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+e main aim of this study was to address the problem of congestion in TCP nonlinear systems in the presence of mismatched
exogenous disturbances. To achieve this problem, two methods are proposed: the first is active queuing management, based on
two proposed controllers, an NLPID and STC-SM, while the second is the application of active queuing management-based anti-
disturbance techniques such as active disturbance rejection control (ADRC) and the nonlinear disturbance observer (NLDO).+e
proposed ADRC consists of a newNLPID and a new super-twisting sliding mode controller (STC-SM), which functions as a novel
NLSEF, and a proposed NLESO estimates the applied disturbance and cancels it in a responsive manner. A new tracking
differentiator with a novel function is also used to generate a smooth and accurate reference signal and derivative. +e NLDO is
proposed to estimate the disturbance and combine this with the control signal of the designed nonlinear controller as a way to
compensate for the disturbance. +e simulation results for the proposed scheme (ADRC) as applied to a nonlinear model of the
TCP network are thus found to provide smoother and more accurate tracking of the desired value, with high robustness against
applied disturbance, as compared to the other schemes introduced in this study. +e proposed scheme also shows a noticeable
improvement in terms of the utilized performance indices and the OPI.

1. Introduction

+e requirements for quick, high-speed, and reliable com-
munication have become more intense with recent increases
in the number of Internet users. To achieve the necessary
reliable communication between the server and the client,
TCP is thus widely used. TCP offers a connection-oriented
packet switching method that provides a reliable, bidirec-
tional connection between two endpoints; however, al-
though TCP is more reliable than UDP, any significant
increase in TCP flow may cause serious congestion in the

router, which will reduce network communication quality. A
network congestion control method must thus be utilized,
and there are two main types of congestion control. +e first
is source-based TCP management, such as Sack, New Reno,
and Vegas, while the second is router-based active queuing
management (AQM). Issues with global synchronization
caused by the first method mean, however, that it is the
secondmethod that has beenmost widely utilized, which has
attracted the attention of most researchers [1].

Initially, AQM was proposed by [2] in a form known as
random early detection; after that, Misra provided an
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analytical model for TCP/AQM in [3] using differential
equations and fluid flow theory. AQM forms a method that
actively drops the packet in the router buffer before it is full,
ensuring that queuing length is always monitored: when
congestion occurs, the queuing length becomes greater than
the desired value, and the AQM uses this as an indication of
congestion. At such times, the AQM provides effective,
reliable, efficient, and fair communication between sender
and receiver in the TCP network [1, 4].

AQM based on advanced control theory is now widely
used, and it has thus attracted the attention of several re-
searchers seeking to deal with the problem of congestion in
TCP networks by achieving the desired trajectory of queuing
length. +e author in [1] presented the use of integral
backstepping as an AQM for a multi-route TCP/AQM
model as a way to reduce congestion, while in [5], the author
proposed three controllers, H∞, PSO-PID, and ACO-PID,
as AQMs to reduce the effects of disturbance and uncertainty
and to track the desired set point. In [6], the author in-
troduced an AQM-based novel PD controller for both single
and multiple bottleneck routers as a way to adjust the
queuing length to the desired set point under small oscil-
lations. +e author in [7] designed a nonlinear disturbance
observer with a backstepping controller to form a nonlinear
TCP network system, while the author in [8] presented a
backstepping controller that adopted aminimax approach to
control congestion and avoid the influence of applied dis-
turbance. In [9], the author introduced another controller,
which utilized a combination of H∞ theory and integral
backstepping, to a nonlinear model of the TCP network
system to control the congestion occurring in the network.
+e author in [10] further proposed the use of a PD con-
troller as an AQM and linear disturbance observer (DOB),
with a smith predictor (SP) and the linearized model of the
TCP network used to avoid congestion in the TCP network
and to eliminate the influence of or compensate for the time
delay effect. A further finite time backstepping controller
was proposed in [11], with the nonlinear model of the TCP
network system encouraged to reach the desired value in a
finite time; the author in [12] also proposed a self-tuning rate
and queuing-based PI controller (SQR-PI) with a single/
multiple bottleneck router model to control queuing length
by estimating the rate of traffic and using this alongside a PI
controller to map congestion levels and to dramatically
reduce the probability of losing packets. A combination of
finite time control, backstepping technique, prescribed
performance, and fuzzy logic was then presented in [13] as a
way to deal with applied disturbance and achieve queuing
length in a finite time.

Although all the studies noted above provide robust
controller techniques for a TCP network, several studies
used the linearized model of the TCP network, while others
considered the round trip time (RTT) as a constant. Further,
no recent research has used the disturbance/uncertainty
rejection technique, also known as active disturbance re-
jection control (ADRC). +e ADRC is a powerful method,
first proposed by [14], for dealing with the problem of ex-
ogenous disturbance, uncertainty, and unknown perturba-
tions that may affect linear and nonlinear systems, whether

SISO or MIMO. At present, while the ADRC is widely used
in different fields, as introduced in [15–17], the effectiveness
of the proposed methods as compared to the conventional
one is unknown. Motivated by this survey, the researchers in
this study used a modified version of the conventional
ADRC technique as an AQM in this study.

+e main aim of this study was to design an accurate
control technique that can control congestion in the TCP
nonlinear system and thus handle nonlinearity, disturbance,
and uncertainty effects. A modified ADRC is thus proposed
as an AQM in the time-delayed TCP network nonlinear
model. +e proposed method also contains two new con-
trollers, NLPID and STC-SM, which are proposed as new
NLSEFs, while a new fractional power nonlinear extended
state observer is also proposed. Additionally, a new tracking
differentiator is proposed using the sigmoid function, with
three parts combined to form a modified ADRC that pro-
vides smooth, accurate, and excellent results.+e parameters
of the proposed controller, proposed NLESO, and the
tracking differentiator were thus tuned using a genetic al-
gorithm as an optimization technique [18], while a new
multi-objective performance index was used in the mini-
mization process. +is includes the absolute of the control
signals, the square of the control signals, the integral time
absolute error, the integral time square error, and the mean
square error.

