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/is article proposed a novel classification framework that can classify the samples of multiple domains based on the outputs of
multiple models. Different from the existing methods that train single model on all domains, our framework trains multiple
models on each domain. On a testing sample, the outputs of all trainedmodels are used to predict the domain of this sample./en,
this sample is classified by the output of models that belong to the predicted domain. Experiments show that our framework
achieved higher accuracy than the existing methods. Furthermore, our framework achieves good scalability on multiple domains.

1. Introduction

In these days, deep learning models can achieve good
performance in many applications [1–5]. Generally, the
performance of a deep learning model depends on the
captured features [6–10]. More domains are important to the
scalability of deep learning system while these increase the
difficulty of training high-performance models. Figure 1
introduces an example that includes multiple domains.
We use the dataset to present the collected samples of the
corresponding domain. /ese datasets may have a different
number of labels and various samples, which increase the
difficulty of training high-performance models. Transfer
learning [11–13] can temporarily solve this problem while
the performance is still limited by the structure of models. As
Figure 1(a) introduces, a bigger model (deeper structure and
more layers) is a general solution as this can capture more
features while this is limited by the computational resource
or may cause the vanishing gradient problem [14–16]. /us,
there should be another way to improve the performance of
deep learning system on multiple domains like using
multiple models.

Some fusion methods [17–19] can utilize multiple
models to increase the classification accuracy, where per-
formance depends on the selection of high accurate trained

models. Compared with training a single model on multiple
domains, training each model on the corresponding domain
can be a good solution as this can achieve good scalability as
we introduced in Figure 1(b). Generally, the trained model
easily ensures high accuracy in the corresponding domain.
On the contrary, this model may have low accuracy on the
other domains, which reduces the performance of these
fusion methods. /us, on a testing sample, the prediction of
the domain is important to the fusion methods.

In this article, we built a novel framework (CMS-CMM,
the Classification of Multi-Domain Samples Based on the
Cooperation of Multiple Models) to increase the accuracy of
classification on the samples of multiple domains. Our
contribution can be summarized as the following. (1) We
built a novel framework that achieves the scalability of the
deep learning system. As the number of domains increased,
the difficulty of transfer learning is increased as it has to
consider the performance of all domains. On the contrary,
our framework only needs to train some deep learning
models on the training set of a new domain, which benefits
the scalability. (2) Our framework increases the accuracy of
classification without increasing the structure of models.
Generally, a bigger model increases the classification ac-
curacy while it needs more space of memory that is im-
possible to satisfy in some applications. Instead, our
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framework only increases the number of models where each
of them lowers the consumption of memory space compared
with that of a big model.

/e rest of the article is organized as follows: Section 1.1
introduces the existing methods and their problems. In
Section 2, we present our framework and related analyses.
/e experiment is organized in Section 3. Section 5 gives the
conclusion and future work.

1.1. Related Works. VoVNet-57 (Variety of View Network)
is designed for object classification task, which consists of
blocks including 3 convolution layers and 4 stages modules
and outputs stride 32 [20]. /e sample is passed through
convolutional layers, where here the filters consist of a small
receptive field. ResNeSt (residual networks) is a state-of-art
deep learning model for image classification that uses a
modular structure with a split-attention block and applies an
attention mechanism to feature map groups [21]. From
ResNeSt50 to ResNeSt269, the structure becomes bigger and
more complicated, so that these can get higher accuracy
especially when there are more and bigger size training
samples. Based on the size of testing samples and compu-
tational resource, we use ResNeSt101 in this article. RepVGG
(re-parameterization visual geometry group) is a classifi-
cation model, which is improved on the basis of the existing
models [22]. DenseNet (densely connected convolutional
network) is a convolutional neural network with dense
connections [23]. In this network, there is a direct con-
nection between any two layers, which means the input of
each layer connects to all the previous layers. VGG16 is a
variant of VGG (visual geometry group) models for image
classification [24]. ResNet (residual neural network) allows
the original input information to be detoured directly to the
output, which simplifies the process and reduces the diffi-
culty of training [25].

