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A diffusive predator-prey system with both the additive Allee effect and the fear effect in the prey subject to Neumann boundary
conditions is considered in this paper. Firstly, non-negative and non-trivial solution a priori estimations are shown. Furthermore,
for specific parameter ranges, the absence of non-constant positive solutions is demonstrated. Secondly, we use the linearized
theory to investigate the stability of non-negative constant solutions. -e spatially homogeneous and non-homogeneous periodic
solutions, as well as non-constant steady state solutions, are next investigated by using Allee effect parameters as the bifurcation
parameter. Finally, numerical simulation is used to illustrate some theoretical results.

1. Introduction

-e biodynamics of ecosystems are current hot issues in
biology and ecology. -e intense effort to understand the
pattern formation and mechanisms of spatial diffusion
during the late 20th century, especially in the context of
biological and ecological contexts, has gradually raised more
and more concerns. Especially, in biochemical reactions
characterized by interactions of different species, the study
on predator-prey types has been studied widely in [1–4].

Recently, Allee effect, which was initially introduced by
Allee in 1931 [5], has been studied extensively [6–10]. With
the development of the theory for reaction-diffusion
equations, many scholars have done many mathematical
research to better describe the relationship between different
species. Especially, introducing the Allee effect into the
model makes the dynamic behavior of the model closer to
reality. -e spatiotemporal complexity of a delayed preda-
tor-prey model with double Allee effect was given by [11]. In
[12], P. J. Pal and S. Tapan consider a system with a double
Allee effect in prey population growth, which are very
sensitive to parameter perturbations and position of initial
conditions. H. Molla and S. Sarwardi developed a predator-

prey model that combines these phenomena, considering
variable prey refuge with additive Allee effect on the prey
species, and also investigated the appearance of Hopf bi-
furcations in a neighborhood of the unique interior equi-
librium point of the dynamical system [13]. -e rich
behaviour of the dynamics suggests that both prey refuge
and a strong Allee affect are important factors in ecological
complexity. For a reaction-diffusion system with double
Allee effect induced by fear factors subject to Neumann
boundary conditions, for details, please refer to [2]. -e
dynamical behavior of a reaction-diffusion-advection model
with weak Allee effect type growth has been studied in [9].
Han and Dai investigated the spatiotemporal pattern for-
mation and selection driven by nonlinear cross-diffusion of a
toxic-phytoplankton-zooplankton model with Allee effect.
By taking cross-diffusion rate as bifurcation parameter,
amplitude equations under nonlinear cross-diffusion are
derived that describe the spatiotemporal dynamics [14].

Some researchers have indicated that predators can not
only capture prey directly but also affect the behavior of prey,
even that it could affect the prey more influential than
predation [15, 16]. In fact, all animals show various kinds of
antipredator responses, such as feeling of fear, habitat
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changes, vigilance, foraging, and different physiological
changes ([17–21]).

-e cost of fear is objective, and it should be taken into
consideration when establishing predation and predation
models. For example, Jana et al. [22] have explored the
influence of habitat complexity on a predator-prey system
under fear effect by incorporating self-diffusion. Tiwari et al.
analyzed a predator-prey interaction model with Bedding-
ton-DeAngelis functional response (BDFR) and incorpo-
rating the cost of fear into prey reproduction. For the spatial
system, the Hopf bifurcation around the interior equilib-
rium, stability of homogeneous steady state, direction, and
stability of spatially homogeneous periodic orbits have been
established [23]. For a plankton-fish model with both the
zooplankton refuge and the fear effect, the local and global
dynamics of such a model have been investigated in [24].
Moreover, the investigation in [25] has revealed the
threshold behavior of a stochastic predator-prey system with
fear effect, prey refuge, and non-constant mortality rate.
Sasmal and Takeuchi studied the dynamics of a prey-
predator interaction model using Monod–Haldane type
functional response and provided detailed mathematical
results, including basic dynamical properties, existence of
positive equilibria, asymptotic stability of all equilibria, Hopf
bifurcation, direction, and stability of bifurcated periodic
solutions [26]. Furthermore, they also investigated the role
of predation fear and its carry-over effects in the prey-
predator model. Basic dynamical properties, as well as the
global stability of each equilibrium, have been discussed
[27].

Allee effect comes in different forms, including multi-
plicative Allee effect and additive Allee effect. Furthermore,
Dennis [6] first proposed the equation incorporating ad-
ditive Allee effect:

du
dt

� ru 1 −
u

k
−

m

u + a
􏼒 􏼓, (1)

where m and a are constants, which reflect the degree of
Allee effect; m/u + a denotes the additive Allee effect; r is the
intrinsic growth rate of prey; k presents capacity. We note
that if 0<m< a, then (1) has the weak Allee effect and if
m> a, then it has the strong Allee effect.

Motivated by the previous works above, we further
consider the following reaction-diffusion system with fear
effect and additive Allee effect:

zu

zt
� d1Δu + ru 1 − u −

m

u + a
􏼒 􏼓

1
1 + fv

− buv, x ∈ Ω, t> 0,

zv

zt
� d2Δv + cbuv − dv, x ∈ Ω, t> 0,

z]u � z]v � 0, x ∈ zΩ, t> 0,

u(x, 0) � u0(x)≥ 0, x ∈ Ω,

v(x, 0) � v0(x)≥ 0, x ∈ Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where Δ is the Laplace operator on domains. d1 > 0, d2 > 0
meanss the diffusion coefficients. -e homogeneous Neu-
mann boundary condition is imposed so that there is no
population flow across the boundary, ] denotes the outward
normal to the boundary zΩ. u, v stand for the density of the
prey and predator, respectively; m and a are constants,
which reflect the degree of Allee effect; f is a constant, which
reflects the degree of fear effect; 1/1 + fv and m/u + a denote
the fear effect and additive Allee effect, respectively; b

represents the modified capture rate; c is the conversion
coefficient; r is the intrinsic growth rate of prey; d is the
death rate of predator. -en, the steady-state system cor-
responding to (2) is

d1Δu + ru 1 − u −
m

u + a
􏼒 􏼓

1
1 + fv

− buv � 0, x ∈ Ω,

d2Δv + cbuv − dv � 0, x ∈ Ω,

z]u � z]v � 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

-e remainder of the paper is structured as follows. In
Section 2, we carry out a priori estimates for (3) and the
requirements for the nonexistence of non-constant positive
solutions. In Section 3, we consider the stability of non-
negative constant steady state solutions for system (3). In
Section 4, we demonstrate the existence of Hopf bifurcation
and steady state bifurcation. In Section 5, we show how the
parameters affect the dynamical behavior of the system.
Furthermore, we verify the analysis results with the nu-
merical simulation results. In section 6, the paper ends with
some conclusions.

2. Preliminaries

In this section, we first present some properties of equi-
librium solutions of (3) including a priori estimates. -en,
we discuss the nonexistence of non-constant positive so-
lutions for certain parameter range. It is an essential part for
analysis of the existence of non-constant positive steady
states and the global bifurcation. We first recall the maxi-
mum principle in [28].

Lemma 1 (see [28]). We suppose that F(x, w) ∈ C(Ω × R).
If w ∈ C2(Ω)∩C1(Ω) satisfies

Δw(x) + F(x, w(x))≥ 0, x ∈ Ω,

zw

z]
≤ 0, x ∈ zΩ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

and w(x0) � maxΩw, then F(x0, w(x0))≥ 0. Similarly, if the
two inequalities are reversed and w(x0) � minΩw, then
F(x0, w(x0))≤ 0.