+e rest of this study is organized as follows: Section 2
presents the modelling of the TCP network, and then, the
problem statement is illustrated in Section 3. Section 4
presents the design of the proposed ADRC, while Section 5
presents the design and convergence of NLDO, along with
closed-loop stability analysis. Section 6 then illustrates the
simulation results and offers a discussion of these simula-
tions. Finally, Section 7 presents the conclusion of this study.

2. TCP/AQM Mathematical Models

Using fluid flow theory, the nonlinear model of a TCP
network can be described using the following nonlinear
differential equations with time-varying delays [19], as-
suming a single bottleneck router network topology as
shown in Figure 1.

_W(t) �
1

R(t)
−

W(t)W(t − R(t))

R(t)R(t − R(t))
p(t − R(t)),

_q(t) �
N(t)

R(t)
W(t) − C(t) + d(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

R(t) �
q(t)

C(t)
+ τp,

R(t − R(t)) �
q((t − R(t)))

C(t)
+ τp,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where W(t) represents the average window size of the TCP
network, q(t) represents the average queuing length at the
router, R(t) is the round trip time, C(t) is the link capacity,
N(t) is the number of TCP sessions, τp is the propagation
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delay, and p(t − R(t)) is the probability of a packet marking
that represents the AQM control strategy; additionally, d(t)

is the exogenous disturbance, denoted by the UDP unre-
sponsive flows.

As this model incorporates time-varying delays, if C(t)

and N(t) can be assumed to be constant (fixed) within a
period of time, then C(t) � C andN(t) � N [19].

p(t − R(t)) � u0,

u � ℵ u0( 􏼁,
􏼨 (3)

where ℵ � ε + ε tan h(u0/ε) to ensure u ∈ [0, 1], and ε is a
positive tuning parameter. +us, equation (1) can be re-
written as follows:

_W(t) �
1

R(t)
−

W(t)W(t − R(t))

R(t)R(t − R(t))
u,

_q(t) �
N

R(t)
W(t) − C + d(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

+e dynamic behavior of the window size in equation (1)
is described by “addition increase multiplication decrease”
[3]. +e first term of _W(t), which is 1/R(t), means that the
window size increases by one for every round trip time
(R(t)), while the second term, which is W(t)W(t − R(t))/
R(t)R(t − R(t)), means that the window size is halved when
congestion occurs, and the packet is lost. +e first term of
_q(t), which is N/R(t)W(t), thus refers to a newly arriving
queuing packet. As the UDP shares the same link and
channel with the TCP, the probability of losing a packet
increases as the UDP continues sending packet even where
congestion occurs: UDP unresponsive flow is thus consid-
ered to represent exogenous disturbance, d(t).

3. Problem Statement

Let x1(t) � q(t)x2(t) � N/R(t)W(t).

Remark 1. +e model in equation (4) is different than the
model introduced in [19], with the tan h(·) function used as a
limit function, with ε as a tuning parameter, rather than the
sat(·) function as a way to solve the problem of the sharp
edge. In addition, the effect of both the disturbance and the

time-varying delay is considered in this model, to approx-
imately reflect the real behavior of the TCP network.

Based on the parameters from Remark 1, the equations
for the TCP/AQM network can be represented as follows:

_x1(t) � x2(t) + d(t),

_x2(t) � f _x1, x2, N, R(t), C, d(t)( 􏼁 + g1(x)u,

y(t) � x(t),

⎧⎪⎪⎨

⎪⎪⎩
(5)

where

f x1, x2, N, R(t), C( 􏼁 �
N

R
2
(t)

−
x2(t) _x1(t)

R(t)C
,

g1(x) � −
x2(t) + C

2N
x2(t) − R(t)( 􏼁 + C􏼂 􏼃,

(6)

where x � x1, x2􏼈 􏼉 ∈ R2, representing the queuing length
and the window size, respectively, y(t) � x1(t) ∈ R is the
measured output, and u is the control input, which is
designed to stabilize and minimize the probability of packet
loss to achieve the desired queuing length and reduce or
avoid congestion when the exogenous disturbance d(t) and
parameter uncertainty are applied to the TCP/AQM
network.

4. The Proposed ADRC Design

+e ADRC is one of the most effective anti-disturbance
methods, and it was first proposed by [14] in the late 1980s.
+e effectiveness of the ADRC is due to its ability to actively
estimate disturbance, thus providing fast-tracking and ac-
curate control. +e design of the ADRC depends on its
relative degree, and in this section, the design of the pro-
posed ADRC, which consist of two options, a nonlinear
controller and a tracking differentiator, and two schemes
supporting the proposed nonlinear ESO, is introduced and
examined.

4.1. 1e Proposed Tracking Differentiator. +e tracking dif-
ferentiator is that part of the ADRC used to generate the
reference signal and the reference signal derivative, which
must therefore offer a tuned and efficient response. +e
dynamic equation of the proposed tracking differentiator is
thus given as

_r1(t) � r2(t),

_r2(t) � − a1R
2 r1(t) − r(t)( 􏼁 + 2 r1(t) − r(t)( 􏼁

3

1 + r1(t) − r(t)( 􏼁 + 2 r1(t) − r(t)( 􏼁
3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠

− a2Rr2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

TCP
sender

Bottleneck router

TCP
Receiver

Bottleneck
Link capacity

C(t)

Figure 1: TCP network topology.
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where r1(t) is the desired trajectory and r2(t) is its derivative
and R, a1, and a2 are positive tuning parameters. It is worth
noting that the function used in this equation (i.e.,
((r1(t) − r(t)) + 2(r1(t) − r(t))3/1 + |(r1(t) − r(t)) + 2(r1
(t) − r(t))3|)) was introduced in [20] in the form “Rational
functions and absolute value” as a replacement for the
function used in [14].