Some fusion methods have been applied to improve the
performance of classification, which applies multiple models
[17]. In that article, weighted voting method achieved the
highest accuracy among all of the other ones. Weighted
voting is also utilized to construct a more reliable classifi-
cation system [18]. A sliding window is applied to the
weighted majority voting algorithm in that article. /is
method is applied to a DNN (deep neural network), a CNN
(convolutional neural network), and an LSTM (long short-
term memory) network to improve the performance [19].
/ese methods can combine the results of models to im-
prove the accuracy. As the weights play an important role in
the combination, there should be a validation set to compute
these weights. Furthermore, more various models can
benefit the improvement of the accuracy. In this article, we
also apply these fusion methods to our system for higher
accuracy with some optimizations.

When using these methods, the performance of each
model is important. Training a model on the single domain
can ensure high accuracy on this domain while it may cause
low accuracy on the other domains. At the same time,
training a model on multiple domains may reduce the ac-
curacy on each domain. /us, our framework tries to solve
this problem, which is introduced in the next section.

2. Our Framework

Before giving the details of our framework, we give the
following definitions. /ese definitions are to explain the
implementation of the methods.

2.1. Preliminaries. We set Sn as a sample and Lk as the label
of an object. We set Lgroundtruth as the ground truth on Sn

where Lgroundtruth ∈ Lk􏼈 􏼉 [26, 27]. /e label is to benefit the
computation, which is generally a number [28, 29]. For
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example, when there are 10 objects to be classified, the label
is from 0 to 9.

2.2. )e Illustration of Our Framework. Figure 2 illustrates
our framework, which is named as CMS-CMM. At the first
step, our framework trains some existing deep learning
models (like deep learning models 0, 1, and 2 in this figure)
on each domain (like domains 0 and 1 in this figure). /en,
on a testing sample, each model outputs the probability of
labels. Firstly, based on the difference in these probabilities,
we can predict the domain of this sample (illustrated by the
chart). Secondly, we select the trained models of the pre-
dicted domain. /en, we can use the output of these models
to predict the label of this sample (illustrated by the chart).

2.3. Training the Models and Outputting the Probability of
Labels. We select a deep learning model Mi. /en, we train
Mi on a domain Du to get a trained model Mi,u. We define

P(Mi,u(Sn) � Lk) as the probability of label Lk on the sample
Sn, which is the output by the trained model Mi,u. Generally,
the most possible result is selected by the following equation:

Lresult � argmaxLk
P Mi,u Sn( 􏼁 � Lk􏼐 􏼑. (1)

Which is used as the predicted result.

2.4. Predicting the Domain. In our framework, we firstly
select some existing deep learning models Mi􏼈 􏼉. /en, we
train these models on each domain Du to get a set of trained
models Mi,u􏽮 􏽯. When we assume a sample Sn belongs to a
domain Du, we can get a probability of labels
P(Mi,u(Sn) � Lk)􏽮 􏽯 by a model Mi,u. /en, by the other
model Mj,u, we can also get P(Mj,u(Sn) � Lk)􏽮 􏽯. We define
the difference between the model Mi,u and the model Mj,u

on a sample Sn as follows:

Mi,u Sn( 􏼁 − Mj,u Sn( 􏼁
�����

����� Lk{ }
� 􏽘

Lk

P Mi,u Sn( 􏼁 � Lk􏼐 􏼑 − P Mj,u Sn( 􏼁 � Lk􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (2)

We can define the difference betweenMi,u and Mj,u􏽮 􏽯 on
a sample Sn as follows:

􏽘
j

‖Mi,u Sn( 􏼁 − Mj,u Sn( 􏼁‖ Lk{ } � 􏽘
j

􏽘
Lk

P Mi,u Sn( 􏼁 � Lk􏼐 􏼑 − P Mj,u Sn( 􏼁 � Lk􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (3)
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Figure 2: /e illustration of the framework of our methods.