We note thatΩ is a bounded domain in RN with smooth
boundary. Let λi, i � 0, 1, 2, . . . be the eigenvalues of − Δ
under Neumann boundary condition.

By Lemma 1, we have a prior estimates as follows:
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Theorem 1. Let (u(x)), ](x) be non-negative and non-
trivial solution of (3); we assume that cr/(1 + a)d

(1 + a)4/4 − m + cd1/d2 > 0. 7en, (u(x)), ](x)satisfies

0< u(x)≤ 1, 0< ]≤
cr

(1 + a)d

(1 + a)
2

4
− m􏼠 􏼡 +

cd1

d2
, (5)

where d, r, c, d1, d2, a, m> 0.

Proof. From the strong maximum principle, we have u> 0
and v> 0.-en, by Lemma 1, it follows 0< u(x)≤ 1.-e first
equation of (3) is multiplied by c and adding the two
equations of (3), we obtain

− cd1Δu + d2Δv( 􏼁 � cru 1 − u −
m

u + a
􏼒 􏼓

1
1 + fv

− dv

� cr
u

u + a
((1 − u)(u + a) − m)

1
1 + fv

− dv, ≤ cr
u

u + a

(1 + a)
2

4
− m􏼠 􏼡

1
1 + fv

− dv,

≤
cr

1 + a

(1 + a)
2

4
− m􏼠 􏼡 − dv, ≤

cr

1 + a

(1 + a)
2

4
− m􏼠 􏼡 +

dd1c

d2
−

e

d2
cd1u + d2v( 􏼁,

(6)

which leads to

Δ cd1u + d2v( 􏼁 +
cr

1 + a

(1 + a)
2

4
− m􏼠 􏼡 +

dd1c
d2

−
d
d2

cd1u + d2v( 􏼁≥ 0,

(7)

under the condition of m≤ a. -en, by Lemma 1, we obtain

cd1u + d2v≤
crd2

(1 + a)d
(1 + a)

2

4
− m􏼠 􏼡 + cd1, (8)

which implies

v≤
cr

(1 + a)d
(1 + a)

2

4
− m􏼠 􏼡 +

cd1
d2

. (9)
□

Theorem 2. For any fixed d, r, a, b, c, f> 0, there exists
d∗(r, b, c, d, m, a, f,Ω) such that if min d1, d2􏼈 􏼉> d∗, then (3)
has no non-constant positive solution.

Proof. Let (u, v) be a non-negative solution of (3). We
denote (10) as

u � |Ω|
− 1

􏽚
Ω

udx,

v � |Ω|
− 1

􏽚
Ω

vdx,

F(u) � ru 1 − u −
m

u + a
􏼒 􏼓.

(10)

-en,

􏽚
Ω

(u − u)dx � 􏽚
Ω

(v − v)dx � 0. (11)

Multiplying the first equation of (3) by u − u and in-
tegrating on Ω , applying -eorem 1 that

d1􏽚
Ω

|∇(u − u)|
2
dx � 􏽚

Ω
(u − u)F(u)

1
1 + fv

dx − 􏽚
Ω

buv(u − u)dx

� 􏽚
Ω

(u − u) F(u)
1

1 + fv
− F(u)

1
1 + fv

􏼠 􏼡dx − 􏽚
Ω

bv(u − u)
2
dx − 􏽚

Ω
bvu(u − u)dx

≤􏽚
Ω

(u − u) F(u)
1

1 + fv
− F(u)

1
1 + fv

+ F(u)
1

1 + fv
− F(u)

1
1 + fv

􏼠 􏼡 − 􏽚
Ω

bvu(u − u)dx

≤ r 1 +
m

a
2􏼠 􏼡􏽚
Ω

(u − u)
2
dx + 􏽚

Ω
fF(u)

(u − u)(v − v)

(1 + fv)(1 + fv)
dx − 􏽚

Ω
bvu(u − u)dx.

(12)

Similarly, multiplying the second equation of (3) by
v − v, we obtain
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d2􏽚
Ω

|∇(v − v)|
2
dx � cb􏽚

Ω
uv(v − v)dx − 􏽚

Ω
dv(v − v)dx

� cb􏽚
Ω

uv(v − v)dx − 􏽚
Ω

d(v − v)(v − v)dx≤ cb􏽚
Ω

(uv(v − v) − uv(v − v) + uv(v − v) − uv(v − v))dx

� cb􏽚
Ω

u(v − v)
2

+(u − u)(v − v)v􏼐 􏼑dx≤ cb􏽚
Ω

(v − v)
2
dx + cb􏽚

Ω
uv(v − v)dx.

(13)

Multiplying the first equation of (3) by c, added to the
second equations of (3), and integrating on Ω, we obtain

− 􏽚
Ω

cd1Δu + d2Δv( 􏼁dx � 􏽚
Ω

cru 1 − u −
m

u + a
􏼒 􏼓

1
1 + fv

− dv􏼠 􏼡dx.

(14)

Subject it to the boundary conditions, we have

d􏽚
Ω

vdx � 􏽚
Ω

cru 1 − u −
m

u + a
􏼒 􏼓

1
1 + fv

dx≤ |Ω|
cr

4
. (15)

Hence,

v �
1

|Ω|
􏽚
Ω

vdx≤
cr

4d
. (16)

By and (16), it follows from -eorem 1 and Young
inequality that

􏽚
Ω

uv(v − v)dx � 􏽚
Ω

v(u − u)(v − v)≤
cr

4d
􏽚
Ω

|u − u‖v − v|dx

≤
cr

8d
􏽚
Ω

(u − u)
2
dx +

cr

8d
􏽚
Ω

(v − v)
2
dx.

(17)

Similarly, we have

􏽚
Ω

− vu(u − u)dx � 􏽚
Ω

(v − v)u(u − u)dx≤
1
2

􏽚
Ω

(u − u)
2
dx +

1
2

􏽚
Ω

(v − v)
2
dx, (18)

􏽚
Ω

fF(u)
(u − u)(v − v)

(1 + fv)(1 + fv)
dx � 􏽚

Ω
fru 1 − u −

m

u + a
􏼒 􏼓

(u − u)(v − v)

(1 + fv)(1 + fv)
dx≤

rf

8
+

mrf

2a
􏼠 􏼡􏽚

Ω
(u − u)

2
dx

+
rf

8
+

mrf

2a
􏼠 􏼡􏽚

Ω
(v − v)

2
dx.

(19)

From (12), (13), (16)–(19) and the Poincaré inequality,
we obtain that

d1􏽚
Ω

|∇(u − u)|
2
dx + d2􏽚

Ω
|∇(v − v)|

2
dx

≤
1
λ1

A􏽚
Ω

|∇(u − u)|
2
dx + B􏽚

Ω
|∇(v − v)|

2
􏼒 􏼓dx,

(20)

where

A � r 1 +
m

a
2􏼠 􏼡 +

bc
2
r

8d
+

rf

8
+

mrf

2a
+
1
2
,

B �
bc

2
r

8d
+

rf

8
+

mrf

2a
+
1
2

+ cb.

