ef-
fectiveness of our proposedmodel.)e case study shows that
(1) the path travel time has significant time-varying char-
acteristics (such as the change of waiting time); (2) com-
pared with themethod without considering the time-varying
characteristics, the model proposed in this study can esti-
mate the passenger path choice more accurately.

In general, this study fills the gaps in the existing studies
from the following two aspects: (1) a method for estimating
the probability distribution of walking time and waiting time
based on multisource data is presented, and the probability
distribution is tested by improved KS method [32]. )e
results show that the passenger travel time in Beijing Subway
follows a lognormal distribution. (2) Time-varying state is
explicitly considered in the estimation method of passenger
path choice; that is, compared with the existing studies, the
proposed model can consider both passenger travel time and
the network state when passenger departs.

Practically, it is easy to apply the proposed model to the
path choice or passenger flow calculation in the subway
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Figure 7: Path travel time and passenger path inference results.

Table 4: Comparison of path inference results.

Methods
Considering the time-varying state of the network

Yes (scenario 1) No (scenario 2)
Path Path 1 (%) Path 2 (%) Path 3 (%) Path 1 (%) Path 2 (%) Path 3 (%)

Proportion Peak hours 53.31 38.75 7.94 30.62 66.16 3.21
Off-peak hours 69.29 24.07 6.64 44.40 35.68 19.92
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system. Once the input information (e.g., AFC and other
data) is predetermined, the subway network performance
indicators such as path choice proportion and path travel
time distribution can be obtained quickly. Specifically, it
takes 12 minutes to estimate the path for the passengers of
one day in Beijing Subway. Compared with traditional
methods, on the one hand, this method is convenient and
efficient, so it can meet the needs of daily operation; on the
other hand, because this method is based on actual data
rather than questionnaire, it can bring more operation
benefits and managerial insights from the “current facts.”

Nevertheless, this study still has some limitations: (1) in
the case study, we use the train timetable rather than the real
train movement data, which will still affect the accuracy of
the method to a certain extent. (2) When the travel volume
of the station is small (e.g., the suburban station at night),
there may be a large error between the estimated value of
waiting time distribution and the actual value. In this case,
the estimated value can be replaced by the headway of the
corresponding time period or corrected by the multiday
cumulative AFC data of the station. (3) In this study, only
one membership function is used to infer the passenger path
choice. In the subsequent work, other advanced decision
functions can be introduced for comparisons, such as fuzzy
(monotone) measure [36] and Fermatean fuzzy group de-
cision-making [37].

In the future, we will expand our research in the fol-
lowing aspects: (1) we study the data-fusion-based passenger
path estimation model combined with questionnaire data or
video data, and (2) we can also study the probability for
passengers taking different trains on the basis of current
work, so as to better estimate train utilization, platform
crowding, etc. In addition, with the increasing scale of
subway network, it is also an interesting direction to study
passenger travel behavior based on network characteristics
[38] or network topology index [39].
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