4.2. Proposed Nonlinear Controllers. In this subsection, the
nonlinear controllers used in this study are introduced and
defined:

(i) +e first controller is the NLPID, which can be
expressed as follows:

u1 �
k1

1 + exp e
2

􏼐 􏼑
|e|

α1 sign(e),

u2 �
k2

1 + exp _e
2

􏼐 􏼑
| _e|

α2 sign( _e),

u3 �
k3

1 + exp 􏽒 e
2dt􏼐 􏼑

􏽚 edt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

α3
sign 􏽚 edt􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

u0NLPID � u1 + u2 + u3. (9)

(ii) +e second controller is the proposed super-twisting
sliding mode controller (STC-SM), expressed as

ς � κe + _e,

u0STC− SM
� κ|ς|psign(ς) + ξ tan h

ς
δ

􏼒 􏼓,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

where (k1, k2, k3, α1, α2, α3, κ, ξ, p, δ) are the shared
controller tuning parameters, ς is the sliding surface,
and e � r1 − z1 and _e are the reference error and its
derivative.

4.3. 1e Proposed Nonlinear Extended State Observer. +e
nonlinear ESO is an improved nonlinear version of the
linear ESO shown previously to effectively estimate

disturbances in specific cases. +e proposed NLESO is a
modified version of the NLESO proposed by [21], and the
mathematical representation of the first scheme of the
modified NLESO is expressed as

_z1(t) � z2(t) + β1􏽢e1(t),

_z2(t) � z3(t) + β2􏽢e2(t) + b0u(t),

_z3(t) � β3􏽢e3(t).

⎧⎪⎪⎨

⎪⎪⎩
(11)

For the nonlinear function,

􏽢e1(t) � sign e1(t)( 􏼁 e1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
a

+ e1(t),

􏽢e2(t) � sign e1(t)( 􏼁 e1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2a− 1

+ e1(t),

􏽢e3(t) � sign e1(t)( 􏼁 e1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3a− 2

+ e1(t),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where β1, β2, and β3 are the observer gain, z1 and z2 are the
estimated state, z3 is the estimated total disturbance, and
0.67< a< 1 is a positive tuning parameter. Another scheme
for NLESO is also proposed and used in this study. +e
mathematical representation of the second scheme for a
modified NLESO can be expressed as follows:

_z1(t) � z2(t) + β1􏽢e1(t),

_z2(t) � z3(t) + β2􏽢e2(t) + b0u(t),

_z3(t) � β3􏽢e3(t),

⎧⎪⎪⎨

⎪⎪⎩
(13)

where 􏽢ei(t), i ∈ 1, 2, 3{ } is expressed as follows:

􏽢e1(t) � sign e1(t)( 􏼁 e1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
a

+ Ae1(t),

􏽢e2(t) � sign e1(t)( 􏼁 e1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
a/2

+ Ae1(t),

􏽢e3(t) � sign e1(t)( 􏼁 e1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
a/4

+ Ae1(t),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

where e1(t) � q(t) − z1(t), e1(t) is the estimation error,
z1(t) is the estimation state of q, 􏽢e1(t), 􏽢e2(t), and 􏽢e3(t) are
the nonlinear functions, a is a tuning parameter that should
be less than 1, and A is another tuning parameter.

+e complete diagrams of both the proposed controllers
and the proposed ADRC with the TCP/AQM nonlinear
model are shown in Figures 2 and 3. In this study, the
tracking differentiator is used instead of the ordinary de-
rivative as a way to access both the error and its derivative:
thus, equations (7), (8), and (10) can be rewritten as follows.

(i) +e tracking differentiator is as follows:

_􏽥e1(t) � 􏽥e2(t), _􏽥e2(t) � − a1R
2 􏽥e1(t) − 􏽥e(t)( 􏼁 + 2 􏽥e1(t) − 􏽥e(t)( 􏼁

3

1 + 􏽥e1(t) − 􏽥e(t)( 􏼁 + 2 􏽥e1(t) − 􏽥e(t)( 􏼁
3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ − a2R􏽥e2(t).
⎧⎪⎨

⎪⎩
(15)

(ii) +e NLPID controller is as follows:
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u1 �
k1

1 + exp 􏽥e
2
1􏼐 􏼑

􏽥e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α1 sign 􏽥e1( 􏼁,

u2 �
k2

1 + exp 􏽥e
2
2􏼐 􏼑

􏽥e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α2 sign 􏽥e2( 􏼁,

u3 �
k

1 + exp 􏽒 􏽥e
2
1􏼐 􏼑

􏽥e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α3 sign 􏽚 􏽥e1dt􏼒 􏼓,

u0NLPD � u1 + u2 + u3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

(iii) +e STC-SM controller is as follows:

ς � κ􏽥e1 + 􏽥e2,

u0STC− SM
� κ|ς|asign(ς) + ξ tan h

ς
δ

􏼒 􏼓,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

where 􏽥e1 and 􏽥e2 are the tracking error and its derivative and
􏽥e(t) � r(t) − q(t).

As mentioned previously, the design of the ADRC de-
pends on the relative degree of the system, and as the TCP
network is a SISO system, with a single input u(t) and single
output q(t), the relative degree of the TCP/AQM network is
thus ρ � 2.

5. The Proposed Nonlinear Disturbance
Observer (NLDO) Design

+e disturbance observer is one of the anti-disturbance
techniques presented in [22], which can be linear or non-
linear; in this work, the nonlinear disturbance observer is
thus presented, which is designed to estimate external
disturbance, such as an unknown load, and the changes and
UDP unresponsive flow are calculated so that the estimated
value can be employed to compensate for the influence of the
disturbance.

+e NLDO can be expressed as follows [22]:
_Z � − l(x)G2(x)Z − l(x) G2(x)P(x) + F(x) + G1(x)u􏼂 􏼃,

􏽢d � P(x) + Z,

⎧⎨

⎩

(18)

where 􏽢d and Z are the estimated disturbance and the in-
ternal state of the nonlinear observer, respectively, and P(x)

is a nonlinear function to be designed, while ℓ(x) is the
nonlinear observer gain where x ∈ x1, x2􏼈 􏼉. To ensure that
the NLDO is asymptotically stable, the nonlinear function
P(x) must be designed in such a way as to force the NLDO to
be asymptotically stable.

5.1. Convergence of the Proposed NLDO. To prove the ef-
fectiveness of the designed NLDO with the TCP network, an
inclusive analysis was done using a Lyapunov stability ap-
proach [23].

r(t) u(t)

d(t)

q(t)e
1
(t)

e(t)
e
2
(t)

TD
(14)

TCP/AQM
(4)

Proposed controller

NLPID (15)
STC-SM (16)

GA

Figure 2: Completed diagram of the TCP/AQM based on the proposed controllers.