(21)

-is shows that if

min d1, d2􏼈 􏼉>
1
λ1

max A, B{ }: � d
∗
, (22)

then

∇(u − u) � ∇(v − v) � 0. (23)

and (u, v) must be a constant solution. □

3. Non-Negative Constant Steady-
State Solutions

In this section, the stability of non-negative constant steady
state solutions of (3) will be investigated by the standard
linearization theory. By [17], under particular situations, (3)
has the non-negative constant steady state solutions as
follows.

(1) the trivial solution E0 � (0, 0) always exists.
(2) if a ∈ (0, 1), there is no boundary constant solution

when a< (a + 1)2/4<m.
(3) if a ∈ (0, 1), then E1(1 − a/2, 0) is unique boundary

equilibria when a<m � (a + 1)2/4.
(4) if a ∈ (0, 1), there is two boundary constant solution

E2(1 − a −

������������

(a + 1)2 − 4m

􏽱

/2, 0) and E3(1 − a+
������������

(a + 1)2 − 4m

􏽱

/2, 0) when a<m< (a + 1)2/4.
(5) if a ∈ (0, 1), there is unique boundary constant so-

lution E3 under the condition of 0<m≤ a< (a+

1)2/4.
(6) if a � 1, there is unique boundary constant solution

E4(
�����
1 − m

√
, 0) only when 0<m< 1.
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(7) if a> 1, there is unique boundary constant solution
E5(1 − a +

������������

(a + 1)2 − 4m

􏽱

/2, 0) when 0<m< a<
(a + 1)2/4.

(8) there is unique positive constant solution E∗(d

/cb, − b +
��
Δ

√
/2bf) � (u∗, v∗) with Δ � b2+ 4bfr

(1 − u∗ − m/u∗ + a) when 1 − u∗ − m/u∗+ a> 0.

Under the no-flux boundary condition, − Δ has eigen-
values 0 � λ0 < λ1 ≤ λ2 ≤ . . . and lim i⟶∞λi �∞. Let X(λi)

be the eigenspace generated by the eigenfunctions corre-
sponding to λi. Let mi be the algebraic multiplicity of λi. Let
ϕij(i≥ 0, 1≤ j≤mi) be the normalized eigenfunctions cor-
responding to λi. -en, the set ϕij(1≤ j≤mi)􏽮 􏽯 forms a
complete orthonormal basis in L2(Ω).

Next, we consider the stability of constant steady state
solutions.

Theorem 3. For all constants a, b, c, d, r, f, d1, d2 > 0, we
have that

(1) For trivial solution E0, if m> a, then E0 is locally
asymptotically stable; if m< a, then E0 is unstable

(2) If 0< a<m � (a + 1)2/4< 1, then E1 is unstable
(3) If 0< a<m< (a + 1)2/4< 1, then E2 is unstable
(4) If cbuj − d< 0, Ej(j � 3, 4, 5) is stable and if

cbuj − d> 0, Ej is unstable
(5) E∗ exists if and only if − m/a + u∗ − u∗ + 1> 0. If

a>
��
m

√
− u∗, then E∗ is stable. If a<

��
m

√
− u∗, then

E∗ is unstable

Proof. We rewrite (3) as

d1Δu + F1(u, v) � 0, x ∈ Ω,

d2Δv + F2(u, v) � 0, kx ∈ Ω,

z]u � z]v � 0, x ∈ zΩ.

⎧⎪⎪⎨

⎪⎪⎩
(24)

-e linearization matrix of (3) at a constant solution
E� (u0,V0) can be expressed by

J �
zuF1 u0, v0( 􏼁 + d1Δ zvF1 u0, v0( 􏼁

zuF2 u0, v0( 􏼁 zvF2 u0, v0( 􏼁 + d2Δ
􏼠 􏼡. (25)

where

zuF1 u0, v0( 􏼁 � − bv +
ru − 1 + m/(a + u)

2
􏼐 􏼑

1 + fv

+
r(1 − u − m/a + u)

1 + fv
,

zvF1 u0, v0( 􏼁 � − bu −
fru(1 − u − m/a + u)

(1 + fv)
2 ,

zuF2 u0, v0( 􏼁 � cbv,

zvF2 u0, v0( 􏼁 � cbu − d.

(26)

We define that Xij � a · ϕij: a ∈ R2􏽮 􏽯, Xi � ⊕mi

j�1Xij, and
X � ⊕∞i�1Xi. Let (Φ(x),Ψ(x)) be a pair of eigenfunction of J

corresponding to an eigenvalue λ. -en, we have

J

Φ

Ψ
⎛⎝ ⎞⎠ �

fu + d1Δfv

gugv + d2Δ
􏼠 􏼡

Φ

Ψ
⎛⎝ ⎞⎠ � λ

Φ

Ψ
⎛⎝ ⎞⎠. (27)

We set

Φ � 􏽘
0≤i≤∞,1≤j≤mi

aijϕij,

Ψ � 􏽘
0≤i≤∞,1≤j≤mi

bijψij.
(28)

-en, we obtain

􏽘
0≤i≤∞,1≤j≤mi

fu + d1λi fv

gu gv + d2λi

􏼠 􏼡
aij

bij

⎛⎝ ⎞⎠

ϕij � 􏽘
0≤i≤∞,1≤j≤mi

Pi

aij

bij

⎛⎝ ⎞⎠

ϕij � λ
aij

bij

⎛⎝ ⎞⎠ϕij.

(29)

From the chapter 5 of [29, 30], we know that if all the
eigenvalues of J have negative real parts, then the constant
solution E is locally asymptotically stable; J is unstable if
there is an eigenvalue of J with positive real part; if all the
eigenvalues have non-positive real parts while some ei-
genvalues have zero real parts, then the stability of E cannot
be determined by the linearization. Furthermore, λ is an
eigenvalue of J if and only if λ is an eigenvalue of the matrix
λI − Pi for some i≥ 0. We have.

λI − Pi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � λ2 − Tiλ + Di, (30)

where

Ti � − d1 + d2( 􏼁λi + fu + gv,

Di � d1d2λ
2
i − d2fu + d1gv( 􏼁λi + fugv − fvgu.

(31)

(1) For trival solution E0 � (0, 0),

Ti � − d1 + d2( 􏼁λi + r 1 −
m

a
􏼒 􏼓 − d,

Di � d1d2λ
2
i + dd1 + r

m

a
− 1􏼒 􏼓d2􏼒 􏼓λi + dr

m

a
− 1􏼒 􏼓.

(32)

If m> a, then for all eigenvalues λ, we have Ti < 0 and
Di > 0, which leads to Reλ< 0. Hence, E0 is locally
asymptotically stable. If m< a, then for i � 0, there
exists a positive eigenvalue r(m/a − 1), which im-
plies that E0 is unstable. In addition, if m � a � 1, E0
is stable, else if m � a≠ 1, E0 is unstable.

(2) For E1(1 − a/2, 0), with 0< a<m � (a + 1)2/4< 1,
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Ti � − d1 + d2( 􏼁λi +
cb(a − 1)

2
− d,

Di � d1d2λ
2
i + d1 d +

bc(1 − a)

2
􏼠 􏼡λi.

(33)

For corresponding ordinary system, E1 is unstable,
so for any d1, d2 > 0, E1 is unstable.

