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-e problem of generalizing the power option-pricing model to incorporate more empirical features becomes an urgent and
necessary event. A new power option pricing method is designed for the financial market uncertainty that simultaneously involves
randomness and fuzziness. -e randomness in market uncertainty is modeled by a time-fractional diffusion model, which
describes trend memory in underlying asset prices. -e fuzziness in market uncertainty is characterized by a triangular interval
type-2 fuzzy numbers, which better captures the fuzziness of underlying asset prices. Considering the decision-maker’s subjective
judgment, we show the price mean value with the possibility-necessity weight and pessimistic-optimistic index under the type-2
fuzzy environment. We develop the power option pricing model with the time-fractional diffusion model and the triangular
interval type-2 fuzzy numbers. Furthermore, the analytic solutions of pricing call power option and put power option are obtained
and verified by the variational iterative reconstruction method. Our study shows that power option pricing, which adopts the
time-fractional model and the triangular interval type-2 fuzzy numbers, can better capture the trendmemory and double fuzziness
of the real market. In addition, a numerical example is provided to illustrate that the power option means the value is decreasing
with respect to the pessimistic-optimistic index and is fluctuating with respect to the possibility-necessity weight index.

1. Introduction

In the wake of the maturity of financial markets and the
diversification of products, the leverage characteristic of the
power option has attracted a lot of attention from investors.
An appropriate option pricing model is one of the primary
conditions for the realization of future option value. -e
Black-Scholes (BS) model is proposed in the process
framework of continuous time by Black and Scholes [1].
-ey study the option formula under the assumption that
the prices of underlying assets follow the geometric Brow-
nian motion. Jiang [2] reduces the BS equation to a heat
equation and presents another view of obtaining the analytic
solution of the option price. Besides, Jodar et al. [3] and
Bohner and Zheng [4] solve the BS equation through dif-
ferent methods. With the increasing application of fractional
order differential equations, BS equations have been ex-
plored in the form of fractional order. Wyss [5] derives the

time fractional order BS equation and calculates the price of
European call options. By combining Ito lemma with
fractional Taylor series, see Jumarie [6], two fractional-order
BS equations are derived from the stochastic differential
equation with fractional order Brownian motion in Jumarie
[7]. -e fraction in the equations describes the memory
effect of the underlying assets on noise. Considering the
time-fractional order differential equation satisfied by the
underlying asset, Li et al. [8] construct a fractional stochastic
differential equation with classical Brownian motion and
apply it to option pricing. Farhadi et al. [9] adopt a new time-
fractional-order BS equation to calculate the price of Eu-
ropean call options based on Li et al. [8]. -e approximate
solution is obtained by the homotopy perturbation method
in Kumar et al. [10]; the variation iteration method in
Ahmad et al. [11]; and the finite difference method in Song
and Wang [12]. Under the fractional jump-diffusion model,
Zhao et al. [13] study the N-fold compound option pricing
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with technical risk.-e fractional models are more consistent
with the real situation than the financial markets. Since some
of the properties of the fractional derivative are very com-
plicated in comparison to the classical ones, it is very useful to
find the solutions of some generic equations (1).

In the option pricing formula, the parameters put into the
formula are generally regarded as the ones estimated from
accurate real-valued data. However, the volatility of the un-
derlying asset price is affected by market uncertainty. Besides,
there are errors between the estimated values of the pa-
rameters and the actual ones. Since option prices are used to
trade future strike prices, it is not appropriate to choose the
current stock price as a future one. -erefore, there are many
fuzzy factors affecting the option prices. It is hard for us to
obtain these factors exactly. Fortunately, fuzzy set theory see
Zedeh [14] and fuzzy random variable theory see Puri and
Ralescu [15] are effective methods to deal with such problems
in option pricing. Moreover, Wu [16] prices European op-
tions with the fuzzy pattern of the B-S formula. Based on the
fractional Brownianmotion, Zhao et al. [17] study the N-Fold
compound option fuzzy pricing. In Gaussian type-2 fuzzy
environments, Pramanik et al. [18] present two mathematical
models representing imprecise capacitated fixed-charge
transportation problems for a two-stage supply chain net-
work. Moreover, Bera et al. [19] present two novel MCDM
techniques in interval type-2 fuzzy environments capable of
handling uncertain subjective and objective factors simulta-
neously for the selection of efficient suppliers in real-life
applications. Based on T2 linguistic fuzzy logic, Dey and Jana
[20] study the evaluation of the convincing ability through
presentation skills of preservice management wizards. Ejegwa
and Agbetayo [21] introduce a similarity-distance decision-
making technique via intuitionistic fuzzy pairs. In Atanassov
[22], a new topological operator over intuitionistic fuzzy sets
is defined, some of its properties are studied, and some open
problems related to it are given.