Complexity 3



Generally, we can select Mi,u as the model that can
achieve the highest accuracy on the validation set. /us, (3)
is to present the difference between the highest accurate
model with the other ones. /en, we can select the domain
Dresult as the predicted domain of sample Sn as below:

Dresult � argminDu
􏽘

j

‖Mi,u Sn( 􏼁 − Mj,u Sn( 􏼁‖ Lk{ }. (4)

Figure 3 uses an example to explain how to predict the
domain. We assume that the domain D1 contains the sample
and there are three models trained on this domain, which are
M0,1, M1,1, M2,1./us, these models can well capture the key
features of this sample, which leads the probability of dog
being high and those of other labels being low. We assume
the domain D0 does not contain the samples of dog. /en,
we can also get corresponding three trained models M0,0,
M1,0, M2,0 of this domain. As these models have not cap-
tured the features of dog on the training set, these models
may capture noisy features of dog (also included by other
labels), which causes big difference between the outputs of
these models.

2.5. Predicting the Label. Once our framework has predicted
the domain of a sample, we can use the corresponding
models that are trained on this domain to predict the label of
this sample. To increase the accuracy of the prediction, our
framework uses the fusion method [19] that is weighted
model average as follows:

Wi �
1

1 − P Mi,u Sn( 􏼁 � Lgoundtruth􏼐 􏼑􏼐 􏼑
, Wi �

Wi

􏽐jWj

,

Lresult � argmaxLk
􏽘

i

P Mi,u Sn( 􏼁 � Lk􏼐 􏼑 × Wi,

(5)

where Wi presents the weight that is applied to the output of
models. By using these weights, the output of higher accurate
model plays a more important role to the final result. We can
compute the Wi by using the validation set. We name our
framework with this optimization as CMS-CMM from now
on.

2.6. Optimization by the Distribution of the Labels. /ere are
two cases that may cause the wrong prediction of the do-
main. Figure 4 introduces the two cases. We assume that
domain 0 has 100 labels and domain 1 has 10 labels. By the
general setting, the trained models of domain 0 will output
the probability of 100 labels. At the same time, the trained
models of domain 1 will output the probability of 10 labels.
In 4(a) of this figure, we input the testing sample of domain 0
into the trained models. /e difference between the trained
models of domain 1 may be lower than that between the
trained models of domain 0 occasionally because the range
of error labels is reduced. Especially when the accuracy of
models is low, this case easily causes wrong prediction of the
domain. In 4(b) of this figure, we input the testing sample of
domain 1 into the trained models. /e difference between
the trained models of domain 0 may be lower than that
between the trained models of domain 1 occasionally as the
error labels are scattered to a wider range. Especially when
the accuracy of models is high, this case also easily causes the
wrong prediction of domain.

To solve this problem, we make all of the trained models
predict the same number of labels. For example, the trained
models on D0 (100 labels) or D1 (10 labels) can predict 10
labels, which is the maximum number of labels among these
domains. /en, when the testing samples belong to D1, we
only consider labels 0 to 9 as the possible correct one. /us,
we revise equation (4) as the following when there are
different number of labels between domains.

Dresult � argminDu
􏽘

j

‖Mi,u Sn( 􏼁 − Mj,u Sn( 􏼁‖ Lk{ } + φu × 􏽘
j

‖Mi,u Sn( 􏼁 − Mj,u Sn( 􏼁‖ Lk{ }
⎛⎝ ⎞⎠, (6)
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where Lk􏼈 􏼉 is the possible correct labels of the corresponding
domains Du. We set Lk􏼈 􏼉 as the remain labels. For example,
when the D0 contains 100 labels and the domain D1 contains
10 labels, we can set Lk is from 10 to 99 for D1. /us, all
models of these domains output the probability of the same
number labels. We can use φu by using the validation set. We
name our framework with this optimization as CMS-CMM-
opt from now on.

3. Experiment

We evaluate our methods with the existing ones on some
real datasets. When we randomized the parameters, we
evaluate 1000 times. We trained the deep learning models
(VoVNet-57 [20], ResNeSt50 [21], RepVGG [22], DenseNet
[23], VGG16 [24], and ResNet [25]) on some real datasets by
the reported default settings of these models. We set the
number of epochs [30, 31] as 10 for all these models on any
training set. We do not focus on the designing of structure or
tuning the hyper-parameters. Instead, we focus on how to
use multiple models to achieve the scalability and ensure
high accuracy at the same time. We set a random number of
validation samples, which is from 500 to 800.