(3) For E2(1 − a −

������������

(a + 1)2 − 4m

􏽱

/2, 0) � (u2, v2), with
0< a<m< (a + 1)2/4< 1,

Ti � − d1 + d2( 􏼁λi + ru2 − 1 +
m

u2 + a( 􏼁
2

⎛⎝ ⎞⎠ + cbu2 − d,

Di � d1d2λ
2
i − d2ru2 − 1 +

m

u2 + a( 􏼁
2

⎛⎝ ⎞⎠ + d1 cbu2 − d( 􏼁⎛⎝ ⎞⎠λi + d1d2 cbu2 − d( 􏼁 − ru2 +
mru2

u2 + a( 􏼁
2

⎛⎝ ⎞⎠.

(34)

For i � 0, there exists a positive eigenvalue
ru2(− 1 + m/(u2 + a)2). So, E2 is always unstable.

(4) For j � 3, 4, 5, Ej is stable when cbuj − d< 0, and in
this case, Ti < 0, Di > 0 for any i≥ 0. Additionally, in

other cases, Ej is unstable, so for any d1, d2 > 0, Ej is
unstable.

Ti � − d1 + d2( 􏼁λi + rui − 1 +
m

ui + a( 􏼁
2

⎛⎝ ⎞⎠ + cbui − d,

Di � d1d2λ
2
i − d2rui − 1 +

m

ui + a( 􏼁
2

⎛⎝ ⎞⎠ + d1 cbui − d( 􏼁⎛⎝ ⎞⎠λi + rui − 1 +
m

ui + a( 􏼁
2

⎛⎝ ⎞⎠ cbui − d( 􏼁.

(35)

(5) For positive constant solution, E∗(u∗, v∗)

� (d/cb, 1 / 2bf(− b +
����������������������
b2 + 4bfr(1 − u∗ − m/u∗+

􏽰

a) )). -e Jacobi matrix of (3) at E∗ is

J E
∗

( 􏼁 �

m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

ru
∗

fv
∗

+ 1
− d1λi − −

m

a + u
∗ − u
∗

+ 1􏼒 􏼓
fru
∗

fv
∗

+ 1( 􏼁
2 − bu

∗

cbv
∗

− d2λi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (36)

It is noted that

Ti � − d1 + d2( 􏼁λi + ru
∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
,

Di � d1d2λ
2
i − d2ru

∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
⎛⎝ ⎞⎠λi + cbv

∗
−

m

a + u
∗ − u
∗

+ 1􏼒 􏼓
fru
∗

fv
∗

+ 1( 􏼁
2 + bu

∗⎛⎝ ⎞⎠.

(37)

For E∗ exists if and only if − m/a + u∗ − u∗ + 1> 0, so it is
easy to conclude that Ti < 0, Di > 0 if m/(a + u∗)2

− 1< 0(a>
��
m

√
− u∗), which implies that E∗ is stable. If

a<
��
m

√
− u∗, for i � 0, we obtain that Ti > 0 and Di > 0, so it
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follows that there exist two of the eigenvalues with positive
real parts, which implies that E∗ is unstable. □

4. Existence of Non-Constant Positive Solutions

In this section, we consider the existence of non-constant
positive solutions to (3) in Ω � [0, lπ]. First, the existence of
spatially homogeneous and non-homogeneous periodic
solutions is studied by takingm as the bifurcation parameter.

-en, the structure and the stability of the bifurcation so-
lutions that bifurcate from (u∗, v∗) are shown. From -e-
orem 3, the stability of (u∗, v∗) is determined by the trace
and determinant of J. Furthermore, we will restrict
− m/a + u∗ − u∗ + 1> 0. To put out our discussion into the
context of the Hopf bifurcation, we convert (3) into the
following system by 􏽥u � u − u∗ and 􏽥v � v − v∗ and drop
“ ∼ ” for simplicity. We have

zu

zt
� d1

z
2
u

zx
2 + r u + u

∗
( 􏼁 1 − u + u

∗
( 􏼁 −

m

u + u
∗

( 􏼁 + a
􏼠 􏼡

1
1 + f v + v

∗
( 􏼁

􏼨

− b u + u
∗

( 􏼁 v + v
∗

( 􏼁, x ∈ (0, lπ), t> 0,
zv

zt
� d2

z
2
v

zx
2 + cb u + u

∗
( 􏼁 v + v

∗
( 􏼁 − d v + v

∗
( 􏼁, x ∈ (0, lπ), t> 0,

z]u(0, t) � z]u(lπ, t) � z]v(0, t) � z]v(lπ, t) � 0, t> 0.

(38)

Firstly, we define the real-valued Sobolev space

X � (u, v) ∈ H
2
([0, lπ]) × H

2
([0, lπ]):

zu(0, t)

zx
�

zu(lπ, t)

zx
�

zv(0, t)

zx
�

zv(lπ, t)

zx
� 0􏼨 􏼩, (39)

and the corresponding complexification space is given by
XC � X⊕iX � a + ib: a, b ∈ X{ }.

-e linearized operator of the steady state system of (39)
evaluated at (m, 0, 0) is

L(m) �
ru
∗

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑1/fv
∗

+ 1 + d1z
2/zx

2
− fru

∗
− m/a + u

∗
− u
∗

+ 1( 􏼁1/ fv
∗

+ 1( 􏼁
2

− bu
∗

cbv
∗
d2z

2/zx
2

⎛⎝ ⎞⎠, (40)

where XC is the domain of L(m). -e adjoint operator of L(m) is defined by

L
∗
(m) �

ru
∗

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑1/fv
∗

+ 1 + d1z
2/zx

2
cbv
∗

− fru
∗

− m/a + u
∗

− u
∗

+ 1( 􏼁1/ fv
∗

+ 1( 􏼁
2

− bu
∗
d2z

2/zx
2

⎛⎝ ⎞⎠, (41)

where the domain of L∗(m) is XC.
-e following condition in [31] is crucial to ensure that

the Hopf bifurcation occurs.
(H1) -ere exists a neighborhood O of m0 such that for

m ∈ O, L(m) has a pair of complex, simple, conjugate ei-
genvalues α(m) ± iω(m), continuously differentiable in m,
with α(m0) � 0,ω(m0) � ω0 > 0, and α′(m0)≠ 0, all other
eigenvalues of L(m) have non-zero real parts for m ∈ O.

Motived by [31], we apply the Hopf bifurcation theory to
analyze our system. For the eigenvalue problem

− φ′′ � λφ, x ∈ (0, lπ),

φ′(0) � φ′(lπ) � 0,
(42)

we know that the corresponding (42) eigenvalues are
λn � n2/l2(n � 0, 1, . . .), with corresponding eigenfunctions
φn(x) � cosnx/l. Let

ϕ

ψ
⎛⎝ ⎞⎠ � 􏽘

∞

n�0

an

bn

⎛⎝ ⎞⎠cos
nx

l
, (43)

Complexity 7



be a pair of eigenfunctions of L(m) corresponding to an
eigenvalue ρ(m), that is, L(m)(ϕ,ψ)T � ρ(m)(ϕ,ψ)T. By a
straightforward analysis, we have

Ln(m)
an

bn

􏼠 􏼡 � ρ(m)
an

bn

􏼠 􏼡, n � 0, 1, . . . , (44)

where

Ln(m) �
ru
∗

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑1/fv
∗

+ 1 − d1n
2/l2 − fru

∗
− m/a + u

∗
− u
∗

+ 1( 􏼁1/ fv
∗

+ 1( 􏼁
2

− bu
∗

cbv
∗

− d2n
2/l2

⎛⎝ ⎞⎠. (45)

Hence, the eigenvalues of L(m) are given by the ei-
genvalues of Ln(m), (n � 0, 1, . . .). -e characteristic
equation of Ln(m) is

ρ2 − Tn(m)ρ + Dn(m) � 0,

n � 0, 1, . . . ,
(46)

where

Tn(m) � −
d1 + d2( 􏼁n

2

l
2 + ru

∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
,

Dn(m) �
d1d2n

4

l
4 − d2ru

∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
⎛⎝ ⎞⎠

n
2

l
2 + cbv

∗
fru
∗

−
m

a + u
∗ − u
∗

+ 1􏼒 􏼓
1

fv
∗

+ 1( 􏼁
2 + bu

∗⎛⎝ ⎞⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

T0 � ru
∗ m

a + u
∗

( 􏼁
2 − 1⎛⎝ ⎞⎠

1
fv
∗

+ 1
,

D0 � cbv
∗

fru
∗

−
m

a + u
∗ − u
∗

+ 1􏼒 􏼓
1

fv
∗

+ 1( 􏼁
2 + bu

∗⎡⎣ ⎤⎦> 0.