-e related research on option pricing is divided into
several categories. One of the pricing models employs the
fractional-order BS formula to calculate the option prices.
-e differential equation with fractional order in space
position describes the long memory of stock prices. Besides
the long memory, the trend memory in the pricing process is
also an important factor influencing option prices. In ad-
dition, in a complicated financial system, it is difficult for
participants to estimate the parameters of the pricing for-
mula accurately due to market fluctuations, inadequate
information, and human errors. For example, stock prices
fluctuate around $7, which is difficult to describe from the
perspective of probability theory and has obvious fuzzy
characteristics. -erefore, the uncertainty of the financial
market cannot be fully characterized just by randomness. It
contains at least another aspect, fuzziness, which is also an
important factor for option prices. Moreover, the satisfac-
tion levels of investors are fuzzy rather than accurate in the
actual market. In other words, the confidence level of a price
is also a fuzzy number. For example, for a given stock price of
17, investors usually give a statement of satisfaction level,
general satisfaction, or dissatisfaction, but not a 1-level
satisfaction, a 0.6-level satisfaction, or a 0.3-level satisfaction.

In this paper, the trend memory of stock prices, two
fuzzy characteristics of the financial market, and the sub-
jective judgments of decision makers are considered in
power option pricing. To reflect the trend memory of stock
prices, this paper first adopts the partial differential equation
with time-fractional ordering to calculate the option prices.
As far as we know, this is the first time we have presented the
pricing formulas of the call power option and the put power
option in the time-fractional environment. To better capture
price fuzziness and satisfaction fuzziness in the financial
market, we introduce a triangular interval type-2 fuzzy set
into the time fractional pricing model and obtain fuzzy
pricing formulas for power options. Considering the deci-
sion-makers’ subjective judgment, the price mean value with
the possibility-necessity weight and pessimistic-optimistic
index are given. Compared with the traditional power option
pricing models, our innovative pricing models make the
application of power options more consistent with the actual
financial markets by taking into account the trend memory
of stock prices, the diversification of market uncertainty, and
subjective factors. Particularly, the fuzzy pricing model can
be reduced to the traditional option pricing models under
certain degenerative conditions.

-e main contribution of this paper is that we first
develop the power option pricing model with the time-
fractional diffusion process and the triangular interval type-2
fuzzy numbers. Furthermore, the analytic solutions of the
pricing call power option and put power option are achieved
and verified by the variational iterative reconstruction
method. Moreover, the valuation and properties of the
formulas are analyzed under some reasonable assumptions.
A numerical example is provided to illustrate that the power
option’s mean value is affected by the decision makers’
subjective judgment. -e pricing formula makes the ap-
plication of the power option more consistent with the real
markets than before.

-e construction of this paper is as follows: in Section 2,
using the reconstruction variational iteration method, we
derive a closed-form solution for the power option when the
underlying asset price process follows a time-fractional
order BS model. -is pricing formula broadens the reach of
the power option. In Section 3, by introducing the interval
type-2 fuzzy set and the decision maker’s subjective judg-
ment, we further present the fuzzy pricing formula and the
price mean value formula of the power option.

