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The cubic set (CS) is a basic simplification of several fuzzy notions, including fuzzy set (FS), interval-valued FS (IVFS), and
intuitionistic FS (IFS). By the degrees of IVFS and FS, CS exposes fuzzy judgement, and this is a much more potent mathematical
approach for dealing with information that is unclear, ambiguous, or indistinguishable. The article provides many innovative
operational laws for cubic numbers (CNs) drawn on the Schweizer-Sklar (SS) t-norm (SSTN), and the SS t-conorm (SSTCN), as
well as several desired properties of these operational laws. We also plan to emphasise on the cubic Schweizer-Sklar power
Heronian mean (CSSPHM) operator, as well as the cubic Schweizer-Sklar power geometric Heronian mean (CSSPGHM)
operator, in order to maintain the supremacy of the power aggregation (PA) operators that seize the complications of the
unsuitable information and Heronian mean (HM) operators that contemplate the interrelationship between the input data being
aggregated. A novel multiple attribute decision-making (MADM) model is anticipated for these freshly launched aggregation
operators (AOs). Finally, a numerical example of enterprise resource planning is used to validate the approach’s relevance and

usefulness. There is also a comparison with existing decision-making models.

1. Introduction

Zadeh [1] proposed the fuzzy set (FS) as a procedure for
expressing and transmitting precariousness and ambiguity.
Since its inception, FS has attracted significant attention
from intellectuals all over the world, who have calculated its
factual and theoretical characteristics. Economic and busi-
ness [2-4], genetic algorithms [5, 6], and supply chain
management [7, 8] etc., are some of the most recent aca-
demic attempts at the theory and implementations of FSs.
Ensuring the insertion of the notion of FS, various modi-
fications of FSs were predicted, namely interval-valued FS
[9], which explained the membership degree (MD) as

a subclass of [0, 1] and Atanassov’s intuitionistic fuzzy set
(AIFS) [10], which clarified the MD and nonmembership
degree (NMD) as a single number in the [0, 1], with the
constraint that sum of the two degrees must be less or equal
to 1. As a consequence, IFS goes farther into explaining
uncertainty and unreliability than FS. The attractive scenario
occurs when the MDs of such an object is expressed in the
form of IVFS and FS. Under such settings, the conformist
IFS is unable to manage such data. To handle the afore-
mentioned situation, Jun et al. [11] initiated the perception
of the cubic set (CS). The aforementioned sets are special
cases of CS. Mahmood et al. [12] proposed the concept of
CNs and initiate some weighted aggregation operators
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(AOs) and apply these AOs to resolve multiple attribute
decision-making (MADM) problems under a cubic
environment.

One of the key elements in the MADM process is the
AOs. The AOs can blend many real numbers into a single
one. Various AOs have different properties, namely, the PA
operator offered by Yager [13], have the ability to remove the
negative effects of uncomfortable information from last
ranking results, and have been enlarged by numerous re-
searchers from all over the world to figure out how to deal
with different situations. Xu [14] enlarged the ordinary PA
operator and delivered the IF power aggregation operator
and implemented it in multiple attribute group decision-
making (MAGDM), which can minimize the effects of in-
accurate information. Some AOs, such as the Bonferroni
mean (BM) operators [15], Heronian Mean (HM) operators
[16], and Muirhead mean (MM) operators [17], as well as the
Maclaurin symmetric mean (MSM) operator [18], ended up
taking the connection between input arguments into con-
sideration. BM and HM can take into account the con-
nection between two input arguments, but MSM and MM
operators can take into account the connection between any
number of input opinions. These AOs were later extended to
deal with a wide range of ambiguous circumstances [19-23].

The majority of AOs use algebraic T-norm (TN) and T-
conorm (TCN) to aggregate CNs. Currently, Ayub et al. [24]
have presented a set of cubic fuzzy Dombi AOs that have
been implemented on Dombi [25] TN and TCN and utilized
to resolve MADM issues in a cubic fuzzy context. Dombi TN
and Dombi TCN, as well as other TN and TCN, such as
algebraic, Einstein, Hamacher, and Frank, are simplified in
Archimedean TN (ATN) and Archimedean TCN (ATCN).
On a generic parameter, Dombi TN and TCN outperform
generic TN and TCN, providing more flexibility in the input
dataset. Fahmi et al. [26], anticipated Einstein AOs for CNs
and apply these AOs to solve MADM problems unde cubic
information. Wan [27] and Wan and Dong [28] developed
some power average/geometric operators for trapezoidal
intuitionistic fuzzy (trIF) numbers and apply them to solve
MAGDM problems under a trIF environment. Wan and Yi
[29] initiated PA operators for trIFNs using strict t-norm
and strict t-conorm. CS was further extended by Ali et al.
[30] who introduced the concept of neutrosophic cubic set
and give its applications in pattern recognition.