(48)

-erefore, the eigenvalues are determined by

ρ(m) �
Tn(m) ±

��������������

T
2
n(m) − 4Dn(m)

􏽱

2
,

n � 0, 1, . . .

(49)

If the condition (H1) holds, L(a) has a pair of simple
purely imaginary ±iω0 at a � a0, if and only if there exists a
unique n ∈ N such that ±iω0 are the purely imaginary ei-
genvalues of Ln(m). -e related eigenvector is denoted by
q � qn � (an, bn)Tcosnx/l, with an, bn ∈ C, such that
L(m0)q � iω0q.

We identify the Hopf bifurcation point m0 which sat-
isfies the condition (H1): there exists n ∈ N such that

Tn m0( 􏼁 � 0, Dn m0( 􏼁> 0, Tj m0( 􏼁≠ 0, Dj m0( 􏼁≠ 0forj≠ n, (50)

and for the unique pair of complex eigenvalues near the
imaginary axis α(m) ± iω(m)

α′ m0( 􏼁≠ 0. (51)

It is easy to obtain Tn(m)< 0 and Dn(m)> 0 if
0<m< (a + u∗)2, which implies that the steady state
(u∗, v∗) is locally asymptotically stable. Hence, any potential
bifurcation points must be in the interval [(a

+u∗)2, (a + u∗)(1 − u∗)). -is means that u∗ < 1 − a/2 is
essential for bifurcation condition. For any Hopf bifurcation
point m0 in [(a + u∗)2, (a + u∗)(1 − u∗)), α(m) ± iω(m) are
the eigenvalues of Ln(m), where

α(m) �
ru
∗

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑1/fv
∗

+ 1
2

−
d1 + d2( 􏼁n

2

2l
2 ,

ω(m) �

�������������

Dn(m) − α2(m)

􏽱

,

(52)

α′(m)> 0, (53)

for m in [(a + u∗)2, (a + u∗)(1 − u∗)). Hence, the
transversality condition is always satisfied.

From the discussion above, the determination of Hopf
bifurcation points reduces to describing the set

8 Complexity



Γ ≔ m ∈ a + u
∗

( 􏼁
2
, a + u

∗
( 􏼁 1 − u

∗
( 􏼁􏽨 􏼑: for some n ∈ N,which satisfies the condition(H1)􏽮 􏽯. (54)

when a set of parameters d1, d2, l, a, b, c, d, f, r are given.
In the following, for d1, d2, a, b, c, d, f, r> 0 and

0<m< (a + u∗)(1 − u∗) fixed, we choose l appropriately.
mH � (a + u∗)2 is always an element of Γ for any l> 0 be-
cause of T0(mH

0 ) � 0, Tj(mH
0 )< 0 for any j> 1, and

Dk(mH
0 )> 0 for any k ∈ N. -is corresponds to the Hopf

bifurcation of spatially homogeneous periodic solution.
Apparently, mH

0 is also the unique value m for the Hopf
bifurcation of spatially homogeneous periodic solution for
any l> 0.

In the following, we search for spatially non-homoge-
neous Hopf bifurcation points for n≥ 1. As T0(mH

0 ) � 0 and
T0′(m)> 0 for m ∈ [mH

0 , (a + u∗)(1 − u∗)), we obtain that
0<T0(m)<T0((a + u∗)(1 − u∗)) � ru∗(1 − a − 2u∗)/((a +

u∗)(fv∗ + 1)): � M∗ for m ∈ (mH
0 , (a + u∗)(1 − u∗)). We

define

ln � n

������
d1 + d2

M∗

􏽳

, n ∈ N
∗
. (55)

-en for ln < l≤ ln+1, and 1≤ j≤ n, we derive the root of
T0(m) � (d1 + d2)j

2/l2 as mH
j such that mH

0 <mH
j < (a+

u∗)(1 − u∗). Moreover, by T0′(m)> 0 in [mH
0 , (a + u∗)

(1 − u∗)), we derive (56) and (57)

0<m
H
0 <m

H
1 <m

H
2 < . . . <m

H
n < a + u

∗
( 􏼁 1 − u

∗
( 􏼁 (56)

Tj m
H
j􏼐 􏼑 � 0, Ti m

H
j􏼐 􏼑≠ 0fori≠ j. (57)

Since Dj(mH
j )> 0, now we discuss a condition to verify

Dn(mH
j )≠ 0 for j≠ n. For m ∈ [mH

0 , (a + u∗) (1 − u∗)), we
have

Di(m) �
d1d2i

4

l
4 − d2T0(m)

i
2

l
2 + D0(m): � τ

i
2

l
2􏼠 􏼡. (58)

-e quadratic function τ(i2/l2) is positive for all l ∈ R if
the discriminant of τ(i2/l2) � 0 is negative, whichmeans that
(60)

d
2
2T

2
0(m) − 4d1d2D0 � d

2
2 ru
∗ m

a + u∗( )2
− 1􏼠 􏼡

1
fv∗ + 1

􏼠 􏼡

2

, − 4d1d2cbv
∗

fru
∗

−
m

a + u
∗ − u
∗

+ 1􏼒 􏼓
1

fv
∗

+ 1( 􏼁
2 + bu

∗⎛⎝ ⎞⎠. (59)

We note that

f �
r
2
d
2
2u
∗ 4

m/ a + u
∗

( 􏼁
2

− 1􏼐 􏼑
4

16d
2
1c

2 1 − u
∗

− m/u∗ + a( 􏼁
2 − b

2⎛⎝ ⎞⎠

1
4br 1 − u

∗
− m/u∗ + a( 􏼁

.

(60)

For (a + u∗)2 ≤m< (a + u∗)(1 − u∗), we can choose
f>f such that the discriminant of τ(i2/l2) � 0 is negative.
-en, τ(i2/l2)> 0 for i ∈ N such that Di(mH

j )> 0.