2. Pricing Formula Based on the Time-
Fractional Model

A European call power option is a call option with an ex-
piration date T, exercise price K and terminal value
V(T, S) � max S

β
T − K, 0 . Here, the parameter β is the

power index of asset price ST. Under the risk-neutral measure,
the value of the European call power option at the time t is

V(t, S) � e
− r(T− t)

E
Q
t max S

β
T − K, 0  . (1)

Suppose that the underlying asset price St satisfies a
fractional-order stochastic differential equation as follows:
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d
a
St � μStdt

a
+ σStdBt, (2)

where μ and σ are expected return rate and volatility, re-
spectively, a � 2H is time-fractional order, Bt is a standard
Brownian motion. H is the Hurst index, which describes the
memory effects of stock prices. Here, we only consider a case
that 0.5< a≤ 1. -e equation of option value V(t, S) satisfies

z
a
V

zt
a � rV −

σ2S2

2Γ2(1 + a)

z
2
V

zS
2 − rS

zV

zS
 

t
1− a

Γ(2 − a)
, (3)

where r is the risk-free interest rate. Suppose that V(t, S) is
rewritten as

V(t, S) � e
− r(T− t)

U(t, S). (4)

Which is employed to solve (3). Input (4) into (3), we
eliminate the rV-term on the both sides of the equality, and
then we obtain a simplified equation

z
a
U

zt
a � −

σ2S2

2Γ2(1 + a)

z
2
U

zS
2 + rS

zU

zS
 

t
1− a

Γ(2 − a)
. (5)

Replacing S with ex in (5), we have

z
a
U

zt
a �

σ2

2Γ2(1 + a)
− r 

zU

zx
−

σ2

2Γ2(1 + a)

z
2
U

zx
2 

t
1− a

Γ
. (6)

In order to obtain a general solution of (6), we construct
an auxiliary equation as follows:

z
a U

zt
a −

σ2

2Γ2(1 + a)
− r 

t
1− a

Γ(2 − a)

z U

zx
� 0. (7)

From the theorem of the auxiliary system, the general
solution of (7) satisfies the equality as follows:

dt
a

1
�

d
a
x

r − σ2/2Γ2(1 + a) t
1− a/Γ(2 − a)

�
d U

a

0
, (8)

where zero indicates that U has constant characteristics, see
Jumarie [6]. It is derived from the eigenvalue method of the
hyperbolic equation, where the denominator changes along
the direction of the characteristic line. -en, based on the
properties of fractional calculus, the general solution of (8)
can be expressed as follows:

U(x, t) � F x − r −
σ2

2Γ2(1 + a)
 t , (9)

where F is an arbitrary function (9), which implies that
U(x, t) has the form

U(S, t) � R(m, t), (10)

where m � x + (r − σ2/2Γ2(1 + a))(T − t). From (6) and
(10), the fractional order equation of R satisfies

z
a
R

zt
a � − ηt

1− a z
2
R

zm
2,

(11)

where η � σ2/2Γ2(1 + a)Γ(2 − a) and R(m, T) � max
emβ − K, 0 , which is a terminal condition. From m � x+

(r − σ2/2Γ2(1 + a))(T − t), it follows that

z
a
R

zt
a � − (T − τ)

1− aτa− 1z
a
R

zτa , (12)

where τ � T − t. Comparing (9) and (10), we obtain

z
a
R

zτa � ητ1− a z
2
R

zm
2.

(13)

With an initial condition R(m, 0) � max emβ − K, 0 . By
performing the Laplace transformation on the both sides of
equation (11), for the time variable τ, we have

L R(m, τ){ } �
1
S

R(m, 0) +
1
S

a L ητ1− a z
2
R

zm
2 . (14)

Subsequently, applying the inverse Laplace transfor-
mation and convolution theorem to equation (12), we obtain
the following equation:

R(m, τ) � R(m, 0) +
η
Γ(a)


τ

0
(τ − ξ)

a− 1ξ1− az
2
R(m, ξ)

zm
2 dξ.

(15)

From the equality above, the iteration formula of R(m, τ)

can be constructed through the reconstruction of the var-
iational iteration method as follows:

Rn(m, τ) � R0(m, τ)

+
η
Γ(a)


τ

0
(τ − ξ)

a− 1ξ1− az
2
Rn− 1(m, ξ)

zm
2 dξ,

(16)

where R0(m, τ) � max emβ − K, 0  and n � 1, 2, 3, · · ·. For
β> − 1, by using the integral formula

1
Γ(a)


x

ϕ
(x − t)

a− 1
(t − ϕ)

β
dt �
Γ(β + 1)

Γ(a + β + 1)
(x − ϕ)

a+β
.