GA

TD
(6)

e (t)

e (t)
u (t)

u
0 (t)

d (t)

q (t)

z
1 (t)

z
2 (t)

z
3 (t)

r1 (t)

r2 (t)
r (t)

NLPID (7-8)
STC-SM (9)

TCP-Network
(4)

NLESO
(10-11)
(12-13)

1
b0

b0

.

Figure 3: Completed diagram of the TCP/AQM based on the proposed ADRC.
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As shown, equation (4) cannot fit the form of equation
(18) due to the system in equation (4) having input in one
channel and a disturbance in the other. To convert the
system from a mismatched to a matched one, the following
procedure must thus be applied:

Let x1(t) � q(t)x2(t) � (N/R(t))W(t) so that

_x1(t) � x2(t) − C + d(t),

_x2(t) �
N

R
2
(t)

−
x2(t) _x1(t)

R(t)C

−
x2(t) + C

2N
x2(t) − R(t)( 􏼁 + C􏼂 􏼃u(t),

y(t) � x1(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

For simplicity, ϕ(t − t0) � ϕ(t) is assumed; equation (19)
can thus be rewritten as

_x1(t) � x2(t) − C + d(t),

_x2(t) � m1 − m2x2(t)u,

y(t) � x1(t),

⎧⎪⎪⎨

⎪⎪⎩
(20)

where m1 � (N/R2(t)) − (x2 (t) _x1(t)/R(t)C) andm2 �

− ((x2(t) + C)2/2N).
Equation (21) can then be transformed into the following

form:

_x1(t) � F1 x1, x2( 􏼁 + bd(t),

_x2(t) � F2 x1, x2( 􏼁 + b2u(t),

y � x1(t).

⎧⎪⎪⎨

⎪⎪⎩
(21)

Differentiating the first equation of equation (21) yields

€x1 �
zF1 x1, x2( 􏼁

zx1
_x1 +

zF1 x1, x2( 􏼁

zx2
_x2 + b1

_d(t), (22)

while substituting equations (21) into (22) produces

€x1 �
zF1 x1, x2( 􏼁

zx1
F1 x1, x2( 􏼁 + b1d(t)􏼂 􏼃

+
zF1 x1, x2( 􏼁

zx2
F2 x1, x2( 􏼁 + b2u(t)􏼂 􏼃 + b1

_d(t),

(23)

Rearranging equation (23) gives

€x1 �
zF1 x1, x2( 􏼁

zx1
F1 x1, x2( 􏼁 +

zF1 x1, x2( 􏼁

zx2
F2 x1, x2( 􏼁 +

zF1 x1, x2( 􏼁

zx2
b2u(t) +

zF1 x1, x2( 􏼁

zx1
b1d(t) + b1

_d(t),

€x1 �
zF1 x1, x2( 􏼁

zx1
F1 x1, x2( 􏼁 +

zF1 x1, x2( 􏼁

zx2
F2 x1, x2( 􏼁 + b2

zF1 x1, x2( 􏼁

zx2
u(t) +

zF1 x1, x2( 􏼁/zx1b1d(t) + b1
_d(t)

zF1 x1, x2( 􏼁/zx2b2
􏼢 􏼣.

(24)

+en,

€x1 � 􏽢F x1, x2( 􏼁 + 􏽢b(u + D), (25)

where

􏽢F x1, x2( 􏼁 �
zF1 x1, x2( 􏼁

zx1
F1 x1, x2( 􏼁

+
zF1 x1, x2( 􏼁

zx2
F2 x1, x2( 􏼁,

􏽢b � b2
zF1 x1, x2( 􏼁

zx2
,

d �
zF1 x1, x2( 􏼁/zx1b1d(t) + b1

_d(t)

zF1 x1, x2( 􏼁/zx2( 􏼁b2
.

(26)

Let x1(t) � x1(t) and x2(t) � _x1(t); this allows equation
(20) to be rewritten as

_x1(t) � x2(t),

_x2(t) � 􏽢F x1, x2, x2( 􏼁 + 􏽢b(u + d),

y(t) � x1(t).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

where x � x1(t), x2(t)􏼈 􏼉 ∈ R2, 􏽢F(x1, x2, x2) is the matched
nonlinear function, andY(t) ∈ R is the output of the system.

Remark 2. As seen from equation (27), 􏽢F depends on x2;
thus, to find an expression for x2, the first equation of (19)
can be used, and the x2 thus found substituted into equation
(27) to transform the system in the term (x1(t), x2(t)).
x2(t) � _x1(t) + C − d(t)⟶ x2(t) � x2(t) + C − d(t). +is
means that equation (27) can be rewritten as

_x1(t) � x2(t),

_x2(t) � 􏽢F x1, x2, C, d(t)( 􏼁 + 􏽢b(u + D),

y(t) � x1(t).

⎧⎪⎪⎨

⎪⎪⎩
(28)

Adding ±b0u to the second equation of (28) yields

_x1(t) � x2(t),

_x2(t) � 5 + b0u,

y(t) � x1(t),

⎧⎪⎪⎨

⎪⎪⎩
(29)

where 5 � 􏽢F(x1, x2, C, d(t)) + 􏽢bD + (􏽢b − b0)u.

Theorem 1. Assuming a TCP network as given in equation
(28), the proposed NLDOwill be asymptotically stable if P(X)

6 Complexity



is designed appropriately. An appropriate nonlinear function
P(X) is proposed as

P(x) � k + kx,

l(x) �
zP(x)
zx

,




(30)

where x � x1 ∈ Rh is a positive tuning parameter.

Proof. Assuming a system as given in equation (28), the
proposed NLDO can be expressed as follows:

_Z � − l x1( )g2(x)Z − l x1( ) g2(x)P x1( ) + F̂(x) + g1(x)u[ ],

d̂ � P x1( ) + Z.




