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Rheumatoid arthritis (RA) is a progressive systemic autoimmune disease characterized by inflammation of the joints and
surrounding tissues, which seriously affects the life of patients. The Sharp/van der Heijde method has been widely used in clinical
evaluation for the RA disease. However, this manual method is time-consuming and laborious. Even if two radiologists evaluate a
specific location, their subjective evaluation may lead to low inter-rater reliability. Here, we developed an efficient model powered
by deep convolutional neural networks to solve these problems and automated the overall scoring on hand X-rays. The depthwise
separable (Dwise) convolution technique is used based on ResNet-50 due to the high resolution of hand X-rays. An inverted
residual block is introduced to devise a ResNet-Dwise50 model to enhance the efficiency of the model. The model was trained and
tested using bilateral posteroanterior (two-handed, side by side) images of 3818 patients. The experiment results show the ResNet-
Dwise50 model achieved an MAE of 14.90 and RMSE of 22.01 while ensuring high efficiency. There was no statistical difference

between the average scores given by two experienced radiologists and predicted scores from our model.

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory au-
toimmune disease that primarily strikes the hands and feet
joints, causing swelling, pain, and stiffness in the joints [1]
and can lead to joint damage in the form of joint space
narrowing and joint erosion [2]. Early diagnosis of RA is
necessary because early treatment may prevent joints from
worsening or slowing the process. The methods of diagnosis
usually include physical exams, blood tests, and imaging
tests. Radiography is currently the primary tool for evalu-
ating RA because of its wide availability, relatively low cost,
and high capability for imaging bones and joints [3]. The
commonly used and well-validated method for evaluating
RA in hand X-rays is the Sharp/van der Heijde (SvH)
method [2]. The radiologist assesses joint space narrowing
and joint erosion by grading the specific locations in each

hand (wrist) and foot using the SvH method. However, this
manual approach is time-consuming and highly subjective,
resulting in low inter-rater reliability, and even trained
experts often disagree on the final score. We therefore de-
cided to devise a neural network that can automate SvH
scoring in radiographs.

With the rapid development of artificial intelligence (AI)
technology, deep learning has become a significant trend in
medical image analysis. Convolutional neural networks have
become the dominant machine learning method for medical
image classification [4, 5], medical image segmentation
[6, 7], medical image registration [8, 9], medical image
fusion [10, 11], and medical image report generation
[12-14]. Some researchers have devised models to solve the
RA scoring challenge by learning to assess joint injuries
directly from data. One approach uses various clinical data
to determine whether a patient has RA and diagnose
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rheumatoid arthritis by training a convolutional neural
network on a dataset of radiographs [15, 16]. Another
mainstream approach uses a two-step approach to detect
finger joint destruction [17, 18]. The first step is a joints’
detection task, while the second step is an image classifi-
cation that uses the convolutional neural network to classify
the scoring of joint destruction.

Although these models have shown exemplary perfor-
mance in some results, they are not ideal in clinical appli-
cations. The main reason is the scoring system evaluates
specific locations, and it is challenging to detect these lo-
cations accurately. Some of these locations are so tight that
even when one is detected correctly, it is unlikely to rule out
interference from others, especially in carpal bones.
Moreover, hand joints may be interlaced in a severe patient
with RA (Figure 1). The prospect of training a model to
predict overall scores is therefore considerable.

We adopted a similar methodology and proposed an
efficient overall scoring framework of RA, which we refer to
as ResNet-Dwise50. The model uses a convolutional neural
network to extract the features of the hand image and then
uses the fully connected layer to predict the overall score. It is
an end-to-end model that performs regression based on
overall scores. Traditional image classification adopts low
resolution (most using 224 x 224), while the medical image
analysis generally requires high resolution. Training high-
resolution images requires tremendous computing re-
sources. We used a depthwise separable convolution [19] to
reduce the number of parameters and multiply-adds
(MAdds) required to train high-resolution images. The
experiment showed that this trick increases training speed
but at a loss of accuracy. We therefore introduced an
inverted residual block that is an added expansion layer
before the depthwise layer resulting in minimal loss of ac-
curacy while maintaining efficiency. In summary, our
contributions are as follows:

(i) An efficient CNN model (ResNet-Dwise50) was
designed for the overall scoring of RA in hand X-ray
datasets by introducing the techniques of depthwise

separable convolution block and inverted residual
block

(ii) The hand X-rays of 3818 patients with RA were
collected and evaluated by experts using the SvH
method