(17)

-e approximation of Rn(m, τ) can be given as follows:

Rn(m, τ) � max e
mβ

− K, 0 

+ e
mβ



n

j�1

Γ(2 − a) · · · Γ(j + 1 − a)

Γ(2) · · · Γ(j + 1)
β2ητ 

j
.

(18)

Finally, by applying the solution theorem of the frac-
tional differential equation, we obtain that
lim

n⟶∞
Rn(m, τ) � R(m, τ), which is an exact solution of (13),

and the solution is given as follows:

R � max e
mβ

− K, 0 

+ e
mβ



∞

j�1

Γ(2 − a) · · · Γ(j + 1 − a)

Γ(2) · · · Γ(j + 1)
β2ητ 

j
.

(19)
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Taking the variable transformation τ � T − t, S � ex,
m � x + (r − σ2/2Γ2(1 + a))(T − t),
V(s, t) � e− r(T− t)U(S, t) and U(S, t) � R(S, t), from (19), we
obtain the solution as follows:

V(S, t) � max S
β
e

(β− 1)r− σ2/2Γ2(1+a)β[ ](T− t)
− Ke

− r(T− t)
, 0 

+ S
β
e

(β− 1)r− σ2/2Γ2(1+a)β[ ](T− t)

· 
∞

j�1

Γ(2 − a) · · · Γ(j + 1 − a)

Γ(2) · · · Γ(j + 1)
β2η(T − t) 

j
,

(20)

where η � σ2/2Γ2(1 + a)Γ(2 − a). -e formula (20) is called
the time-fractional Black-Scholes formula of the call power
option. Moreover, using the same method, we obtain the
price of the put power option

P(S, t) � max Ke
− r(T− t)

− S
β
e

(β− 1)r− σ2/2Γ2(1+a)β[ ](T− t)
, 0 

− S
β
e

(β− 1)r− σ2/2Γ2(1+a)β[ ](T− t)


∞

j�1

·
Γ(2 − a) · · · Γ(j + 1 − a)

Γ(2) · · · Γ(j + 1)
β2η(T − t) 

j
.

(21)

Equation (21) is called the time-fractional Black-Scholes
formula of the put power option.

3. Fuzzy Pricing in the Interval Type-2
Fuzzy Framework

3.1. Definitions for the Triangular Interval Type-2 Fuzzy
Number. We construct a mixed fractional stochastic differ-
ential equation to describe the uncertainty of the underlying
asset price. However, in the highly complicated financial
system, participants find it difficult to record the dynamic
underlying asset price accurately due to market fluctuations,
inadequate information, and human errors. To better capture
these fuzzy characteristics in the financial market, a triangular
interval type-2 fuzzy set is introduced into themixed fractional
pricing model with a jump of the N-fold compound option.

For clarity, the theory, definitions, and some basic op-
erations of a triangular-interval type-2 fuzzy set are provided
from the basic type-1 fuzzy set. Firstly, we show the defi-
nitions of type 1 fuzzy sets as follows:

Definition 1. Zadeh [23] Let X be a concentration of objects
x, then a fuzzy set A ∈ X is a set of ordered pairs as follows:

A � x, μA(x)( |∀x ∈ X . (22)

Here, μA(x) is called the membership function for the
type-1 fuzzy set A. Particularly, a fuzzy set in R is called a
fuzzy number A with a subnormal or normal, fuzzy convex,
and continuous membership function of bounded support.

Generally, a triangular type-1 fuzzy number with sub-
normal or normal segments can be depicted as in Figure 1.
Let A be a triangular type-1 fuzzy number with the following
elements: A � (a, ξ, β; H(A)), where ξ represents left-width,
β represents right-width and H(A) denotes the height el-
ement for a, with ξ > 0, β> 0 and 0≤H(A)≤ 1. If H(A) � 1
then, the fuzzy set is a normal triangular type-1 fuzzy
number, in other cases it is a subnormal triangular type-1
fuzzy number.

From the basic type-1 fuzzy set, the definitions of interval
type-2 fuzzy set and interval type-2 fuzzy number are shown
in definitions 2 and 3.