(31)

Di�erentiating d̂ gives

_̂d � _P x1( ) + _Z. (32)

Di�erentiating the �rst equation of (30) yields

_P x1( ) �
dP
dx1

� hx1. (33)

Substituting equation (33) into the �rst equation of (31)
creates

_̂d � h _x1 − ℓ(x)g2(x)Z − g2(x)P(x)ℓ(x)

− ℓ(x)F̂(x)ℓ(x) − ℓ(x)g1(x)u.
(34)

Simplifying equation (34) yields

_̂d � hg2(x)d(t) − hg2(x)Z − hg2(x)P(x). (35)

Substituting d̂ � P(x) +Z into equation (35) gives

_̂d � hg2(x)[d(t) − d̂(t)], (36)

where d(t) − d̂(t) � ed represents the disturbance observer
error, d(t) � D is the applied exogenous disturbance, and
d̂(t) is the estimated disturbance.

ed � d(t) − d̂(t). (37)

Di�erentiating equation (37) allows the error dynamics
to be expressed as

_ed � _d(t) − _̂d(t). (38)

Assuming a constant disturbance, _d(t) � 0, the dynamic
of the disturbance observer error can thus be given as

_ed � − hg2(x)ed. (39)

□

Remark 3. �e NLDO is asymptotically stable if the esti-
mated error converges to zero as t⟶∞. To achieve this, a
Lyapunov stability approach can be utilized [23].

Taking the Lyapunov function VNLDO � (1/2)eTded,

_VNLDO � e
T
d _ed,

_VNLDO � − e
T
d hg2(x)ed[ ],

_VNLDO < − hg2(x)e
2
d.

(40)

�e system in equation (30) is thus asymptotically stable
when the following conditions are satis�ed:

(i) VNLDO is positive de�nite, VNLDO(ed)> 0 for ed ≠ 0
(ii) _VNLDO(ed)< 0 for ei ≠ 0

�us, the NLDO is asymptotically stable if hg2(X)> 0,
h> 0.

�e complete diagram of the proposed NLDO with TCP
network nonlinear model is shown in Figure 4.

r (t) e (t) e1 (t)
u (t)

u (t)
1 (t)

1 (t)

u0 (t) q (t)
d

d

d
z z

e2 (t)
TD
(14)

GA

NLPID (15)
STC-SM (17)

TCP-Network
(6)

–l (1) g2 () z
–l (1)[g2 () P (1)
+ F () g1 (x) u]





1
S

Proposed NLDO (31)

p (1)
(30)

Figure 4: Completed diagram of TCP/AQM based on the proposed NLDO.
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5.2.Closed-LoopStability. +eoverall stability analysis of the
proposed ADRC with a TCP network nonlinear model is
presented in this subsection. +e ESO in the ADRC converts
the system into a chain of integrators; however, the TCP
network given in equation (7) cannot be converted into a
chain of integrators due to the mismatch in the disturbance.
To redress this, the TCP network given in equation (7) must
be transformed from a mismatched system into matched
one, as noted previously in equation (30).

Assuming that L � 5 � x3(t), equation (30) can be re-
written as

_x1(t) � x2(t),

_x2(t) � x3(t) + b0u,

_x3(t) � _L,

y(t) � _x1(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(41)

where x3(t) and _L represent the total disturbance and its
derivative, respectively, and b0 is a rough approximation of 􏽢b

within the range of ±50% [14].

Assumption 1 (see [15]). +e total disturbance L should
satisfy the following conditions:

(i) L and _L are bounded as
sup0≤t≤∞L≤ c1 and sup0≤t≤∞ _L≤ c2

(ii) L and _L are constant at the steady state such that
limt⟶∞L � c3 and limt⟶∞

_L≤ 0
where c1c2 and c3 are positive constants.

Theorem 2. Suppose an n order system with relative degree
ρ(ρ≤ n) is given as

_x1(t) � f1(x),

⋮,

_xρ(t) � fρ(x) + b(u + d),

y � x.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(42)

where x ∈ x1, x1, . . . xρ− 1􏽮 􏽯, andf1, . . . , fρ are the system
nonlinear functions.

According to equation (42), equation (30) can thus be
represented as a chain of integrators in the form as follows:

_x1(t) � _x2(t),

⋮

_xρ(t) � xρ+1(t) + b0u,

_xρ+1(t) � _L,

y(t) � x1(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

where xρ+1(t) is the generalized disturbance.
If Assumption 1 is satisfied, then the system described by

equation (43) is asymptotically stable when the estimated

error of the proposed NLESO, as seen in equations (13) and
(14) and expressed in the form
ei � xi − zii ∈ 1, 2, . . . , ρ + 1􏼈 􏼉, approaches zero as t⟶∞.

Proof. Let the estimated error ei be

ei � xi − zi, (44)

where i ∈ 1, 2, . . . , ρ + 1􏼈 􏼉, ρ is the relative degree of the
system, ei is the estimated error, and zi is the estimated state
of xi.

e1 � x1 − z1,

e2 � x2 − z2,

eρ � xρ − zρ,

eρ+1 � xρ+1 − zρ+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

Differentiating equation (45) produces

_e1 � _x1 − _z1,

_e2 � _x2 − _z2,

⋮

_eρ � _xρ − _zρ,

_eρ+1 � _xρ+1 − _zρ+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

Substituting (43) into (46) gives

_e1 � x2 − z2 − β1􏽢e1,

_e2 � _x3 − z3 − β2􏽢e2,

⋮

_eρ � xρ+1 + b0u − zρ+1 − b0u − βρ􏽢eρ,

_eρ+1 � _L − βρ+1􏽢eρ+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

Simplifying equation (47) yields

_e1 � e2 − β1􏽢e1,

_e2 � e3 − β2􏽢e2,

_eρ � eρ+1 − βρ􏽢eρ,

_eρ+1 � _L − βρ+1􏽢eρ+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

Expressing equation (48) in matrix form gives

_e � A0e + Ad
_L. (49)
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Assume 􏽢e1 � Κ1(e1), . . . , 􏽢eρ � Κρ(e1) and 􏽢eρ+1 �

Kρ+1(e1).
+en,

A0 �

− β1K1 e1( 􏼁 1 · · · 0 0

− β2K2 e1( 􏼁 0 ⋱ 0 0

− βρKρ e1( 􏼁 ⋮ · · · ⋮ ⋮

⋮ 0 · · · 0 1

− βρKρ+1 e1( 􏼁 0 · · · 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ad �

0

⋮

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

_e � _e1 · · · _eρ+1􏽨 􏽩,

e � _e1 · · · _eρ+1􏽨 􏽩.