(iii) A new loss function was used to solve the imbalance
of Sharp scoring

2. Related Works

2.1. Sharp/van der Heijde (SvH) Method. The Sharp/van der
Heijde (SvH) method [2] quantifies erosion and joint space
narrowing (JSN) assessment. The method assessed the joints
in both hands (all MCPs, 1st IP, all PIPs, scaphoradial, lunate
radial, distal ulna, and trapeziometacarpal) and feet (all
MTPJs and 1st IP]). Sixteen areas from each hand and six
areas in each foot are included in the erosion score range
from 0 to 5. JSN is assessed at 15 areas from each hand and
six areas from each foot ranging from 0 to 4. Therefore, the
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FIGURE 1: X-rays of some patients with severe RA. Specific posi-
tions marked with red ROIs in these images are difficult to detect.

total SvH scores range from 0 to 448. This paper only used
the SvH method to assess the hands; overall scores thus
ranged from 0 to 280.

2.2. Convolutional Neural Network. Medical imaging is the
process of imaging the interior of a body for clinical analysis
and medical interventions. Recent advances in deep learn-
ing, especially convolutional neural network (CNN) tech-
nology, have brought many breakthroughs to medical image
analysis. CNNs can extract image features by their ability to
learn features and have been successfully used in medical
image classification and detection of lesion areas and
medical image segmentation. For example, the VGG, In-
ception, and ResNet models have been used in medical
image classification. The Faster R-CNN and YOLO models
are used in the detection of lesion regions. FCN and U-Net
models are used in medical image segmentation. The
existing radiographic work of rheumatoid arthritis patients
mainly focuses on automatic SvH scoring [20], segmenta-
tion, and classification [21]. For example, Rohrbach et al.
[20] used a CNN to automatically predict bone erosion
scores on X-ray images of patients with RA.

2.3. Depthwise Separable Convolution. A CNN can auto-
matically detect important features without human super-
vision and perform well in image analysis. However, due to
the limited hardware of some devices, the computation
resources of the neural network still need to be reduced.
Google’s MobileNet [19] and Xception [22] are optimized by
depthwise separable convolution, a technique that factorizes
a standard convolution into a depthwise and a pointwise
convolution. First, the depthwise convolution applies a
single filter to each input channel. The pointwise convolu-
tion then uses a 1 x 1 convolution to combine the outputs of
the depthwise convolution. In the standard convolution,
both filters combine the inputs into a new set of outputs in
one step. This factorization has the effect of significantly
reducing the computation time and the model size.
Depthwise separable convolution has been a key technology
in many efficient neural network modules [23-25].

2.4. Transfer Learning. Transfer learning [26] emerged as a
technique in developing deep learning models to apply to
various domains. In this method, the convolutional neural
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network model is trained in two stages: (1) pretraining,
where the network is generally trained on a large-scale la-
beled dataset, e.g., the CheXpert dataset [27]; (2) fine-tuning,
where the pretrained network is further trained on a specific
target dataset, which has fewer labeled samples than the
pretraining stage. This technique has become extremely
helpful in many settings, particularly in medical imaging. In
our experiments, we chose this technique to fine-tune our
model. We used the pretrained model parameters in
CheXpert to initiate our model and then further trained on
our Sharp score dataset.

3. Materials and Methods
3.1. Preprocessing and Dataset Planning

3.1.1. Dataset. To our knowledge, there is currently no RA
open-source dataset on SvH scores, so we collected a private
RA dataset. The dataset contains a total of 3,818 sets of
X-rays. In the past two years, we collected X-rays of RA
patients or suspected RA patients who visited the Depart-
ment of Rheumatology of the First Clinical Medical College
of Anhui University of Traditional Chinese Medicine. Two
experienced radiologists were invited to score these X-ray
images. The scoring rule was that both radiologists read the
X-ray images in a hidden chronological order and score the
patients’ hand JSN and erosion of each group according to
the SVH method. Finally, we took the average of the two
scores to get the Sharp score of each X-ray image. In this
dataset, 2700 images were randomly selected for training,
while 760 images were randomly selected from the
remaining images for verification, and the last 158 images
were used for testing. There was no image overlap between
the training set and the test set. Figure 2 shows the frequency
distribution of Sharp scores in the RA dataset.