Definition 2. Mendel et al. [24] let a type-2 fuzzy set A be in
the universe of discourse X; it can be characterized by a type-
2 membership function μA

(x, u), shown as follows:

A � (x, u), μA
(x, u) |∀x ∈ X,∀u ∈ Jx⊆[0, 1] . (23)

In which 0≤ μA
(x, u)≤ 1. A can also be expressed as

follows:

A � 
x∈X


u∈Jx

μA

(x, u)

(x, u)
, (24)

where   states the union over all admissible x and u.
Additionally, the type-2 fuzzy set A is an interval type-2
fuzzy set when all μA

(x, u) � 1. It means that an interval
type-2 fuzzy set can be considered to be a special case of a
type-2 fuzzy set and can be represented by

A � 
x∈X


u∈Jx

1
(x, u)

. (25)

Definition 3. Wang and Li [25] Let an interval type-2 fuzzy
set A � (A

U
, A

U
), where A

U and A
L are the upper and lower

membership functions, respectively. An interval type-2
fuzzy set might be called an interval type-2 fuzzy number if
A

U and A
L are fuzzy numbers

A triangular interval type-2 fuzzy number is introduced
as follows:

A � A
U

, A
L

  � a, ξ, β, H A
U

 ; b, c, δ, H A
L

  . (26)

µA (x)

H (A)

α – ξ α α + β
x

Figure 1: Representation of subnormal/normal of a triangular
type-1 fuzzy set.

4 Complexity



Here, A
U and A

L are the upper and lower membership
functions, respectively. a and b are reference points for the
triangular interval type-2 fuzzy number. Moreover, ξ, β, c,
and δ are the left and right widths of the related membership
functions, respectively. Let H(A

U
) be the membership value

of the element a in the upper triangular membership
function A

U. Similarly, denote by H(A
L
) the membership

value of the element b in the lower triangular membership
function A

L. For clarity, a triangular interval type-2 fuzzy
number with a subnormal or normal segment is depicted as

in Figure 2. -e uncertainty is shown by the region located
between the lower and upper membership functions, which
is called the footprint of uncertainty in Mendel et al. [24].

-e arithmetic operations of the triangular interval type-2
fuzzy numbers are briefly introduced. Let A1 and

A2 be a two
triangular interval type-2 fuzzy numbers, given as follows:

A1 � A1
U

, A1
L

 

� a1, ξ1, β1, H A1
U

 ; b1, c1, δ1, H A1
L

  .

(27)

and

A2 � A2
U

, A2
L

 

� a2, ξ2, β2, H A2
U

 ; b2, c2, δ2, H A2
L

  .

(28)

Define “⊕,” “⊖” and “⊗ ” as the fuzzy arithmetic oper-
ations between two triangular interval type-2 fuzzy numbers
A1 and A2. Utilizing the extension principle, the addition,
subtraction, and multiplication of any two triangular in-
terval type-2 fuzzy numbers are defined as follows:

A1⊕
A2 � A1

U
, A1

L
 ⊕ A2

U
, A2

L
 

≔ a1 + a2, ξ1 + ξ2, β1 + β2, min H A1
U

 , H A2
U

  ;

b1 + b2, c1 + c2, δ1 + δ2, min H A1
L

 , H A2
L

  

A1⊖
A2 � A1

U
, A1

L
 ⊖ A2

U
, A2

L
 

≔ a1a2, ξ1 + β2, β1 + ξ2, min H A1
U

 , H A2
U

  ; b1 − b2, c1 + δ2, δ1 + c2, min H A1
L

 , H A2
L

   

K⊗A1 � K⊗ A1
U

, A1
L

 

≔ Ka1, Kξ1, Kβ1, H A1
U

 ; Kb1, Kc1, Kδ1, H A1
L

  .

(29)

A1 ⊗
A2 � A1

U
, A1

L
 ⊗ A2

U
, A2

L
 

≔ a1a2, a1ξ2 + a2ξ1 − ξ1ξ2, a1β2 + a2β1 + β1β2, min H A1
U

 , H A2
U

  ;

b1b2, b1c2 + b2c1 − c1c2, b1δ2 + b2δ1 + δ1δ2, min H A1
L

 , H A2
L

  .

(30)

Where K is a scalar value which is greater than 0.