(50)

+eNLESO is asymptotically stable if the estimated error
converges to zero as t⟶∞. To check this, the Lyapunov

stability can be used [23]. Taking the Lyapunov function
VNLESO � 1/2eTe gives _VNLESO � eT _e.

For the TCP network, the relative degree ρ � 2; hence,

_VNLESO � e1 e2 e3􏼂 􏼃

− β1K1 e1( 􏼁 1 0

− β2K2 e1( 􏼁 0 1

− β3K3 e1( 􏼁 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e1

e2

e3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ _L. (51)

According to Assumption 1, _L converges to zero as
t⟶∞, so that the quadric form _VNLESO � eTQ _e is as-
ymptotically stable if Q is a negative definite matrix, and
thus, the system as a whole is asymptotically stable. To check
whether the matrix Qi is negative definite or not, the Routh
stability criteria can be utilized. +is first requires compu-
ting the characteristic equation formatrixQ:

|λI − Q| � 0,

λ + β1K1 e1( 􏼁 − 1 0

β2K2 e1( 􏼁 λ − 1

β3K3 e1( 􏼁 0 λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0.

(52)

λ3 + β1K1(e1)λ
2 + β2K2(e1)λ + β3K3(e1) � 0; using the

Routh stability criteria thus yields

λ3 1 β2K2 e1( 􏼁

λ2 β1K1 e1( 􏼁 β3K3 e1( 􏼁

λ1
β1K1 e1( 􏼁β2K2 e1( 􏼁 − β3K3 e1( 􏼁

β1K1 e1( 􏼁
� c1 0

λ0
β3K3 e1( 􏼁c1

c1
� β3K3 e1( 􏼁 0

,

β1K1 e1( 􏼁β2K2 e1( 􏼁 − β3K3 e1( 􏼁> 0, β1K1 e1( 􏼁<
β2K2 e1( 􏼁

β3K3 e1( 􏼁
, β3K3 e1( 􏼁> 0, β3 > 0.

(53)

Q is thus negative definite if the observer gain β1, β2, β3 > 0,
which also leads to the NLESO being asymptotically stable.
Generally, the error dynamics of the closed-loop system can
be written as

􏽥e1 � r − z1,

􏽥e2 � _r − z2,

⋮

􏽥eρ � r
ρ− 1

− zρ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)

Differentiating equation (54) gives
_􏽥e1 � _r − _z1,

_􏽥e2 � €r − _z2,⋮, _􏽥eρ � r
ρ

− _zρ.􏽮 (55)

Simplifying equation (55) yields
_􏽥e1 � 􏽥e2,

_􏽥e2 � 􏽥e3,⋮, _􏽥eρ � − zρ+1 − b0u.􏽮 (56)

□

Assumption 2. +e tracking differentiator in equation (7)
tracks the reference signal with only a very small error,
which thus approaches zero with rρ � 0.
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lim
t⟶∞

r1,...,ρ − r
ρ− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0. (57)

Assumption 3. +e NLESO in equations (12) to (15) esti-
mates the states of the nonlinear system completely.

lim
t⟶∞

e1,2,...,ρ+1 � 0. (58)

Theorem 3. Given the nonlinear system in (43) and the
tracking differentiator given in (7) in conjunction with the
NLPID given in (8) and (9) and the NLESO presented in (12)
to (15), based on Assumptions 2 and 3, the closed-loop system
is stable if K1(􏽥e1)􏽥e1,K2(􏽥e2)􏽥e2􏼈 􏼉 is chosen in such a way that
the Q matrix is negative definite and satisfies the charac-
teristic equation λ2 + K2′λ + K1

′
� 0, which is Hurwitz.

Proof. Taking u � u0 − (zρ+1/b0), (56) can be rewritten as
_􏽥e1 � 􏽥e2,

_􏽥e2 � 􏽥e3,

⋮

_􏽥eρ � − zρ+1 − b0 u0 −
zρ+1

b0
􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

_􏽥e1 � 􏽥e2,

_􏽥e2 � 􏽥e3,

⋮
_􏽥eρ � − zρ+1 − b0u0 + zρ+1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(60)

Simplifying (60) gives
_􏽥e1 � 􏽥e2,

_􏽥e2 � 􏽥e3,

⋮

_􏽥eρ � − b0u0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)

_􏽥e1 � 􏽥e2,

_􏽥e2 � 􏽥e3,

⋮
_􏽥eρ � − b0 u1 􏽥e1( 􏼁 + · · · · · · + uρ 􏽥eρ􏼐 􏼑􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(62)

□

Assumption 4. Assume Ki(􏽥ei) � (ki/1 + exp(􏽥e2i ))i ∈
1, 2 . . . . . . , ρ + 1􏼈 􏼉 and that α1, α2, . . . , αρ approaches unity:

based on these assumptions, the term |S|sign(S) in equation
(8) is approximately equal to S.

Based on Assumption 4, equation (62) can thus be re-
written as

_􏽥e1 � 􏽥e2,

_􏽥e2 � 􏽥e3,

⋮
_􏽥eρ � − b0 K1 􏽥e1( 􏼁􏽥e1 + · · · + Kρ 􏽥eρ􏼐 􏼑􏽥eρ􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(63)

Expressing equation (63) in matrix form gives
_􏽥e � ACNLPID

􏽥e, (64)

where

ACNLPID
�

0 1 · · · 0 0
0 0 · · · 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 · · · 0 1

− K1

�

− K2

�

· · · − Kρ− 1

�

− Kρ

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 􏽥e �

􏽥e1
􏽥e2
⋮

􏽥eρ− 1
􏽥eρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ki

�

� b0Ki(􏽥ei), i ∈ 1, 2, . . . , ρ + 1􏼈 􏼉.
A Lyapunov function can be used to check the stability of

the closed-loop system: Vcl � 1/2􏽥eT􏽥e. +en, _Vcl � 􏽥eT _􏽥e.