We summarize our analysis above and apply -eorem 2
in [31]. -e existence of both spatially homogeneous and
non-homogeneous periodic solutions bifurcation from
(u∗, v∗) can be obtained as follows:

Theorem 4. For any l in (ln, ln+1] and f>f, system (2)
undergoes Hopf bifurcation at each m � mH

j (1≤ j≤ n).
Moreover, the bifurcation periodic solutions near (m, u, v) �

(mH
j , u∗, v∗) can be parameterized as (m(s), u(s), v(s)) so

that m(s) ∈ L∞ in the form of m(s) � mH
j + o(s) for

s ∈ (0, δ) for some small δ > 0, (61) and (62)

u(s)(t, x) � u
∗

+ s ane
i2πt/T(s)

+ ane
− i2πt/T(s)

􏼐 􏼑cos
nx

l
+ o s

2
􏼐 􏼑,

v(s)(t, x) � v
∗

+ s bne
i2πt/T(s)

+ bne
− i2πt/T(s)

􏼐 􏼑cos
nx

l
+ o s

2
􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(61)

where (an, bn) is the corresponding eigenvector, and
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T(s) �
2π
ω0

1 + τ2s
2

􏼐 􏼑 + o s
4

􏼐 􏼑,

τ2 � −
1
ω0

Im c1 m
H
j􏼐 􏼑􏼐 􏼑 −

Re c1 m
H
j􏼐 􏼑􏼐 􏼑

α′ m
H
j􏼐 􏼑

ω0′ m
H
j􏼐 􏼑⎛⎝ ⎞⎠,

(62)

T′′(0) �
4π
ω0

τ2 � −
4π
ω2
0

Im c1 m
H
j􏼐 􏼑􏼐 􏼑 −

Re c1 m
H
j􏼐 􏼑􏼐 􏼑

α′ m
H
j􏼐 􏼑

ω0′ m
H
j􏼐 􏼑⎛⎝ ⎞⎠.

(63)

Furthermore, we notice that

(1) 7e bifurcating periodic orbits from m � mH
0 are

spatially homogeneous, which coincide with the pe-
riodic orbits of the corresponding ODE system

(2) 7e bifurcating periodic orbits from m � mH
j are

spatially non-homogeneous.

-en, we consider the direction and stability of spatially
homogeneous Hopf bifurcation.

Theorem 5. For system (2), if all other eigenvalues of
Ln(mH

0 ) have negative real parts and Re(c1(mH
0 ))<

0 (resp.> 0), the spatially homogeneous periodic solutions
bifurcating from m � mH

0 are locally asymptotically stable

(resp. unstable). Moreover, the Hopf bifurcation at mH
0 is

supercritical (resp. subcritical) if 1/α′(mH
0 )Re(c1

(mH
0 ))< 0(resp.> 0).

Proof. Here, the notations and calculations in [31] are used
in the same way. For the sake of simplicity, we denote 1 −

u∗ − m/u∗ + a by M. -en, we introduce

q ≔
a0

b0
􏼠 􏼡 �

1

− − cb + c

����������

b
2

+ 4bfrM

􏽱

/2fω0i
⎛⎝ ⎞⎠,

q
∗ ≔

a
∗
0

b
∗
0

􏼠 􏼡 �

1/2πl

− ω0f/ − cb + c

����������

b
2

+ 4bfrM

􏽱

􏼒 􏼓πli
⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(64)

such that 〈q∗, q〉 � 1, 〈q∗, q〉 � 0, L(mH
0 )q � iω0q and

L∗(mH
0 )q∗ � − iω0q

∗, where

ω0 � 2b

�����������������

u
∗
cM

����������

b
2

+ 4bfrM

􏽱􏽲

b +

����������

b
2

+ 4bfrM

􏽱 . (65)

And 〈u, v〉 � 􏽒
lπ
0 uTvdx denotes the inner product in

L2(0, lπ) × L2(0, lπ). -en, we get the derivatives at
(u∗, v∗, mH

0 ) as follows:

fuu � −
2r a

3
+ 3a

2
u
∗

− am + 3au
∗ 2

+ u
∗ 3

􏼐 􏼑

a + u
∗

( 􏼁
3

fv
∗

+ 1( 􏼁
, guu � 0,

fuv �
fr a

2 2u
∗

− 1( 􏼁 + a m + 2u
∗ 2u
∗

− 1( 􏼁( 􏼁 + u
∗ 2 2u

∗
− 1( 􏼁􏼐 􏼑

a + u
∗

( 􏼁
2

fv
∗

+ 1( 􏼁
2 − b, guv � cb,

fvv �
2f

2
ru
∗
M

1 + fv
∗

( 􏼁
3, gvv � 0,

fuuu � −
6amr

a + u
∗

( 􏼁
4 1 + fv

∗
( 􏼁

, guuu � 0,

fuuv �
2fr a

3
+ 3a

2
u
∗

− am + 3au
∗ 2

+ u
∗ 3

􏼐 􏼑

a + u
∗

( 􏼁
3

fv
∗

+ 1( 􏼁
2 , guuv � 0,

fuvv � −
2f

2
r a

2 2u
∗

− 1( 􏼁 + a m + 2u
∗ 2u
∗

− 1( 􏼁( 􏼁 + u
∗ 2 2u

∗
− 1( 􏼁􏼐 􏼑

a + u
∗

( 􏼁
2

fv
∗

+ 1( 􏼁
3 , guvv � 0,

fvvv � −
6f

3
ru
∗
M

1 + fv
∗

( 􏼁
4, gvvv � 0.

(66)

In addition, we note
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Qqq �

cn

dn

⎛⎝ ⎞⎠cos2
nx

l
,

Qqq �
en

fn

⎛⎝ ⎞⎠cos2
nx

l
,

Qqqq �

gn

hn

⎛⎝ ⎞⎠cos3
nx

l
,

(67)

where cn, dn, en, fn, gn, hn are defined as the same with [31].

cn � fuua
2
n + 2fuvanbn + fvvb

2
n,

dn � guua
2
n + 2guvanbn + gvvb

2
n,

en � fuu an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ fuv anbn + anbn􏼐 􏼑 + fvv bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

fn � guu an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ guv anbn + anbn􏼐 􏼑 + gvv bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
,

gn � fuuu an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
an + fuuv 2 an
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(68)

For n � 0, by calculation, we derive (69)
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∗
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∗
( 􏼁

2
􏼐 􏼑 fv

∗
+ 1( 􏼁

u
∗

a + u
∗

( 􏼁 a + u
∗
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− 1( 􏼁 + m( 􏼁

����������

b
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+ 4bfrM

􏽱
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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∗

( 􏼁
3

�����������������

cu
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b
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+ 4bfrM
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192mu

∗
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∗
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4 −

192m fv
∗
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3

a + u
∗

( 􏼁
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

f0 � h0 � 0.

(69)
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-en, we can obtain (70)
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􏼐 􏼑
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�����������������

cu
∗
M

����������

b
2

+ 4bfrM

􏽱􏽲 ,

〈q∗, Qqq〉 �
cf

2
r
3
M

2

fv
∗

+ 1( 􏼁
3

����������

b
2

+ 4bfrM
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3/2 +
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2
r
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M

2
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∗
− 1( 􏼁 a + u

∗
( 􏼁
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􏼐 􏼑 fv

∗
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u
∗

a + u
∗

( 􏼁 a + u
∗
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∗

− 1( 􏼁 + m( 􏼁

����������

b
2

+ 4bfrM

􏽱
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+
64icfrM a + u

∗
( 􏼁

3
− am􏼐 􏼑 fv

∗
+ 1( 􏼁

2

a + u
∗

( 􏼁
3

�����������������

cu
∗
M

����������

b
2

+ 4bfrM

􏽱􏽲 +
192mu

∗
fv
∗

+ 1( 􏼁
3

a + u
∗

( 􏼁
4 −

192m fv
∗

+ 1( 􏼁
3

a + u
∗

( 􏼁
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(70)

And, we note

ω20 � 2iω0I − L m
H
0􏼐 􏼑􏽨 􏽩

− 1
H20,

ω11 � − L m
H
0􏼐 􏼑􏽨 􏽩

− 1
H11,

H20 �
c0

d0
􏼠 􏼡 − 〈q∗, Qqq〉

a0

b0
􏼠 􏼡 − 〈q∗, Qqq〉

a0

b0
􏼠 􏼡 � 0,

H11 �
e0

f0
􏼠 􏼡 − 0〈q∗, Qqq〉

a0

b0
􏼠 􏼡 − 〈q∗, Qqq〉

a0

b0
􏼠 􏼡 � 0.