3.1. Introduction of the Datasets. CIFAR-10 [32, 33] has
50000 training samples and 10000 testing samples that
belong to 10 labels. We use 50000 training samples to train

the models. /en we have 10000 samples left to the vali-
dation and testing. CIFAR-100 dataset is just like the
CIFAR-10, except it has 100 classes containing 600 images
each [34, 35]. /ere are 500 training images and 100 testing
images per label. We use 50000 training samples to train the
models. /en we have 10000 samples left to the validation
and testing. /e Mini-ImageNet [36, 37] dataset is for few-
shot learning evaluation. Its complexity is high due to the use
of ImageNet images but requires fewer resources and in-
frastructure than running on the full ImageNet dataset. We
use 48000 training samples to train the models. /en we
have 12000 samples left to the validation and testing.
EuroSAT [38, 39] dataset is based on satellite images con-
sisting of 10 classes with 27000 labelled samples. We use
21600 as training samples and 5400 as the testing ones. Intel
Image Classification [40] dataset contains natural scenes
around the world./ere are around 14 k images for training,
3 k for testing, and 7 k in prediction (without labels).

3.2. Introduction of the Evaluation Metrics. We introduce
some metrics to compare the methods in different dimen-
sions on the testing samples. We assume a sample Sn belongs
to the domain Dgroundtruth and the corresponding ground
truth of label is Lgroundtruth. We define Lresult is the predicted
result of label and Dresult as the predicted result of domain by
a method. /en we can define the following evaluation
metrics.
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CD presents the accuracy of predicting correct domains
as below:

CD �
􏽐Dresult�Dgroundtruth

􏽐Lresult
1

􏽐Dresult
􏽐Lresult

1􏼐 􏼑
, (7)

where the higher one is better. CDCL presents the accuracy
of predicting correct domains and correct labels as below:

CDCL �
􏽐Dresult�Dgroundtruth

􏽐Lresult�Lgroundtruth
1􏼒 􏼓

􏽐Dresult
􏽐Lresult

1􏼐 􏼑
, (8)

where the higher one is better. CDWL presents that the
percentage of predicting correct domains and wrong labels
as below:

CDWL �
􏽐Dresult�Dgroundtruth

􏽐Lresult1Lgroundtruth
1􏼒 􏼓

􏽐Dresult
􏽐Lresult

1􏼐 􏼑
, (9)

where the lower one is better.
WD presents the percentage of predicting wrong do-

mains as below:

WD �
􏽐Dresult ≠Dgroundtruth

􏽐Lresult
1􏼒 􏼓

􏽐Dresult
􏽐Lresult

1􏼐 􏼑
, (10)

where the lower one is better.WDCL presents the percentage
of predicting wrong domains and correct labels as below:

WDCL �
􏽐Dresult ≠Dgroundtruth

􏽐Lresult�Lgroundtruth
1􏼒 􏼓

􏽐Dresult
􏽐Lresult

1􏼐 􏼑
, (11)

where the lower one is better. When the prediction of the
domain goes wrong, the predicting of labels is meaningless
as the labels of different datasets indicates different kinds of
objects.WDWL presents the percentage of predicting wrong
domains and wrong labels as below:

WDWL �
􏽐Dresult ≠Dgroundtruth

􏽐Lresult ≠ Lgroundtruth
1􏼒 􏼓

􏽐Dresult
􏽐Lresult

1
, (12)

where the lower one is better.

3.3. Evaluation of Domain Prediction. We do not use ad-
ditional information (like the resolution or size of sample) to
predict the correct domain of samples. In Table 1, Maximum
appeared method predicts the domain by the maximum
appeared label. In more detail, we select the result that
appeared maximum times from the trained models of each

domain. Among all these results, we select the one that
appeared maximum times and set the corresponding do-
main as the predicted domain. Following the same way, the
fusion method [19] predicts the domain by the maximum
value of weight probabilities.