_Vcl � 􏽥e1, 􏽥e2, . . . , 􏽥eρ􏽨 􏽩

0 1 · · · 0 0

0 0 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · 0 1

− K1

�

− K2

�

· · · − Kρ− 1

�

− Kρ

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_􏽥e1

_􏽥e2

⋮

_􏽥eρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(65)

+e quadric form _Vcl � 􏽥eTQ_􏽥e is stable if Q is a negative
semi-definite matrix, at which point the system is stable.

Finding the characteristic equation for matrix Q using
the Routh stability criteria allows a check on the negative
definiteness of matrix Q,

|λI − Q| � 0 −

λ · · · 0

0 · · · 0

⋮ ⋱ ⋮

0 · · · λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

0 1 · · · 0 0

0 0 · · · 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · 0 1

− K1

�

− K2

�

· · · − K
�

ρ− 1 − Kρ

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

λρ + Kρ

�

λρ− 1
+ · · · + K2′λ + K1′ � 0.

(66)
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For ρ � 2,

λ2 + K2′λ + K1

�

� 0,

λ2 1 K1

�

λ1 K2′ 0

λ0
K1′K2′

K2′
λ2

,

K2

�

> 0,
K1′K2′ − 0

K2′
> 0⇒K1′K2′ > 0⇒K1′ > 0.

(67)

+e system is thus stable if the nonlinear function gains
K1′ and K2′ satisfy the conditions mentioned above.

6. Simulation Results

+e TCP network nonlinear model and the proposed
controllers, the modified ADRC, and the proposed NLDO
were designed and simulated using a MATLAB/Simulink
environment. In addition, the parameters of all schemes
mentioned previously and those proposed were tuned using
a genetic algorithm (GA) [18]. Finally, the multi-objective
performance index was utilized to investigate the perfor-
mance and accuracy of the designed and proposed schemes.
+e TCP network model parameters are listed in Table 1,
while the multi-objective performance index (OPI) is given
as follows:

OPI � w1 ∗
ITAE
N1

+ w2 ∗
IAU
N2

+ w3 ∗
ISU
N3

+ w4 ∗
ISE
N4

+ w5 ∗
IAE
N5

+ w6 ∗
MSE
N6

,

(68)

where w1, w2, . . . , w6 are the weighting factors that satisfy
w1 + w2 + · · · + w6 � 1. +ese are thus set to w1 � 0.3,
w2 � 0.2, w3 � 0.1, w4 � 0.2, w5 � 0.1, and w6 � 0.1, with
N1,N2, . . . ,N6 as the nominal values of the individual
objective functions, with values set toN1 � 772,N2 � 1000,
N3 � 20, N4 � 86014.936857, N5 � 260, andN6 � 860.

Table 2: Descriptions and mathematical representations of the performance indices.

Performance index (PI) Description Mathematical representation
ITAE Integral time absolute error 􏽒

tf

0 t|e(t)|dt

IAU Integral absolute of the control signal 􏽒
f

0 |u(t)|dt

ISU Integral square of the control signal 􏽒
f

0 u(t)2dt

IAE Integral square error 􏽒
tf

0 e(t)2dt

ISE Integral absolute error 􏽒
tf

0 |e(t)|dt

MSE Mean square error (1/T) 􏽒
tf

0 e(t)2dt

Table 3: LPID parameters.

Controller Parameter Value Parameter Value

LPID kp 0.025000 ki 0.015000
kd 0.010000 δ 3.039957

Table 1: TCP network model parameters.

Parameter Description Value Unit
q(t)des +e desire queuing length 200 packets
N(t) Load factor 100 unitless
C(t) Link capacity 3750 packets/sec
τp +e propagation delay 0.195 Sec

Table 4: NLPID parameters.

Controller Parameter Value Parameter Value

NLPID
k1 0.562500 k2 3.147000
α1 0.895600 α2 0.779600
k3 7.193000 α3 0.548450

TD R 24.680000 a2 7.842000
a1 2.912000 δ 10.326000

Table 5: STC-SM parameters.

Controller Parameter Value Parameter Value

STC-SM κ 0.146000 ξ 0.000200
p 0.954500 δ 0.426500

TD R 6.190000 a2 9.703000
a1 2.501000 — —
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+e mathematical representations of the performance in-
dices used are presented more clearly in Table 2.

6.1. Simulation Using the Proposed Controllers. In this sub-
section, the simulation results from using the proposed
controllers only are introduced. +e obtained results are
then compared with the LPID, which can be expressed as
follows:

u0PID
� kpe + ki 􏽚

T

0
edt + kd

de

dt
, (69)

where kp, ki, and kd are the proportional, integral, and de-
rivative gains, respectively. +e parameters of the LPID,
NLPID, and STC-SM controllers are listed in full in
Tables 3–5.

+e simulation results using only controllers within the
TCP network nonlinear model under the presence of an
exogenous disturbance (UDP flow) are shown in Figure 5.
Figure 5(a) shows the output response for queuing length:
here, the queuing length reaches the desired or steady-state
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Figure 5: +e output response when the disturbance is applied at t � 50 s. (a) +e average queuing length q(t). (b) +e window size W(t).
(c) +e round trip time R(t) (d). +e probability of losing packets u(t). +e performance index values are shown in Table 6. As dem-
onstrated, the proposed controllers (NLPID and STC-SM) show noticeable improvements in OPI of 63.7363% and 72.52524%, respectively.
+e proposed controllers thus demonstrate effectiveness based on smooth response and minimized OPI.

Table 6: Performance indices.

PI LPID NLPID STC-SM
ITAE 609.745670 544.413440 424.866163
IAU 5233.023924 544.539821 112.530207
ISU 132.195167 2.694587 0.184691
IAE 323.637549 301.475409 273.064131
ISE 53979.519643 48988.720573 44771.045158
MSE 4065.828712 1632.413215 1491.870882
OPI 2.078752 0.753616 0.571132

Table 7: LADRC parameters.