Schweizer-Sklar (SS), TN (SSTN), and Schweizer-Sklar
TCN (SSTCN) [31] are thorough ATN and ATCN instances,
similar to the TN and TCN mentioned above. Because they
contain a parameter that may be changed, SSTN and SSTCN
are more flexible and superior to the prior techniques.
Despite this, the majority of SS research has been on
identifying the underlying theory and forms of SSTN and
SSTCN [32, 33]. Recently, SS operational laws (OLs) were
anticipated for interval-valued IFS (IVIFS) and IFS by Liu
et al. [34] and Zhang [35], respectively, and predicted
various power aggregation operators for these fuzzy struc-
tures. On the basis of SS OLs, Wang and Liu [36] projected
MSM operators for IFS and apply them to resolve MADM
problems. Liu et al. [37] also proposed SS OLs for single-
valued neutrosophic (SVN) elements, as well as a variety of
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SS prioritised AOs for dealing with MADM issues in an SVN
context. Zhang et al. [38] predicted and used certain MM
operators for SVNS identified on SS OLs to solve MADM
issues. By capturing the variable parameter from [0, co],
Nagarajan et al. [39] developed a couple of SS OLs for in-
terval neutrosophic set (INS). For IN numbers, they an-
ticipated various WA/WG AOs implemented on these SS
OLs. The COPRAS was enhanced by Rong et al. [40], who
predicted a new MAGDM technique based on SS OLs.

From the above literature, it has been observed that the
existing aggregation operators for CNs have only the ca-
pacity of removing the effect of awkward data or have the
capacity of taking interrelationships among input arguments
and a generic parameter. Yet, there are no such aggregation
operators for CNs, which have the capacity of removing the
effect of awkward data, can consider the interrelationship
among input CNs, and also consist of the generic parameter.
It has been observed that studies on various implementa-
tions of fuzzy MADM AOs depending on SS OLs have been
published rapidly. Yet, no one has attempted to define cubic
SS OLs and merge them with a power HM operator to deal
with cubic information. As a consequence, we propose the
following:

(1) The SS operations are considerably more adaptable
and superior than the prior methods in terms of
a variable parameter.

(2) Fortunately, there are many MADM difficulties in
which the characteristics are linked, and many
existing AOs can only alleviate such scenarios when
the attributes are in the shape of real integers or other
fuzzy formations.

(3) In the current situation, no such AOs exist which are
drawn on SS OLs. In response to this limitation, we
combined PA and HM operators with SS OLs to
address MADM  problems utilising cubic
information.

The subsequent are the urgencies and contributions of
this effort as a result of important impacts from earlier
studies as follows:

(1) Developing innovative SS ALs for CNs, describing
their basic features, and using them in SS ALs that
anticipate CSS power HM operators, CSS power
geometric HM operators, and their weighted form

(2) Examining the commencing AOs’ basic features and
exceptional cases

(3) Expecting the deployment of a MADM model on
these commencing AOs

(4) Assessing enterprise resource planning (ERP) ap-
plications using a MADM model

(5) Confirming the feasibility and appropriateness of the
launched MADM model

This paper is structured in the following way to achieve
these goals. Section 2 introduces a variety of key concepts
such as CSS, score and accuracy functions, PA, and HM
operators. In Section 3, we look at a few SS OLs for CNs with
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general parameters that take values from [—00, 0]. Section 4
introduces the CSSPHM and CSSPGHM operators, as well
as their weighted variants, and examines limited properties
and detailed instances of the proposed AOs. In Section 5,
a novel MADM model is established on these new AOs. A
numerical example of enterprise resource planning is pro-
vided in order to verify the unassailability and compensa-
tions of the initiated approach. Finally, in Section 6, a brief
conclusion is provided.

2. Preliminaries

In this portion, various essential conceptions namely, cubic
set (CS), the Heronian mean (HM) operator, and their basic
characteristics are reviewed.