We used CD (the accuracy of predicting correct do-
mains) to evaluate the methods. As we can see in Table 1, our
CMS-CMM-opt achieves higher accuracy than the existing
methods, which is 16.62% higher on average. Furthermore,
CMS-CMM-opt achieves higher accuracy than our CMS-
CMM, which proves the efficiency of the optimization.

3.4. Evaluation of Label Classification. Our final objective is
to classify the samples. /us, based on the prediction of
domain, there must be also the classification of the samples
at the following step. /us, on a testing sample, only when a
method correctly predicted the domain and label at the same
time, we admit this method correctly output the result. For
example, the label 9 of CIFAR-10 and the label 9 of CIFAR-
100 mean different kinds of objects.

We used CDCL (the accuracy of predicting correct
domains and correct labels) to evaluate the methods. As we
can see in Table 2, our CMS-CMM-opt achieves higher
accuracy than the existing methods, which is 14.01% higher
on average. Compared with the domain prediction, the
increase of the accuracy is reduced from 16.62% to 14.01%
because there is also error when predicting the labels. CMS-
CMM use the fusion method [19] as the prediction of labels
after the domain prediction. We can see CMS-CMM-opt
also achieves higher accuracy than CMS-CMM, which is
11.25% higher on average.

3.5. Evaluation of the Scalability. In this subsection, we do
research about the scalability of our framework based on the
metric of CDCL (the accuracy of predicting correct domains
and correct labels). We added the domain one by one and
computed the label classification as Table 3 shows.

As we can see in Table 3, the accuracy of CIFAR-10
remains the same as the number of domains becomes big.
On the other side, the accuracies of CIFAR-100 and Mini-
ImageNet becomes lower./e accuracy of each models plays
important role to the classification accuracy. /e other
important factor to the accuracy is the similarity between
domains, which will be introduced in the next subsection.

3.6. Impact between Domains. We can analyse the impact of
a domain to other domains as Table 4 shows. In this table, we
compared the CDCL (the accuracy of predicting correct
domains and correct labels) of 5 domains with that of 4

Table 1: Evaluation based on CD (the accuracy of predicting correct domains).

Methods CIFAR-10 (%) CIFAR-100 (%) Mini-ImageNet (%) EuroSAT (%) Intel image classification (%)
Maximum appeared method 79.21 40.93 50.38 55.04 53.26
Fusion method [19] 71.79 40.32 61.46 90.91 83.03
CMS-CMM 85.59 71.27 73.65 92.48 65.70
CMS-CMM-opt 95.78 77.63 75.52 99.09 90.62
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domains, which means we drop one domain to evaluate the
relation between this domain and other ones. When we drop
CIFAR-10, we found the accuracy of CIFAR-100 is increased
more than that of others. By the same way, we can find
relations between domains. When there are similar labels
between domains, the prediction of domain and labels may
easily go wrong. For example, the label “fox” of CIFAR-100
is similar to the label “white fox” of Mini-ImageNet. /us,
how to consider the similarity between datasets are im-
portant to the increase of accuracy.

3.7. Evaluation on the Number of Models. In this subsection,
we evaluate the relation between the number of models and
CDCL (the accuracy of predicting correct domains and
correct labels). We set the number of models is from 2 to 6.
As there may be different combinations of models, we
evaluate the average accuracy of these combinations. As we
can see in Figure 5, the accuracy of all datasets increases as
the number of models becomes bigger. On the other side,
when the number of models is 6, the accuracy of some
datasets becomes lower than that of 5 models. When there
are low accurate models, these may lower the classification
accuracy of our framework. /e proper number of models
can be computed by the validation set.

3.8. Evaluation by More Metrics on All Testing Samples.
As we can see in Table 5, our methods achieved better
performance in the most of metrics. In the CDWL (the
percentage of predicting correct domains and wrong labels)
case, the percentages of our methods are higher than those of
the other methods. /is is because our methods can predict
more correct domains, which may cause more wrong labels.

Compared with the fusion method [19], our method can
increase 19.14% of CDCL while only increasing 9.01%
CDWL.