(71)

Hence, ω20 � ω11 � 0, 〈q∗, Qω20q〉 � 〈q∗, Qω11q〉 � 0. By
further calculation, we obtain that
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Re c1 m
H
0􏼐 􏼑􏼐 􏼑 � Re
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∗
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∗

( 􏼁 u
∗

− 1( 􏼁 + m( 􏼁

����������

b
2

+ 4bfrM

􏽱 +
192mu

∗
fv
∗

+ 1( 􏼁
3

a + u
∗

( 􏼁
4 −

192m fv
∗

+ 1( 􏼁
3

a + u
∗

( 􏼁
3

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(72)

From above analysis, we know that α′(mH
0 )> 0. Hence,

by -eorem 2 in [31], the bifurcating solutions bifurcated
from (mH

0 , u∗, v∗) are locally asymptotically stable (resp.
unstable) if Re(c1(mH

0 ))< 0(resp.> 0) and Tj(mH
0 )< 0,

Dj(mH
0 )> 0 for j≥ 1, and the Hopf bifurcation at mH

0 is
supercritical (resp. subcritical) if 1/α′(mH

0 )Re(c1(mH
0 ))

< 0(resp.> 0). -e proof is complete.

Inspired by [31, 32], we take m as the bifurcation pa-
rameter and also restrict (a + u∗)2 ≤m< (a + u∗)(1 − u∗).
We suppose that Ω � (0, lπ). -e non-negative steady state
solutions of (72) satisfy the elliptic problem corresponding
to

d1
z
2
u

zx
2 + r u + u

∗
( 􏼁 1 − u + u

∗
( 􏼁 −

m

u + u
∗

( 􏼁 + a
􏼠 􏼡

1
1 + f v + v

∗
( 􏼁

− b u + u
∗

( 􏼁 v + v
∗

( 􏼁 � 0, x ∈ (0, lπ), t> 0,

d2
z
2
v

zx
2 + cb u + u

∗
( 􏼁 v + v

∗
( 􏼁 − d v + v

∗
( 􏼁 � 0, x ∈ (0, lπ), t> 0, z]u(0, t) � z]u(lπ, t) � z]v(0, t) � z]v(lπ, t) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(73)

From -eorem 3, we know that (u∗, v∗) is locally as-
ymptotically stable for 0<m< (a + u∗)2 and unstable for
(a + u∗)2 <m< (a + u∗)(1 − u∗).

-e steady state bifurcation point m0 satisfies the steady
state bifurcation condition (H2) in [31]:

Dn m0( 􏼁 � 0, Tn m0( 􏼁≠ 0, andTj m0( 􏼁≠ 0, Dj m0( 􏼁

≠ 0 forj≠ n ∈ N0.

(74)

d
dm

Dn m0( 􏼁≠ 0. (75)

It means that the potential steady state bifurcation points
m shall satisfy conditions (74) and (75). Recall that for
m ∈ (0, mH

0 ], Tn(m)≤ 0 and Dn(m)> 0. -en, any potential
bifurcation point m0 must be in the interval
(mH

0 , (a + u∗)(1 − u∗)). Hence, the steady state bifurcation
points reduces to the set

Λ: � m ∈ m
H
0 , a + u

∗
( 􏼁 1 − u

∗
( 􏼁􏼐 􏼑: for some n ∈ N, (74) and(75)are satisfied􏽮 􏽯, (76)

when a set of parameters (d1, d2, a, b, c, d, f, r, l) are
fixed.

Recall that Dn(m) � d1d2ρ2 − d2T0(m)ρ + D0, where
ρ � n2/l2. By solving Dn(m) � 0 , we have

ρ � ρ±(m): �
d2T0(m) ±

��������������������

d22T
2
0(m) − 4d1d2D0(m)

􏽱

2d1d2
. (77)

We define that
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z(m) � d2r
2
u
∗ 2 m

a + u∗( )2
− 1􏼠 􏼡

2

− 4d1cr 1 − u
∗

−
m

u
∗

+ a
􏼒 􏼓

�����������������������

b
2

+ 4bfr 1 − u
∗

−
m

u
∗

+ a
􏼒 􏼓

􏽲

,

B(m) � d
2
2T

2
0(m) − 4d1d2D0(m) �

4b
2d2u
∗

b +

�������������������������

b2 + 4bfr 1 − u∗ − m/u∗ + a( )

􏽱

􏼒 􏼓
2 z(m).

(78)

For z(m), we have z′(m)> 0 and z(a + u∗)2 < 0, z((a +

u∗)(1 − u∗))> 0 for (a + u∗)2 ≤m< (a + u∗)(1 − u∗).
Hence, there exists a unique root of z(m) � 0 denoted by

mB, which implies that B(mB) � 0 and ρ±(m)> 0 exists only

for mB ≤m< (a + u∗)(1 − u∗). -erefore, the potential
steady state bifurcation points reduces to the set (79).

Θ: � m ∈ m
B
, a + u

∗
( 􏼁 1 − u

∗
( 􏼁􏽨 􏼑: for some n ∈ N, (74) and (75)are satisfied􏽮 􏽯. (79)

-en, the properties of ρ±(m) can be summarized as
follows: □

Lemma 2. We assume that d1, d2, f> 0, u∗ < 1 − a/2. 7en,
for any m ∈ [mB, (a + u∗)(1 − u∗)), ρ±(m) exists. Moreover,
ρ+(m) is increasing and ρ− (m) is decreasing.

lim
m⟶mB

ρ+(m) � lim
m⟶mB

ρ− (m) �
T0 m

B
􏼐 􏼑

2d1
,

lim
m⟶mB

ρ+
′(m) � +∞, lim

m⟶mB
ρ−
′(m) � − ∞,

ρ+ a + u
∗

( 􏼁 1 − u
∗

( 􏼁( 􏼁 �
1
d1

ru
∗ 1 − u

∗

a + u
∗ − 1􏼠 􏼡,

ρ− a + u
∗

( 􏼁 1 − u
∗

( 􏼁( 􏼁 � 0.

(80)

Proof. -e first limit equation is trivial, so we omit here. We
mainly analyze the monotonicity result on ρ±((a + u∗)(1 −

u∗)) with respect to m for m ∈ (mB, (a + u∗)(1 − u∗)].
Differentiating Dn(m) with respect to m, it follows that

2d1d2ρ±(m)ρ ±′(m) − d2T0(m)ρ±(m) − d2T0ρ ±′(m) + D0′ � 0.