2.1. The Cubic Set and Its Operational Laws

CS,<CS, iff IV (") < IE ("),
LM< (")
Fi(M)=f2("),

CS, = CS,iff I* (") =I5 ("),
L("=5")
f () =£(")
€S, uCS, ={{", [max(I} ("), 15 (")), max
€8, CS, ={(", [min(1; ("), 15 (")),

forall " € U,

For the comparison of two CNs cn, and cn, the score,
accuracy functions, and comparison rules are designated as
follows:

(If(”)+1f(3”)_f1("))’ (3)

SoF (cny) =

(If(”)+lllj(”)+f1(”)). (4)

ArY (cn,) = 3

For comparison of two CNs, the comparison rules are
listed below.

(i) If SoF (cn;) > SoF (¢n,), then cn, is superior to cn,
and is labelled by cn, >cn,

(ii) If SoF(cn,) = SoF (cn,) and ArY (cn;) > ArY (cn,),
then cn; is superior to cn, and is labelled by
cn; >cn,

(iii) If SoF(cn;) = SoF(cn,)and ArY (cn;) = ArY (cn,),
then cn, is same to cn, and is labelled by cn; = cn,

Definition 3 (see [12]). Let the two CNs be cn; = ([If,
IV], f1) and cn, = ([I%,1Y], f,). Then, the OLs for CNs are
identified as go after:

(rr ("), 17 (")), min(f,
min(I7 ("), 15 ("

Definition 1 (see [11]). Let U be a universe of discourse set.
A CS is classified and mathematically indicated as follows:

CS={{u",1(u"), f (u")) forallu" € U}, (1)

where I(")=[TF("),IV(")]and f(") are IVFS and FS,
respectively. For computational affluence, we shall label
a cubic number (CN) by the ordered pair cn = ([I%,1V], f),
where [I*,IY]and f are IVEN and FN, respectively. If
f € [IL,1Y], then it is said to be an internal cubic number
and if f ¢ [IL,1V], then it is said to be an external cubic
number.

The OLs for CS were classified by Jun [11] and are
established below as follows:

Definition 2 (see [11]). Let CS, and CS, be any two CSS.
Then,

(2)

"))> forall " € U},
"))> forall " € U}.

(") f2(
))]> max(fl("),fz(

eny@en, =([Iy + Iy - I, 1) + 15 - 1Y

1[2]]>f1f2>§
cn; ®cn, :<[I I3, Iy IU] f1 +f2_f1f2>§

<[1 (1—1‘{)5],f?>; 3>0,
Cnl <[(Il 5’ Illj S] 1_(1_f1) >
eny =([1-IL -0 1- o).

(5)

Definition 4. Assume that the two CNs be cn,; = ([I}, 1V],
f1> and cn, = ([I%,i], f,). Then, the normalized Ham-
ming distance among cn; and cn, is labelled as go after:

DNE (cn,, cn,) =§<'If - G|+ -1+ £ - f2|>. (6)

2.2. The PA Operator. Yagar [13] originated the acuity of the
PA operator which is the vital AOs. The PA operator
concentrated a variety of ineffectual consequences of inanely
high or awkwardly low sentiments stated by professionals.
The anticipated PA operator can merge a set of crisp



numbers where the weighting vector is simply on the input
information and is classified as go after.

Definition 5 (see [13]). Let U, (u=1,2,...,0) be a faction
of nonnegative real numbers. The PA operator is a function
delineated by

ZS:I (1 + T(Uu))Uu

PA(U,,U,,...,Ug) = SO 12 T(0,) (7)
where
) e
T(U,)= .
() ,Zl Sup (U, U,), (8)
ES7)

and Sup(U,,U,) is the support degree for U, from U,
which meets the following axioms. (1) Sup (U, U,) € [0, 1],
(2) Sup(U,,U,) = Sup(U,,U,), and (3) Sup(U,U,)>
Sup (A, M), if [U, - U, | < |2A - M|.

2.3. Heronian Mean (HM) Operator. HM [16] operator is
one of the substantial tools for aggregation, which can ex-
emplify the interrelations of the input elements, and is
demarcated as go after.

Definition 6 (see [16]). Let V = [0,1], p,q>0, HMP1:
V" — V, if HMP1 satisfies

. mom Wp+a)
HMP (bcl,bcz,...,bcm):<m2+m Y Zbcébcﬁ) .