3.9. Evaluation of Execution Time andMemory Consumption.
Table 6 shows the total execution time and maximum
memory consumption of each trained model on the cor-
responding dataset. We use Tesla K80 of NVIDIA [41] to run
the models. In more detail, we use Tesla K80 of NVIDIA to
run the model VoVNet-57 on CIFAR-10 and record the total
execution time and maximum memory consumption of this
model, which is shown in this table. /en, we also can use
Tesla K80 of NVIDIA to run the model VoVNet-57 on the
other datasets and record the total execution time and
maximummemory consumption of this model. By the same
pattern, we can run the other models on each dataset and
record the total execution time and maximum memory
consumption of these models.

Table 2: Evaluation based on CDCL (the accuracy of predicting correct domains and correct labels).

Methods CIFAR-10 (%) CIFAR-100 (%) Mini-ImageNet (%) EuroSAT (%) Intel image classification (%)
Maximum appeared 76.28 37.75 48.00 54.07 51.50
Fusion method [19] 69.98 38.22 59.26 88.93 80.87
CMS-CMM 80.30 57.99 66.37 89.46 63.27
CMS-CMM-opt 89.21 70.74 71.39 95.43 86.86

Table 3: Evaluation of domain scalability based on CDCL.

Methods CIFAR-10 (%) CIFAR-100 Mini-ImageNet EuroSAT Intel image classification
1 domain 92.76 — — — —
2 domains 89.21 72.43% — — —
3 domains 89.21 72.28% 72.13% — —
4 domains 89.21 71.12% 71.62% 95.43% —
5 domains 89.21 70.74% 71.39% 95.43% 86.86%

Table 4: Impact between domains based on CDCL.

Methods CIFAR-10 CIFAR-100 Mini-ImageNet EuroSAT Intel image classification
Without CIFAR-10 — +2.68% +1.63% +0.00% +0.00%
Without CIFAR-100 +2.79% — +8.13% +0.48% +1.32%
Without Mini-ImageNet +0.00% +0.15% — +0.03% +4.32%
Without EuroSAT +0.00% +1.16% +0.52% — +0.00%
Without intel Image classification +0.00% +0.38% +0.23% +0.00% —
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Our methods generate multiple models on each dataset,
which causes the runtime our methods become bigger than
those of using single model. CMS-CMM-opt in serial runs
the model one by one, which causes the execution time
equals to the following: the execution time of single mod-
el× the number of models + the execution time of our fusion
process. In more detail, our CMS-CMM-opt in serial run
multiple models (one after one) on CIFAR-10. /en we run
our fusion method. During these processes, we record the
total execution time and maximum memory consumption
that is shown in Table 6.

A simple solution to reduce the execution time is that we
can use less models but this may lower the accuracy. To
further reduce the execution time without lowing the ac-
curacy, we run the models on the distributed computational
nodes of a cluster based on the parallel pattern of paper [42].
In more detail, CMS-CMM-opt in parallel utilizes multiple
computational nodes where each node has a Tesla K80 of
NVIDIA [41]. As each node can run the model at the same
time, the total execution time can be reduced. /e total
execution time is recorded as the end of all nodes and the
maximum memory consumption is counted as the maxi-
mum one among these nodes. As CMS-CMM-opt in parallel
of Table 6 indicates, the total runtime is reduced compared
with CMS-CMM-opt in serial. /e additional execution time
is caused by the communication and our fusion process. /e
additional memory consumption is caused by the buffers of
communication and our fusion process.

To achieve higher accuracy by single model on multiple
domains, the structure becomes deeper and more complex
which causes the memory consumption becomes bigger. For

example, the V-MoE of Google achieves high accuracy with
a trained model of 15 billion parameters on the ImageNet
[43]. Compared with super model solution, our framework
is more scalable.

3.10. Illustration of the Domain and Label Classification.
Firstly, we use an example to explain the domain classi-
fication. As Figure 6 shows, we select the testing samples
of label 1 that belongs to domain CIFAR-10. /en, we run
all of the models on this sample and compute the average
difference between the outputs of trained models that
belong to the same datasets. Figure 6(a) is the difference of
the outputs between the models that are trained on
CIFAR-10. Figures 6(a)–6(e) are the differences of the
outputs between the models that are trained on CIFAR-
100, Mini-ImageNet, EuroSAT, and Intel image classifi-
cation. As the testing samples belong to the CIFAR-10, the
difference between the trained models of CIFAR-10 is
obviously smaller than those of the other datasets. /us,
the domain classification based on model difference is
reasonable.