3.2.MeanValue andVariance of the Triangular Interval Type-
2 Fuzzy Number. In financial markets, an investor’s decision
depends not only on objective models but also on their own
subjective factors. -erefore, it is necessary to include the

investor’s subjective judgment in the compound option
pricing model. Taking account of the decision maker’s sub-
jective judgment, the mean value E(·) of a triangular interval
type-2 fuzzy number, which incorporates the possibility-
necessity weight ] and the pessimistic-optimistic index λ is
introduced. For convenience, we first give the definition of the
mean value of a triangular interval type-2 fuzzy number.

µ~A (x)

x
a – ξ b – r a b b + δ a + β

H (AU)~

H (AL)~

AU~

AL~

Figure 2: A triangular interval type-2 fuzzy number.
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Definition 4. Let A � (A
U

, A
L
) � (a, ξ, β, H(A

U
); b, c, δ,

H(A
L
)) be a triangular interval type-2 fuzzy number. -en,

the mean value with the possibility-necessity weight ] and
the pessimistic-optimistic index λ is represented by

E(A) � ]EP(A) +(1 − ])EN(A)

� 
H A

U

 

0
(] + 2(1 − ])(1 − α))G A

U

α dα

+ 
H A

L

 

0
(] + 2(1 − ])(1 − α))G A

L

α dα,

(31)

where

A
U

α � a − ξ 1 −
α

H A
U

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, a + β 1 −

α

H A
U

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (32)

and

A
L

α � b − c 1 −
α

H A
L

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, b + δ 1 −

α

H A
L

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (33)

are the α-levels of the upper fuzzy number A
U and the lower

fuzzy number A
L, respectively. Furthermore, the

λ-weighting function G(·) is given by

G([a, b]) ≔ λa +(1 − λ)b. (34)

In addition,

EP(A) � 
H A

U

 

0
G A

U

α dα + 
H A

L

 

0
G A

L

α dα. (35)

and

EN(A) � 
H A

U

 

0
2(1 − α)G A

U

α dα

+ 
H A

L

 

0
2(1 − α)G A

L

α dα.

(36)

are the possibility mean value and the necessity mean value
of the triangular interval type-2 fuzzy number A, respec-
tively. Moreover,

EC(A) � 
H A

U

 

0

2
3
(2 − α)G A

U

α dα

+ 
H A

L

 

0

2
3
(2 − α)G A

L

α dα.

(37)

is the credibility mean value of the triangular interval type-2
fuzzy number A.

According to the defining formulas of the possibility
mean value EP(·), necessity mean value EN(·) and credibility
mean value EC(·), it is obvious that

EC(A) �
2
3
EP(A) +

1
3
EN(A). (38)

for the given type-2 fuzzy number A.
Compared with the singular possibility mean value EP(·),

necessity mean value EN(·) and credibility mean value EC(·),
the mean value E(·) can better reflect the diversities of sub-
jective judgment and market fuzziness. -e mean value of
N-fold compound option price can be calculated by taking the
corresponding parameters into the formula. In addition, the
possibility mean value EP(·), necessity mean value EN(·) and
credibilitymean valueEC(·) are represented by themean value
E(·) with the corresponding possibility-necessity weights ] �

0, ] � 2/3 and ] � 1, respectively. -at is to say, we can cal-
culate a deterministic value of an interval type-2 fuzzy number
by the mean value formula, which accommodates the diversity
of subjective judgment, market fuzziness, and decisionmakers’
choice. For clarity, this paper illustrates detailed steps for how
to calculate a deterministic value (that is, a mean value) of an
interval type-2 fuzzy number as follows:

Step 1. For given the interval type-2 fuzzy number
A � (a, ξ, β, H(A

U
); b, c, δ, H(A

L
)), we first need to calcu-

late the α-levels of the upper fuzzy number

A
U

α � a − ξ 1 −
α

H A
U

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, a + β 1 −

α

H A
U

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (39)

and the α-levels of the lower fuzzy number

A
L

α � b − c 1 −
α

H A
L

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, b + δ 1 −

α

H A
L

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (40)

Step 2. For given the pessimistic-optimistic index λ, we then
calculate the λ-weighting function G(A

U

α )

G A
U

α  � λ a − ξ 1 −
α

H A
U

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+(1 − λ) a + β 1 −
α

H A
U

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(41)

and the λ-weighting function G(A
L

α)

G A
L

α  � λ b − c 1 −
α

H A
L

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+(1 − λ) b + δ 1 −
α

H A
L

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(42)

Step 3. For given the possibility-necessity weight ], we fi-
nally calculate the mean value E(A) that is the deterministic
value of an interval type-2 fuzzy number A
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E(A) � 
H A

U

 

0
(] + 2(1 − ])(1 − α))G A

U

α dα

+ 
H A

L

 

0
(] + 2(1 − ])(1 − α))G A

L

α dα.