G=1H=i
9)

(1/2K)

enyocn, :<[1 (- (- 1)

en, @cn, = <<[((1f)“< L)1)
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Then, the mapping HM? is suspected to be an HM
operator with constraints. The HM operator should certify the
qualities of idempotency, boundedness, and monotonicity.

3. Schweizer—Sklar Operational Laws for
Cubic Numbers

In this portion, the SS OLs are commenced for CNs based on
SSTN and SSTCN, and numerous underlying characteristics
of SS OLs for CNs are explored.

The SSTN and SSTCN [28, 29] are recognized as go after:

. - (WK)
Ty, (U,0) = (U>K +OK 1) ,

T (U,0) =1 —((1 —E L 1-0)X - 1)(1/>K)

where K <0,U,0 € [0,1].

Additionally, when XK =0, we have Ty (U,0) =00
and T3 (U,0) =U+ 0 -U0. That is, SS TN and TCN
reduce to algebraic TN and TCN.

Now, based on SSTN T (U, ©) and TCN Tk (U, 0), we
can permit the following definition of SRSR ALS of CNs.

Definition 7. Let the three CNs be cn = ([I,IV], f),
eny = ([I51V], f,), and cn, = ([I%, 1], f,). Then, the SS
ALS for CNs are classified as follows:

»1 —<(1 —I?)K +(1 - Ig)>K 3 1)(1/)10]’((][1);1( + (f2)>K B 1)(1/>1<)>’

(11)

(@ @y ) (- ea-p )™ o

cen = < [1 —(c(l ~ IL))K oo 1))(1»10) 1 —(c(l B IU)K oo 1)><1/>1<>]’ (e (e~ 1))(1/>1<>>) (13)
(113K) (1/K)
cnc=<[<c(1L)>K—(c—1)> ! ,<C(IU)}K—(C—1)> ' ]»(1—(C(1—f)>K—(c—1))(1/>K))>- (14)

Moreover, some worthy properties of the operational
laws can be easily achieved.

Theorem 1. Let cn = {[I*, IV], f),cny = ([I},1V], f,) and

cny = ([I5, 151, f,) be any three CNs. Then,
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Proof. The proof of 1 and 2 are easy, so we can only prove

Cn1®sscn2 = Cn2®sscn1; o
the remaining formulas.

cn; ® g5Cn, = €N, ® goCNy;
A(cn;@gscn,) = Aen ®gghen,, A >0;

Aen@gsdyen = (A, +Ay)en; - Ay, A, 205 (15)

e @ geen™ = (en)™2, 1, 1,20;

A A A
cn) ® geen; = (cn; ® ggen,)”, A >0.

)‘(C“‘EBSS“‘”=<<[1‘<(1‘If)x+(1”§)x‘l)wm’l—((1—1Y)>K+(1—12)*—1)“”’“],
L+ (=DM
(05 )0) o)
A+ ()%= 1) -a-0) ")),
(([r-00-% a0y -2-a-0) ™
CE RS T(R A W S I OISR VA S SO R
e e R e
A A -2+ 1) M),

iy

>

(1/)]():|

/\

(16)
In the meantime, we can acquire that
/\cnlesslcn2:<( 1- (A(1— D _0-n+A(1-1)" —(/\_1)_1>(1/>K)’1
(-1 -a-nea(-1) —(A—1)—1)(1/ ] OfX =D+ K -1 1)”>K>,
(17)

>~
—
|
~
=G
SN—
+
>~
—~
—
|
SN—
|
N
=
+
—
N———
X
—_
—~
)
=
+
N
N
[ 35}
|
N
=
SN—
X
\/



Therefore, A (cn;®¢cn,) = Acn;@ggAcn,, A >0; holds.

A cndged,cn
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([t ) o (ua- e ) 1)

(G070 ) (a0

:<<[1—<A(1— LY (1
{A (1-1
=<<[1—((/11+/12)(1—IL)>K—()L1+/12)+1>1/)K,1

((Al +A2)f)K - (A +4) + 1)1/>K> =(A; +A,)cn.

The proofs of the other two parts are the same as the
above two parts. Therefore, the proofs are omitted here. [

4. The Cubic Schweizer—Sklar Power
HM Operators

4.1. The CSSPHM and CSSPGHM Operators. In this segment,
numerous new AOs namely, CSSPHM and CSSPGHM

)>K (A, - 1)) - 1)1/>K]

/XK
))K—(A1 +/12)+1> -1

_<(/11 + )‘2)(1 -

a(l+T(cny))

1/2K

(M= =)+ (e f - (4, - 1)) - 1)>

(-1 -, +A)+1> ](Alfxwlzf)'(—(/\l+/\2)+1)1/)K>,

) (1) + 1)1%],

(18)

operators are anticipated by combining HM and GHM
operators with PA operators to anticipate.