We present the statistical result of model difference by
the following. For a sample Sn that belongs to the domain
Du, we use avgDM(Sn ∈ Du) to present the average dif-
ference between the trained models of Du as below:

avgDM Sn ∈ Du( 􏼁 �
􏽐Sn∈Du, u,j≠ 0‖M0,u Sn( 􏼁 − Mj,u Sn( 􏼁‖ Lk{ }􏼒 􏼓

􏽐Sn∈Du, u,j≠ 0,Lk
1􏼐 􏼑

, (13)

where M0,u(Sn) − Mj,u(Sn) Lk{ } is defined by (2), M0,u(Sn) is
the output of highest accurate model, and Mj,u(Sn) is the

Table 6: Execution time and memory consumption.

Method
Dataset

/e execution time (second) Max memory
consumption (MB)CIFAR-10 CIFAR-100 Mini-ImageNet EuroSAT Intel image classification

VoVNet-57 106.05 104.95 475.35 60.20 46.63 136.25
Res2Net50 105.20 396.89 474.80 59.37 44.04 91.01
RepVGG-A0 34.67 35.55 45.69 20.70 15.93 30.35
DenseNet121 85.24 376.06 451.03 48.91 36.65 27.52
VGG16 122.20 121.59 495.97 72.79 55.64 513.73
ResNet50 80.16 373.67 449.14 46.78 35.06 90.46
CMS-CMM-opt in serial 604.75 1479.95 2472.50 369.07 294.28 687.04
CMS-CMM-opt in parallel 222.52 497.24 600.29 164.02 146.87 839.29

Table 5: Evaluation by more metrics on all testing samples.

Methods CD: correct
domains

CDCL: correct
domains and correct

labels

CDWL: correct
domains and wrong

labels

WD: wrong
domains

WDCL: wrong
domains and correct

labels

WDWL: wrong
domains and wrong

labels
Maximum
appeared 55.98% 53.49% 2.49% 44.02% 32.36% 11.66%

Fusion
method [19] 62.85% 60.72% 2.13% 37.15% 25.13% 12.02%

CMS-CMM 77.70% 70.35% 7.35% 22.30% 15.51% 6.79%
CMS-CMM-
opt 91.00% 79.86% 11.14% 9.00% 5.97% 3.03%
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output of the other model. For a sample Sn that belongs to
the domain Du, we use avgDM(Sn ∉ Dv) to present the
difference between the models of Dv (v≠ u) as below:

avgDM Sn ∉ Dv( 􏼁 �
􏽐Sn∈Du, v,j≠ 0‖M0,v Sn( 􏼁 − Mj,v Sn( 􏼁‖ Lk{ }􏼒 􏼓

􏽐Sn∈Du, v,j≠ 0,Lk,1􏼐 􏼑
,

(14)

where M0,v(Sn) is the output of highest accurate model on
the validation samples of Dv, Mj,v(Sn) is the output of the

other model the validation samples of Dv. As we can see in
Table 7, avgDM(Sn ∈ Du) is obviously smaller than
avgDM(Sn ∉ Dv) on each dataset that means we can use this
value the predict the domain. Based on this analysis, our
methods further optimize the prediction of domain. CIFAR-
100 andMini-ImageNet has bigger number of labels than the
other datasets, which causes the model difference bigger
than that of the other datasets.

Secondly, we use three examples to explain the label
classification based on the trained models of corresponding
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Figure 6: /e difference between the output of trained models. /e ground truth is label 1 sample of domain 0. (a) /e models trained on
CIFAR-10. (b) /e models trained on CIFAR-100. (c) /e models trained on Mini-ImageNet. (d) /e models trained on EuroSAT. (e) /e
models trained on Intel image classification.

Table 7: Statistical analysis of model difference.