3.1.2. Data Augmentation. It is essential to augment the
training data to improve the model’s robustness, especially
in insufficient labeled medical image data. We utilize a
similar approach in [30] to achieve data augmentation by the
following steps:

(1) The original image is resized by its shorter side in the
range of scale of 0.9-1.0 for sampling

(2) The 1024 x 1024 cropping is randomly sampled from
the resized image or its horizontal flip

(3) Randomly change the brightness, contrast, and
saturation of the cropped image, all of which are set
to 0.1

(4) Randomly rotate the image by one of the given
angles: [0°, 90°, 180°, 270°]

(5) Normalize a tensor image with mean and standard
deviation calculated by the training dataset

The score distribution of our dataset is roughly expo-
nential. As we have tried, using these scores directly for
training is hard to convergence. So, it is essential to stan-
dardize the score before feeding it into the network. We
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FiGuRre 2: Histogram of frequency distribution of Sharp scores on
the RA dataset.

chose the z-score method to normalize our scores, achieving
a promising result.

3.2. Deep Learning Model

3.2.1. Overall Pipeline. The pipeline of the overall scoring of
RA is shown in Figure 3. We use a customized depthwise
separable convolutional neural network to extract a feature
matrix, followed by a fully connected layer to predict a score,
and then use a loss function to regress the score. In the
depthwise separable convolution, standard convolutional
layers are divided into two different levels. Depthwise
convolution executes convolution in a single depth slice,
while pointwise convolution merges the information over
the entire depth. The ResNet-Dwise50 model used the
inverted residual block with depthwise separable convolu-
tion, enhancing the information flowing in the model.

3.2.2.  Customized Convolutional Neural Network.
Considering the simplicity and high efficiency of residual
networks, we use it as our benchmark architecture. He et al.
[28] found that full preactivation is better than original
activation and better than all other types of activation. He
etal. [29] added a 2 x 2 average pooling layer with a stride of
2 before the 1 x 1 convolution in the downsampling block.
The tweak is called ResNet-D and is illustrated in Figure 4.
This method is effective in application and only has a slight
influence on calculation cost. We therefore adopted full
preactivation and ResNet-D as the benchmark architecture
to improve the model performance.

The residual network consists of multiple residual
blocks. We formulate the residual block at first. With y,_; as
its input, the output of the i block is recursively defined as
the following equation:

Yi=fi(yis) + Yicrs (D

where f;(x) is the residual block’s forward propagation,
often 2 or 3 stacked convolution layers. Each layer consists of
a sequence of convolutions, batch normalizations [24], and
rectified linear units (RELUs). For the block of two stacked
convolution layers, f;(x) is defined as the following
equation:

fi(x) =W, 0 (BN (W, * 0 (BN (x)))), (2)
where W, and W' are trainable parameters, * denotes the

convolution, BN (x) is the batch normalization, and
0(x) = max(x,0).
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FIGURE 3: Pipeline of the overall scoring of RA. An inverted residual block with depthwise separable convolution is used to form the ResNet-
Dwise50 model to extract the feature matrix followed by a fully connected layer to predict the overall score.
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FIGURE 4: Downsampling block tweak of ResNet-D.

3.2.3. ResNet-Dwise50 Model. Although the standard re-
sidual network performs well, due to the high resolution
of medical images, the model training consumes a large
amount of memory and reduces the training efficiency.
Depthwise separable convolution is used instead of
standard convolution in this paper to reduce the pa-
rameters and training time of the neural network
model. We also introduced inverted residual blocks
[23] shown in Figure 5 to improve the model’s effi-
ciency that are based on the depthwise separable
convolution.

Suppose a standard convolutional layer takes a Dy x
Dy x M input feature map F and produces a Dg x Dg X
N feature map G where Dy is the width and height of a
square input feature map, D is the width and height of
the square output feature map, M is the number of
input channels, and N is the number of output
channels.