Definition 8. Let cn, = ([T, 1V], f,), (i=1,2,...,a) be
a faction of CNs, and then the cubic Schweizer-Sklar power
HM (CSSPHM) operator is clarified as follows:

1/(U+0)

CSSPHMY® (eny,cny, ... cn5) =

) a
a(a+1) 1,]2:1
j=i

U,0>0,T(cn;) = 23:1
- jH
cn;) = 1 - DNE(cn;, en;), and DNE(cn, cn;) can be figured
by (6).

where sup (cn;, cn), sup (cn;,

CSSPHMY® (eny,eny, ... cny) =

a(a+1)

Y2, (1+T(en,))

N U@ §(1+T(cnj)) o ©
)OO\ (4 T(eny) ’
(19)

Let Y, = (1+ T(cni))/Zi1 (1+ T (cny,)), then the defi-
nition of CSSPHM operator is correspondent to the fol-
lowing type:

1/(U+0)

(a¥ien,)° ® g5, (a¥ien; ) (20)

<&
i M o
=
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Theorem 2. Let U>0,0>0 and G,H grab no more than

Then, exploiting the CSSPHM operator, their merged values
one value of 0 at a time, cn; = ([IF,1V], f,) be a set of CNs.

are CNs, and

CssPHMY® (cn,, cn,

L 2 2
U+0 a(a+1) =
=

12K

W(1_<o<1_(ax“f,(1—Ii”)*-(aﬁ'a-1))‘/*)X+o<1_(ax(1_I,U)’“_(ayj_1))1’*)*_U_O+1>”>K>)K)M)X_(_1 _1)) >

™M
—/
|
e
C
~—
—
—
® |
<
|
)
Z
N
o
<
|
Nt
~L
%
SN——
X
+
Q
—
|
—
® |
=
_
|
N
*
=N
o
o<
|
—
=
~L
%
~——
*
|
c:
|
+
Q
\/H
b
v;é
\_/’_
%
~_
X
—
N
N—

~
=t
+ |-
Q
~
—_
|
o~
=
AN
M=

j=i

U+0
((((H D O (O R I (R R R R >) )(Uiﬁl)) )
(21)
Proof. Firstly, we need to prove the following equation:
Z (EYicni)U®55(5chnj)o
ij=1
j=i
[ i ik K\ K I R\K PNT a@e o
1- i; 1—<U<1—<aYi(l—Ii) —(aYi—1)> ) +®<1—<an(1—1j) —(an—l)) ) —U—O+1> —( 5 —1) ,
j=i
:< @ A e K 1K\ K ot K IK\K VN e - >
1- ,;,Zzl 1—<U<1—(aYi(1—Ii) —(aYi—l)) ) +o<1—(an(1—1j) —(an—l)) ) —U—O+1> —( 5 —1) .
L j=i ]
17K
a . — K = 1K\ K o K = UK\K 1K a(a+1)
LJZZI 1—<U<l—(aYifi -(a¥,-1)) ) +O(l—(anfj -(a¥;-1)) ) —U—O+1> —( 5 —1)
j=i
(22)

By SS OLs defined in Definition 7, we get

aVicn, = <[1 —<5Yi(1 -1 - @y, - 1))1/)K, 1 —(EYi(l -1 - @y, - 1))1/)K],(5Yif,?‘< - @Y, - 1))WK>, (23)

and
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[<G<1 (311" (a8, - 1))1/>K)”‘ _(0- 1)>”}K, <o<1 (&% (- 1) - Y - 1))%))K ~(U- 1)>U>K]) >

1K\ K 17K
1—<U(L{§ﬁﬂK—@YV—Q) ) _(U_lg

@¥,en,)" = <

Similarly,

(24)

1/2K

a¥ e, :<[1 (a8 (- ) (- 1)) - (w1 1) (8- )

oy < [<o<1 (a1 -1 - (a, - 1))””<>>K 6 1)> :
1_<o(1 @y 1)) -0 1)>

|- - -n) ™),
’(é(l—(aw—I?YK—(%—1>>”)}K-<@-”>M]’>.