Methods CIFAR-10 CIFAR-100 Mini-ImageNet EuroSAT Intel image classification
avgDM(Sn ∈ Du) 0.3093 0.7216 0.6468 0.3195 0.2487
avgDM(Sn ∉ Dv) 0.4860 1.211 1.5631 0.5841 0.3040
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domain. In the first example, we select the testing samples of
label 1 from CIFAR-10. /en, we run the trained models of
CIFAR-10 on these samples. As Figure 7(a) shows, the
average probability of label 1 by each model (trained on
CIFAR-10) is obviously higher than those of the other labels.
In Figure 7(b) case, we select the label 9 testing samples from
CIFAR-100. /en, we run the trained models of CIFAR-100
on these samples. In Figure 7(c) case, we select label 90
testing samples from Mini-ImageNet. /en, we run the
trained models of Mini-ImageNet on these samples. All of
these cases show that the average probability of ground truth
label is obviously higher than those of the other labels when
we correctly select the trained models of corresponding

dataset. /us, the classification based on the probability of
labels is reasonable.

We present the statistical analysis of label probability by
the models. For a sample Sn that belongs to the domain Du,
we define the average probability of ground truth label by the
trained models of Du as below:

avgP Mi,u Sn( 􏼁 � Lgroundtruth􏼐 􏼑 �
􏽐i,u,Sn

P Mi,u Sn( 􏼁 � Lgroundtruth􏼐 􏼑􏼐 􏼑

􏽐i,u,Sn,1
, (15)

where P(Mi,u(Sn) � Lgroundtruth) is introduced in equation
(1). For a sample Sn that belongs to the domain Du, we define
the average value of maximum probability of other label by
the models as below:
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Figure 7:/e probability of labels by different models of corresponding domain. (a)/e ground truth is label 1 of domain 0. (b)/e ground
truth is label 9 of domain 1. (c) /e ground truth is label 90 of domain 2.

Table 8: Statistical analysis of predicting label.

Methods CIFAR-10 CIFAR-100 Mini-ImageNet EuroSAT Intel image classification
avgP(Mi,u(Sn) � Lgroundtruth) 0.8101 0.5894 0.7074 0.8491 0.8588
avgP(Mi,u(Sn)≠Lgroundtruth) 0.0659 0.0749 0.0578 0.0552 0.0950
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avgP Mi,u Sn( 􏼁≠Lgroundtruth􏼐 􏼑 �
􏽐i,u,Sn

MaximumLk ≠ Lgroundtruth
P Mi,u Sn( 􏼁 � Lk􏼐 􏼑􏼒 􏼓

􏽐i,u,Sn
1

. (16)

As we can see in Table 8, avgP(Mi,u(Sn) � Lgroundtruth) is
obviously bigger than avgP(Mi,u(Sn)≠ Lgroundtruth) on each
dataset that means we can use this value to predict the label.
Based on this analysis, our methods further optimize the
prediction of label.

3.11. Introduction of theEmployedAcronyms. We use Table 9
to give the introduction of the employed acronyms in this
article for reader’s convenience.

4. Conclusions

In this article, we have introduced a novel framework that
achieves the scalability of classification by using multiple
models. Different from the existing single super model
methods, our framework lowers the consumption of com-
putational resource and achieves good scalability at the same
time. Furthermore, we solve the problem of existing fusion
methods. Our framework can be a good solution for the
applications, which has to classify more domains of samples.

In the future work, we will do research about how to
solve the problem of similarity between domains and labels.
In some cases, the similarity is caused by the similar labels of
different domains like the “fox” in CIFAR-10 and “white
fox” in CIFAR-100. In other cases, this may be caused by the
similar features between labels of the same domain, which is

related to the accuracy of models. We believe that these
factors are the key of increasing the accuracy of
classification.

Data Availability

/e data used in this study are available at CIFAR-10:
https://tensorflow.Google.cn/datasets/catalog/cifar10,
CIFAR-100: https://tensorflow.Google.cn/datasets/catalog/
cifar100, Mini-ImageNet: https://github.com/topics/
miniimagenet, EuroSAT: https://tensorflow.Google.cn/
datasets/catalog/eurosat, and Intel image classification:
https://www.kaggle.com/datasets/puneet6060/intel-image-
classification.
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