(43)

Without losing generality, this paper further takes a
numerical example to present the deterministic values of an
interval type-2 fuzzy number under the different subjective
judgments.

Example 1. In this example, the mean value of an interval
type-2 fuzzy number is considered. Similar to the parameter
settings in Zhao et al. [13], we assume that the possibility-
necessity weight ] � 1/3, 1/2, 2/3, 1 and the pessimistic-op-
timistic index λ � 1/3, 1/2, 2/3, 1, with the triangular interval
type-2 fuzzy number C � (80, 10, 11, 1; 70, 9, 8, 0.9).

For the given possibility-necessity weight and pessi-
mistic-optimistic index, the mean value of the interval type-2
fuzzy number is listed in Table 1. -e deterministic value
accommodates the double fuzziness and subjective judg-
ment, which is more consistent with the real investment
market. As shown in the table, the values are decreasing with
respect to the pessimistic-optimistic index, which reflects the
pessimistic degree of the decision-makers. In other words,
the greater the pessimistic degree, the lower the mean value
of the prices.

-e variance of an interval type-2 fuzzy number is the
arithmetic average of the upper and lower membership
functions’ variances, which is proved in Carlsson et al. [27].
For convenience, we give the definition of variance of a

triangular interval type-2 fuzzy number based on the studies
in Cagri Tolga [26].

Definition 5. Let A � (A
U

, A
L
) � (a, ξ, β, H(A

U
); b, c, δ, H

(A
L
)) be a triangular interval type-2 fuzzy number.-en, the

variance of the triangular interval type-2 fuzzy number is
defined as

σ2(A) �
σ2 A

U
  + σ2 A

L
 

2
,

(44)

where

σ2 A
U

  �
1
2


H A

U

 

0
a + β 1 −

α

H A
U

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − a + ξ 1 −

α

H A
U

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

αdα, (45)

σ2 A
L

  �
1
2


H A

L

 

0
b + δ 1 −

α

H A
L

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − b + c 1 −

α

H A
L

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

αdα. (46)

Are the possibilistic variances of the upper and lower tri-
angular membership function A

U and the lower triangular
membership function A

L.

3.3. Option Pricing with Triangular Interval Type-2 Fuzzy
Numbers. Considering the randomness and fuzziness of
market uncertainty, the time-fractional stochastic model
cannot comprehensively characterize the process of deter-
mining underlying asset price. Considering the fact that the
satisfaction level of investors with a given price is fuzzy
rather than accurate in the actual market, the type-1 fuzzy
method cannot comprehensively describe the fuzziness in

the market price. Moreover, in a fuzzy environment, in-
vestors are concerned about the most likely value, the
maximum value, and the minimum value, which can be
better converted into a triangular fuzzy number. -e market
fuzziness is characterized by a triangular interval type-2
fuzzy numbers, which meet flexibility, consistency, and
accuracy in the actual market.

By assuming that both stock prices and strike prices are
the triangular interval type-2 fuzzy numbers, this paper
constructs a power option fuzzy pricing formula based on
the research mentioned above. In the interval type-2 fuzzy
framework, the fuzzy pricing formula Ct of the call power
option is given by

Table 1: -e mean value for different subjective judgments.

] λ E(C)

1/3 1/3 82.4780
1/3 1/2 80.3383
1/3 2/3 78.1986
1/3 1 73.9193
1/2 1/3 82.3760
1/2 1/2 80.3337
1/2 2/3 78.2915
1/2 1 74.2070
2/3 1/3 82.2739
2/3 1/2 80.3291
2/3 2/3 78.3843
2/3 1 74.4946
1 1/3 82.0699
1 1/2 80.3199
1 2/3 78.5699
1 1 75.0699

Complexity 7



Ct
St, T − t, K, r, σ  � max St

β
e

d
− Ke

− r(T− t)
, 0} + St

β
e

d


∞

j�1

Γ(2 − a) · · · Γ(j + 1 − a)