In the standard convolutional layer, the convolution
kernel K is parameterized by a Dg x Dg x M x N matrix,
where Dy is the spatial dimension of the kernel and M and N
are the previously defined input and output channel

batch normalization

relu

1x1 pointwise convolutions

F1GURE 5: Structure of the inverted residual block [20]. The 1x1
convolutions were added before depthwise convolutions to expand
the dimensions of the input matrix. In this structure, we used full
preactivation.

number, respectively. The output feature map of the stan-
dard convolution (stride is 1 with the same type) is calcu-
lated as the following equation:
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Gk,l,n = Z Ki,j,rmn ' Fk+i—1,l+j—1,m- (3)
i,j,m
So, the calculation cost of the standard convolution is
shown in the following equation:

Dy -Dy-M-N-Dy-Dy. (4)

The depthwise separable convolution consists of two
layers: depthwise convolutions and pointwise convolutions.
The depthwise convolutions apply one filter to each input
channel, and the pointwise convolutions use 1x1 convo-
lution to create a linear aggregate of the output of the
depthwise layer. The output feature map of the depthwise
convolution can be written as the following equation:

Giim = Z Ki,j,m : Fk+i—1,l+j—1,m’ (5)
ij
where K is the depthwise convolution kernel of Dy x Dy x
M and G is the output feature map. The m' filter in the
kernel K is used to the m™ channel in input matrix F to
produce the m™ channel of the output feature map G.
So, the calculation cost of the depthwise separable
convolution is shown in the following equation:

Dy -Dg+-M-Dp-Dp+M-N-Dg- Dy, (6)

which is the depthwise convolution and the pointwise
convolution.

Dividing the standard convolution process into depth-
wise convolutions and pointwise convolutions separately
can reduce the computation:

Dg-Dg-M-Dy-Dp+M-N-Dy-D;
Dy -Dy-M-N-Dy-D;

(7)
11

=—+—
N Dy

We formulate the total number of multiply-adds of the
inverted residual block as shown in the following equation:

t-M-Dg-Dp(Dg-Dyg+M+N), (8)

where t is the expansion factor. This expression has an
additional term compared to equation (6) because we have
an extra 1x1 convolution. However, the nature of this
technique allows us to fully utilize minor input and output
dimensions. When a bottleneck layer inputs an M channel
tensor and outputs an N channel tensor, the expansion layer
is 64t channels.

We modified the residual block in the ResNet to the
inverted residual block and used full preactivation in the
depthwise separable convolution block. All layers are pre-
ceded by batchnorm and ReLU nonlinearity except for the
final fully connected layer. The ResNet-D tweak was used in
the downsampling block to enhance the information
transferring. The final average pooling reduces the spatial
resolution to 1 before the fully connected layer. The ResNet-
Dwise50 model is defined in Table 1. For all experiments
using reverse residual blocks, we chose an expansion factor

of 6. Counting depthwise as separate layers, ResNet-Dwise50
has 50 layers.

3.3. Loss Function. Class imbalance is ubiquitous in medical
data. When the data categories in the training set are highly
unbalanced, the efficiency of the prediction model will be
significantly affected, resulting in more errors on the classes
with fewer samples. Figure 2 shows the frequency distri-
bution histogram of scoring, from which we can see that
there is also a severe imbalance in our dataset. To mitigate
the effect of this imbalance on the model, we devised a new
loss function to treat the error of each sample equally re-
gardless of being a member of majority or minority. We
combine L1 and L2 loss advantages to get our smooth loss
function and use the smooth loss to focus on complicated,
false prediction examples.

For the overall prediction of Sharp scoring, we use the
loss as the following equation:

1 n
L=\- h(y - 7.), 9
- Zsmoot (vi-) 9)

i=1

in which smooth is shown in the following equation:

ax’ if|x| < c,

smooth (x) = { (10)

x| —b, otherwise,

where a, b, and ¢ are factors that are defined manually.
Intuitively, the modulating factor a can reduce the loss
contribution from easy examples, and the receiving factor ¢
can extend the range in which an example receives low loss.
The bias b for L1 loss should not be too large and plays the
role of receiving factor. There are two properties of the
smooth loss that might be noticed. (1) When the predicted
score of a sample is close to the true score, the L2 loss
function is used to reduce the loss for well-predicted ex-
amples. The ¢ value defines how close it will be and the a
value (0<a<1) that can regulate the loss reduction. (2)
When the predicted score is far from the true score, the L1
loss function is used for hard examples. We found that
a=0.6,b=0, and ¢ = 1.0 work best in our experiment.

4. Results and Discussion

4.1. Implementation Details. The assessment of Sharp
scoring requires high resolution; we used 1024 x 1024 res-
olution in this experiment. The proposed module is
implemented based on PyTorch 1.7. We initialize the
weights as in [31] and train ResNet-Dwise50 from scratch on
the hand X-rays with the SvH score dataset. We use sto-
chastic gradient descent with a minibatch size of 4, and the
learning rate starts from 0.001 and weight decay of 0.001
with a momentum of 0.9. We do not use dropout.