(81)

Hence, ρ ±′(m) � d2T0′(m)ρ±(m) − D0′(m)/2d1d2ρ±
− d2T0(m). It is easy to get 2d1d2ρ+(m) − d2T0(m)> 0 and
2d1d2ρ− (m) − d2T0(m)< 0 from (77). In addition, by cal-
culation, we obtain that for m ∈ (mB, (1 − u∗)(a + u∗)),
d2T0′(m)ρ±(m) − D0′(m)> 0. -e proof is completed.

It follows from Lemma 1 that the curve (m, ρ±) forms a
smooth connected curve which connects (m, ρ) �

(mB, T0(mB)/2d1), ((1 − u∗)(a + u∗), 1/d1ru∗(1 − u∗/a +

u∗ − 1), and (m, ρ) � (m, 0).
By the properties of ρ±, if

0<
n
2

l
2 <

1
d1

ru
∗ 1 − u

∗

a + u
∗ − 1􏼠 􏼡, (82)

then there exists mB
n ∈ [mB, (1 − u∗)(a + u∗)) such that

ρ+(mB
n ) � n2/l2 or ρ− (mB

n ) � n2/l2, and thus Dn(mB
n ) � 0.

We define l � n/
����������������������
1/d1ru∗(1 − u∗/a + u∗ − 1)

􏽰
. -en, for any

l> l, there exists a mB
n such that Dn(mB

n ) � 0.
Next, we verify dDn(mB

n )/dm≠ 0. We recall that
Dn
′(m) � − d2n

2/l2T0′(m) + D0′(m). Moreover, we know that
T0′(m)> 0 and D0′(m)< 0 . It follows that dDn(mB

n )/
dm< 0. □

5. Numerical Simulations

In this section, in order to reveal the influence of fear effect,
Allee effect, and other factors on the predator-prey model, a
numerical method is used to analyze the effect of parameters
on the asymptotic behavior of system (2) so as to verify and
supplement the theoretical results mentioned before.

In Figure 1, we choose d1 � 0.1, d2 � 0.1, a � 0.5, b � 1,

c � 1, d � 0.2, r � 1, f � 15. Varying the parameter m and
choosing the initial data near (u∗, v∗), we indicate the
following numerical results on the effects of parameter m:

(1) Take 0<m � 0.3< a. Since m< (d/bc + a)2,
(u∗, v∗) ≈ (0.2000, 0.1275) is locally asymptotically
stable by -eorem 3. -e simulation results indicate
that system (2) converges to the equilibrium (see
Figures 1(a) and 1(b)).

(2) Taking m � 0, there is no Allee effect on prey. Since
m< (d/bc + a)2, (u∗, v∗) ≈ (0.2000, 0.2000) is lo-
cally asymptotically stable by -eorem 3. -e sim-
ulation results indicate that system (2) converges to
the equilibrium (see Figures 1(c) and 1(d)).

(3) Taking 0< (d/bc + a)2 <m � 0.495< a< (d/bc+

a)(1 − d/bc), it satisfies the condition of the weak
Allee effect and Hopf bifurcation condition by
-eorem 4. -e simulation results indicate that
system (2) undergoes Hopf bifurcation (see
Figures 1(e) and 1(f )).

(4) Taking 0< (d/bc + a)2 < a<m � 0.51< (d/bc + a)

(1 − d/bc), it satisfies the condition of the strong
Allee effect and Hopf bifurcation condition by
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-eorem 4. -e simulation results indicate that
system (2) undergoes Hopf bifurcation (see
Figure 1(g) and 1(h)).

In Figure 2, we choose d1 � 0.1, d2 � 0.1, a �

0.5, b � 1, c � 1, d � 0.2, r � 1, m � 0.51. Varying the pa-
rameter f and choosing the initial data near (u∗, v∗), it
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Figure 1:-e effects of parameter m forT � 800, l � 2.-e values of parameter m are as follows: (a, b)m � 0.3; (c, d)m � 0; (e, f ) m � 0.495;
(g, h) m � 0.51. -e right column is the L1 norm of u and v.
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shows that when f is small, system (2) has obviously pe-
riodic oscillation (see Figure 2(a)). When f increases, the
maximum L1 norms of u are almost the same. However, the
maximum L1 norms of v decrease with f increasing (see
Figures 2(a)–2(d)). -is means that the fear has a negative
impact on predators. Moreover, the period of periodic so-
lutions becomes larger as f increases. (see Figures 2(a)–
2(d)).

In Figure 3, we choose d1 � 0.1, d2 � 0.1, a � 0.5, b � 1,

c � 1, r � 1, f � 15, m � 0.51. Varying the parameter d and
choosing the initial data near (u∗, v∗), it indicates that when
d increases, the period of periodic solution is decreasing.
Furthermore, with d increasing, the amplitude of periodic
solutions is also decreasing. (see Figures 3(a)–3(c)). As d

continues to increase, system (2) converges to an equilib-
rium (see Figure 3(d)).
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Figure 2: -e effects of parameter f for T � 800 , l � 2. -e values of parameter f are as follows: (a) f � 5; (b) f � 50; (c) f � 500;
(d) f � 5000.
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6. Conclusion

In this paper, a diffusive predator-prey model with additive
Allee effects induced by fear factors is considered, in which
prey can represent the antipredator behavior due to fear
factors. Analytical results indicate that the upper bound of v

depends on the diffusion rates d1, d2, the death rate of the
predators d, the Allee effects parameters m, a, the conversion
rate c, and the level of fear f. -ere exists d∗, which depends
on a, b, c, d, r, m, f,Ω, such that if min d1, d2􏼈 􏼉>d∗, the
system have only constant positive solution. Furthermore,
the dynamic behavior near E∗ � (u∗, v∗) is of more con-
cerned. -en, we indicate the existence of non-constant
positive solutions. Taking m as a bifurcation parameter,
system undergoes Hopf bifurcation at each m � mH

j

(0≤ j≤ n). Furthermore, for d1, d2, a, b, c, d, r, f> 0,

0<m< (1 − d/bc)(d/bc + a) are fixed, and there is a smooth
curve Γn of non-constant positive solutions bifurcating from
(u∗, v∗).

We observe that the Allee effect is essential to the dy-
namical behavior of system (2) by numerical simulations.
-e amplitude in the strong Allee effect is increasing with m

increasing. On the other hand, numerical simulations reveal
that the fear effect have an impact on the dynamical behavior
of system (2). With the fear effect increasing, the period of
periodic solutions is increasing, but the maximum L1 norm
of u is almost the same. On the contrary, the maximum L1
norm of v decreases with f increasing. From a biological
standpoint, the prey survives by adopting antipredator be-
havior as a result of the fear effect, and the predator is
impacted by the prey’s antipredator behavior. At last, we
show how the death rate d affects system (2) with the strong
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Figure 3: -e effects of parameter d for T � 800, l � 2. -e values of parameter d are as follows: (a) d � 0.18; (b) d � 0.2; (c) d � 0.22;
(d) d � 0.3.
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Allee effect. As d increases, the amplitude of periodic so-
lution is decreasing, and the period of periodic solution is
also decreasing.

It is extremely important to construct animal interaction
models in the incorporation of these different types of
factors. Considering the different ways of introducing the
Allee effect and the interaction with the fear effect, further
analysis of the bifurcating solutions of (2) remains a chal-
lenging problem. From our discussion before, we conjecture
that Turing-Hopf bifurcation, Hopf-Hopf bifurcation is
likely to exist in the system, which reveals more complex
dynamic behavior and potential biological significance.
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