ADRC parts Parameter Value Parameter Value

LPID kp 10.237000 ki 1.015000
kd 10.237000 δ 10.326000

TD R 100 — —
LESO ω0 10.326000 b0 − 69505.943979
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value at about 3.61 s under both the NLPID and the STC-
SM, while in the LPID, the queuing length did not reach the
desired value despite coming close to it. In addition, when
applying a disturbance of 5 at a time 50 s after starting the
simulation, the proposed controllers (NLPID and STC-SM)
show greater robustness against the resulting disturbance,
with STC-SM showing an overshoot of 0.2% of the steady-
state value for about 1 s before moving back to the steady-
state value and NLPID showing an overshoot and under-
shoot of 0.15% and 0.1%, respectively, of the steady state for
about 4 s before returning to the steady-state value. +e
LPID is clearly more significantly affected by the applied
disturbance; however, Figures 5(b) and 5(c) show the output
response of the window size and the round trip time, while
Figure 5(d) shows the control signal. As these indicate,
comparing the performance of the LPID, NLPID, and the
STC-SM shows that the NLPID and STC-SM give better
responses with minimum packet loss, while the LPID packet
loss rate is at maximum, exceeding the predefined limits of
packet loss: LPID is thus clearly weakest at handling both
complexity and delay in TCP networks.

6.2. Simulation with Anti-Disturbance Methods. In this
subsection, the simulation results of the anti-disturbance
methods (modified ADRC and NLDO) are introduced. +e
results of the proposed methods are also compared with

linear ADRC (LADRC) that utilizes a conventional TD as
proposed by [14], the linear ESO (LESO), and the LPID. +e
dynamics of the conventional TD and LESO are thus given
as follows:

(i) For conventional TD [14],

_r1(t) � r2(t),

_r2(t) � − Rsign r1(t) − r(t) +
r2(t) r2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2R
􏼠 􏼡,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(70)

where r1(t) is the desired trajectory and r2(t) is its
derivative. R is an application that depends on the
other parameters [14].

(ii) For LESO,

_z1(t) � z2(t) + β1 e1( 􏼁,

_z2(t) � z3(t) + β2 e1( 􏼁 + b0u(t),

_z3(t) � β3 e1( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩
(71)

+e parameters of the proposed methods and the
LADRC are listed in Tables 7–10.

A step function of 5u(t − 50) was applied to the system
as an exogenous disturbance. +e simulation results when
applying a UDP data flow as an exogenous disturbance to the

Table 8: NLPID-ADRC parameters.

ADRC parts Parameter Value Parameter Value

NLPID
k1 3.842000 k2 3.386000
α1 0.998900 α2 0.905400
k3 0.339800 α3 0.043300

TD R 11.150000 a2 9.656000
a1 0.391000 δ 0.365300

NLESO ω0 50.335000 b0 − 4283.212200
a1 0.269550 A 7.043000

Table 9: STC-ADRC parameters.

ADRC parts Parameter Value Parameter Value

STC-SM κ 0.000200 ξ 0.000100
p 0.300500 δ 0.586600

TD R 49.340000 a2 1.950000
a1 5.210000 — —

NLESO ω0 56.334000 b0 − 1061.793374
a1 0.997100 — —

Table 10: NLDO parameters.

Parameter Value Parameter Value

NLPID
k1 0.059000 k2 0.013400
α1 0.071600 α2 0.441500
k3 0.417750 α3 0.784600

TD R 95.030000 a2 9.573000
a1 6.030000 δ 0.383700

NLDO h 4.049500 — —
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Figure 6: +e output response when the disturbance is applied at t � 50 s. (a) +e average queuing length q(t). (b) +e window size W(t).
(c) +e round trip time R(t) (d). +e probability of losing packets u(t).
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TCP network nonlinear model with the anti-disturbance
methods (ADRC and NLDO) are shown in Figures 6 and 7.
As shown in Figures 6(a)–6(c), the proposed methods
(NLPID-ADRC and STC-ADRC) show excellent perfor-
mance in terms of tracking the desired value and attenuating
the disturbance as compared with the LADRC and NLDO
options. Moreover, both NLPID-ADRC and STC-SM-
ADRC reach a steady state in less than 2 s that lasts for about
1.5 s and 1.9 s, respectively, with movement back to the
steady-state value after overshoots of 0.15% and 0.2% of the
steady-state value. +e NLDO lasted about 2.5 s before
returning to the steady-state value after an overshoot of
0.35%. Finally, the LADRC is shown to be the weakest
method in terms of disturbance attenuation as compared to
the other methods. Figure 6(d) shows the control signal,
which makes it clear that nearly all the presented methods
show only small packet loss. Figure 7 shows the applied
disturbance, the estimated disturbance, and the disturbance
observer error, demonstrating that the proposed NLDO can
perfectly estimate the applied disturbance.

+e performance index values are shown in Table 11.+e
proposed controllers NLPID and STC-SM show noticeable
improvement in OPI of 39.00894% and 53.30579%, re-
spectively, in addition to improvements across all perfor-
mance indices. Based on this, the proposed methods
(NLPID-ADRC and STC-SM-ADRC) are thus shown to
have improved accuracy and effectiveness based on smooth
response and minimized OPI.

7. Conclusion

In this study, the time-delayed TCP network nonlinear
model was utilized to design an accurate AQM using the
ADRC approach to deal with the congestion problem and
mismatched disturbances by stabilizing the nonlinear sys-
tem. Twomethods to achieve the main aim of this work were
thus proposed in this study. A new NLPID and a new STC-
SM were proposed to control and reduce congestion in the
TCP network and stabilize the nonlinear system, and then,
an NLDO was proposed to handle the problem of mis-
matched exogenous disturbance. Finally, a modified ADRC,
consisting of the new NLPID and the new STC-SM as
controller and tracking differentiator, respectively, was
proposed to control congestion in the TCP network and to
stabilize the nonlinear system as well as eliminating and
rejecting the disturbance applied to the nonlinear system.
+e simulation results support the effectiveness of the

modified ADRC in terms of congestion reduction and
disturbance rejection. +e modified ADRC was shown to
provide a better performance, with smooth responses and
minimum OPI, as compared to all the other methods in-
troduced in this study. Moreover, the closed-loop stability
and the convergence of NLESO were confirmed. Further
studies related to this work could include using another
optimization technique to tune the parameters of the
modified ADRC.
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