The model was trained on a workstation using the
Ubuntu 16.04 operating system. The workstation had an
Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz, 64 GB RAM,
and two NVIDIA Tesla P4 GPUs.
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TABLE 1: Architecture of the ResNet-Dwise50 model.
Layer name Output size ResNet-Dwise50
convl 112x112 7 X7 conv, 64, stride 2
3% 3 max pool, stride 2
residual_blockl 56 x 56 [ 1x1conv,64 ]
3x3dwise [x3
L1 x 1conv, 128 |
1 x1conv,1287
residual_block2 28 x28 3x3dwise |x4
L1 X 1conv, 256 ]
[1x1conv, 256
residual_block3 14 x 14 3 x 3 dwise X 6
L1 x 1conv,512 |
1 x 1 conv, 512
residual_block4 7x7 3 x 3 dwise X3
1 x 1conv, 1024
Fc 1x1 Average pool, 1-d fc

4.2. Evaluation Metrics. We have used different metrics to
evaluate the performance of the proposed method, including
Pearson’s correlation coefficient (p), mean absolute error
(MAE), and root-mean-square error (RMSE). These metrics
are defined in equations (11)-(13):

_cov(Y) _ E[(X =) (Y =)

11
Pxy O0x0y 0x0y (D
n —_— .
MAE = M, (12)
n
(13)

We also calculated the t-test on predicted scores and true
scores from the test dataset. We used the two-sided t-test for
the null hypothesis that two related samples have identical
average values—the test measures whether the average score
differs significantly across samples. If we observe a signifi-
cant p value, for example, greater than 0.05, then we cannot
reject the null hypothesis of identical average scores. If the p
value is smaller than the threshold, then we reject the null
hypothesis of equal averages. We first evaluated differences
in SvH scores given by two different radiologists using the
above metrics. These differences are shown in Table 2. The
results show that even based on the consistent cognition in
the diagnosis of RA, there is still a slight inconsistency
between given scores.

As described in Section 4.1, we used the mean of two SvH
scores evaluated by two different readers as the true score.
This study aims to measure the degree of agreement between
the model’s prediction as one rater and the provided true
score by two different readers as another rater.

4.3. Ablation Studies. We used the ResNet-50 model as the
baseline (B) with a bottleneck building block. Using too

TaBLE 2: Differences in Sharp scores given by two radiologists.

Metric Value
p 0.97
MAE 12.24
RMSE 18.75
p value >0.05
Mean of scores from radiologist 1 39.76
Mean of scores from radiologist 2 39.85
SD of scores from radiologist 1 40.90
SD of scores from radiologist 2 38.78

many parameters can introduce much variability into
the model, leading to overfitting. Considering our
dataset is not big enough to settle the overfitting, we
reduced the number of parameters. We used the
depthwise separable convolution block (DSC) to re-
place the bottleneck building block for acceleration.
The inverted residual block (IRB) added an expansion
layer in front of the depthwise separable convolution
block, and the results show that this modification
improves generalization capability and makes the
predicted Sharp scoring closer to the actual values.
Table 3 shows that when we used DSC based on ResNet-
50, the performance is somewhat reduced, but the
training parameters are reduced to 1/8 of the original,
and the training time is reduced by half. On this basis,
we continued to replace the standard residual block
with IRB, and the performance of the model is greatly
improved while maintaining high efficiency. The ab-
lation studies prove that each component in our ar-
chitecture plays an important role and helps to improve
performance.

4.4. Quantitative Comparisons. Table 4 summarizes the
performance of different models in predicting overall scores
and their criteria on the RA dataset. Our ResNet-Dwise50
provided the best performance with a good compromise
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TaBLE 3: Ablation analysis for the proposed architecture. T denotes larger is better, and | denotes smaller is better. The best results with

different backbones are highlighted in red.