Γ(2) · · · Γ(j + 1)
β2η(T − t) 

j
,

⎧⎪⎨

⎪⎩
(47)

where the Gamma functions Γ(·) in the type-2 fuzzy pricing
formula are all sourced from the time-fractional Black-
Scholes formula and

σ ≔
σ St 

EP
St 

. (48)

indicates the possibilistic standard deviation of the stock
price, which can be calculated by the variance formula (44)
and the possibility mean value formula (35). Moreover,

St � St

U
, St

L
  � Sat, ξ, β, H St

U
 ; Sbt, c, δ, H St

L
  ,

K � K
U

, K
L

  � Ka, η, θ, H K
U

 ; Kb,ϕ, χ, H K
L

  ,

d � (β − 1)r −
σ2

2Γ2(1 + a)
β (T − t),

(49)

η �
σ2

2Γ2(1 + a)Γ(2 − a)
. (50)

Similarly, the fuzzy pricing formula Pt of put power
option is given by

Pt
St, t  � max Ke

− r(T− t)
− St

β
e

d
, 0} − St

β
e

d


∞

j�1

Γ(2 − a) · · · Γ(j + 1 − a)

Γ(2) · · · Γ(j + 1)
β2η(T − t) 

j
.

⎧⎪⎨

⎪⎩
(51)

Actually, option prices depend not only on objective
pricing models but also on decision-makers subjective
factors. It is reasonable and necessary to cover the sub-
jective judgment in the power option fuzzy pricing model.
From the knowledge of fuzzy set theory, it is clearly known
that the fuzzy price is an interval type-2 fuzzy number.
However, it is not convenient for investors to make a quick
decision when faced with a fuzzy price. A quick decision is
pivotal to seizing the investment opportunity in the vol-
atile financial market. By using the mean value formula
and variance formula of the triangular interval type-2
fuzzy number, the price mean value of the call power
option is

E Ct  � ]EP
Ct  +(1 − ])EN

Ct 

� 
H


Ct

U

 

0
(] + 2(1 − ])(1 − α))G Ct( 

U

α dα

+ 
H


Ct

L

 

0
(] + 2(1 − ])(1 − α))G Ct( 

L

α dα,

(52)

where

Ct � Ct

U
, Ct

L
 . (53)

is the fuzzy call power option price that is a triangular
interval type-2 fuzzy number, which is calculated by
pricing formula (47) in the interval type-2 fuzzy
framework.

Similarly, the price mean value of the put power option is

E Pt  � ]EP
Pt  +(1 − ])EN

Pt 

� 
H


Pt

U

 

0
(] + 2(1 − ])(1 − α))G Pt( 

U

α dα

+ 
H


Pt

L

 

0
(] + 2(1 − ])(1 − α))G Pt( 

L

α dα,

(54)

where

Pt � Pt

U
, Pt

L
 . (55)

is the fuzzy put power option price that is a triangular
interval type-2 fuzzy number, which is calculated by
pricing (51).

4. Conclusions

By introducing the triangular interval type-2 fuzzy set theory
into the time-fractional stochastic financial model, we
provide an investigation of the power option pricing model
with trend memory of stock prices and fuzzy uncertainty in
financial markets. -e time-fractional order BS formulas of
the power option are derived from the reconstruction
variational iteration method. Compared with the traditional
power option pricing models, which adopt the classical
Brownian motion to model the stochastic in the financial
market, our pricing model with the time-fractional can
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better describe the trend memory of stock prices. Moreover,
utilizing the arithmetic operations, mean value formula, and
variance formula of the triangular interval type-2 fuzzy stock
price and strick price, we obtain the power option fuzzy
pricing formula. In addition, this paper also provides the
price mean value of a power option, which incorporates the
decision-makers subjective factors and makes the applica-
tion of compound options more consistent with the actual
financial markets. Compared with the traditional option
fuzzy pricing models, adopting the type-1 fuzzy set theory to
model the fuzziness in underlying asset prices, our power
option fuzzy price and the mean value, which adopt the
triangular interval type-2 fuzzy numbers, can better capture
the double fuzziness, that is, the price fuzziness and the
satisfaction fuzziness [28].
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