Model Pl MAE| RMSE| params| (M) Training time (each epoch)| p value
Baseline (B) 0.95 18.85 28.95 25 5min 59s >0.05
B+DSC 0.93 18.96 29.48 3.7 2min 49s >0.05
B +DSC+IRB 0.95 17.76 26.34 4.3 2min 59s >0.05
TABLE 4: Performance on our Sharp scoring dataset, comparison of different networks.
Model Pl MAE| RMSE| params| (M) Training time (each epoch)| p value
ResNet-50 [30] 0.95 18.85 28.95 25 5min 59s >0.05
MobileNetV2 [23] 0.93 18.94 29.85 2.2 2min 42s >0.05
Ours 0.95 17.76 26.34 4.3 2min 59s >0.05
TaBLE 5: Results of models with transfer learning on our dataset.
Model Pl MAE| RMSE| p value
ResNet-50 [30] 0.97 15.32 22.58 >0.05
MobileNetV2 [23] 0.96 15.70 22.89 >0.05
Ours 0.97 14.90 22.01 >0.05

TaBLE 6: Four sample cases of hand X-rays. The score of two radiologists (R1, R2) is shown on the 2nd and 3rd rows, respectively. The 4th
row (G) is the average score of two radiologists. The 5th row (P) denotes the predicted score of the ResNet-Dwise50 model. Green: near

average score. Red: more than 15 points from the average score.

Hand
X-ray
R1 4 74 175
R2 8 90 163
G 6 82 169
P 15 83 186

with the smallest RMSE and computational cost. The
ResNet-50 model does not perform as well as the lightweight
network, indicating that too many parameters can lead to
overfitting on the small dataset. The ResNet-Dwise50 model
outperformed MobileNetV2, reducing the RMSE 3.51
scores, which may prove the validity of our introduction of
the inverted residual block to the baseline model. It is worth
noting that the p values of all the models were greater than
0.05, so there was no statistical difference between the true
score and predicted score, suggesting that these models were
sufficient to predict the overall score accurately.

The small dataset may lead to overfitting or underfitting,
and the accuracy of the neural network model trained from
scratch is generally not high. We therefore used our pro-
posed models pretrained on the CheXpert dataset and then
reserved the parameters of the feature extractor for mi-
grating to our specific task. The results of these models with
transfer learning on our Sharp scoring dataset are shown in

Table 5. We can see that transfer learning dramatically
improves the training accuracy of all models.

To explain the advantages of our approach, we visu-
alized four sets of sample images along with two radiol-
ogists and the predicted score of the ResNet-Dwise50
mode with transfer learning in Table 6. It can be easily
seen that our approach can predict the overall score well,
with a slight difference from the average score of the two
radiologists.

To further visualize the model performance results, a
sample of 100 patients was randomly selected from the test
dataset, comparing true scores and predicted scores. Fig-
ure 6 shows the predicted results of our ResNet-Dwise50
model with transfer learning. It proves that our model has
good performance in the overall scoring of RA. It is nec-
essary to acknowledge that the error in predicting the Sharp
scoring is different if such prediction is higher or lower
than the true score. For example, the difference between
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FIGURE 6: Comparison of prediction errors in Sharp scoring for RA
disease. The graph shows the distribution of the score in the test
dataset used to compare the true score and predicted score
computed by the ResNet-Dwise50 model with transfer learning.

250 and 270 is not significant for a severe patient. However,
the difference between 0 and 20 is significant for a milder
patient. Future research may aim to find criteria to better
predict and adjust the results according to the scoring
strategies.

5. Conclusions

It is challenging to utilize deep learning to automatically
assign SvH scores: (1) the number of training data is limited;
(2) scores are severely unbalanced; (3) high-resolution
images are required; (4) data labelling is based on subjective
human scores, without real ground truth. We cooperated
with the hospital to collect the hand X-ray radiographs of
3818 patients with RA, invited two experienced radiologists
using the SvH method to evaluate the radiographs, and then
took the average score as the ground truth. We proposed a
smooth loss to address the imbalance of our dataset based on
scoring distribution. An efficient ResNet-Dwise50 model for
predicting the overall scoring of RA is proposed in this paper
to improve training efficiency on high-resolution images.
We replace the standard convolution with the depthwise
separable convolution block to reduce the computation of
the model and introduced the inverted residual block to
reserve the information integrity in the bottleneck to im-
prove the network’s performance. As a result, the ResNet-
Dwise50 model outperformed the MobileNetV2 model with
a similar speed. In the future work, we will find a better
metric for predicting and adjusting the results according to
the scoring strategy, continue to carry out automated re-
search on the overall scoring of RA foot X-rays, and apply
the research results in the clinic.

Data Availability

The data used to support the results of this study are available
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folders/1011ROJypqyBksrfY qTIjdXxdc6MBao27?
usp=sharing.
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