1K
(25)

So,
(EYicni)U ® SS(Echnj)o
X
<U(1—<5Y1(1—If)m—(5§"(i—1 1DK) (1 (1-1) (EYj—l))WK> —U—®+1>

=< <U(1‘<5Yi(1—19)x—(55h—1 m) (1 (1-19) (an—1))mK>>K_tJ_e+1>m >

1—(0(1—(5?5”‘ (aY—l))mK> +®(1 (a¥,£% (aY_l))W>>K_U_®+1)1m<

172K

(26)

(1) When a = 2 by Equation (17) and Equation (25), we
have

2 ) .
z (a¥;en,)" ®SS(§chnj)o
i1

jei

.. o . ) .
= ( (2¥ien) ®5(2¥en;) )9955( (2Y,en ) ®ss(2Y,em,) )9955( (ZYzcnz) ®ss(2¥,eny)
17K

<U<1—<2Y -(2Y, - ) ( -(2Y, - 1))/ >}K—U—O+1) ,
(I“J(l <2Y (1- 1U -(2¥, - ) ( 2¥,(1- IU (2Y11)>”}K>>K00+1>”)K,
- <U<1 (24,65 - (2¥, - ))”*) +O<1—(2Y1f1 —(ZYI—1))1/)'())K—U—O+1>”)K>@SS

1/>|< X . UK\K
Ul 2Y11 )" - ¥, - < 2¥,(1-13) (2Y2—1)> ) —U-0+1

1/>|< x . UK\K K
Ul —(2¥, - > < 29,(1-13) (2Y2—1)) ) —U-0+1

O

172K
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y .. . K\ XK . . UxK\K 1K
.1—(U(1—(2Y1f1>K—(2Y1—1)) )+®<1—(2Y2f§K—(2Y2—1)) )—U—®+1) Ys
(1-
(o-

1/2K

1 -(U(l (21,85 - (2¥, - 1))“()>K + ®<1 (21,85 - (2¥, - 1))1/”()}K —U-0+ 1) ).

. 15K\ K
U1 2Y21 L)" - (¥, -1 ) +0
K
—( +0

)) (zYz(l—IE)K—(zYz—1)>I/X>X—U—®+1>1/>K
))mK (25?2(1—IE)H{—(zYz—1))1/>K>)K—I"J—®+1)1/>K

(Ul 2¥,(1-1)) 2Y, -1

(27)
By using Equation (17), we get
,-,,-i] (a¥,en) © g(a¥;en,)°
X K -
-y (1—(0(1—<§Yi(l—IiL)X<—(§Yi—1)>WK>>K+O(1—(EYJ.(I—IJL)X—(EYi—1)>U>K>)K—U—O+1>}K) (F)
]

N N

=< 1- Z: (1—<U<1—<aYi(1—1?)X—(aYi—1))1/>K>>K+o(1—(an(l—IjU))K—(an—1))1/>K>>K—U—o+1) > _(a(a2+1)_1)) >

(z <1_<U(1—(;Yifi*—(ayi—1))”*)>K+o<1—(;acf,-*—(asz,-—1))””‘)>K-U-o+1)1/")*_(3(3;1>_1>)
) (28)

That is (22) is true a = 2. (2) Let us assume that Equation (24) is true a = z.

z .
.Zl (a¥ien) @ ss(ay; cnj)o
i,j=
i

(29)
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Complexity

Furthermore, whena=2z + 1

z+1 .. ~ z+1 .. ~
. . 0o .. . o

Z (aYicni)U ®Ss(ancnj) = Z ( ((z + l)Yicni)U ®SS((Z + l)chnj) >

ij=1 i,j=1

jei jei

2 ) ) (30)
Bgs Z( ((z+ I)Yicni)u ®gs((z + 1)Yz+lcnz+1)o)
i=1

.. U . I3
eaSS( ((Z + 1)Y2+1C1’lz+1) ®SS ((Z + I)YZ+lan+1) >

Firstly, we will show that

z

i=1

t
1

TINMe

T

Z( ((z+ I)Y,Cni)ug’ss ((Z + I)Yz+lcnz+1)o)

1/XK 1
K K 1Ky K
<17<U<17((z+1)Yi(1711‘))'(7((“1)\"{,71))”*) +®(17((z+1)Y”,(171;‘))'(7((“1)3"(”171)>”>K> 7U70+1> ) (Wl)) ,

1

. . s K UK
<1—(0<1—((z+1)Yi(1—1}J)>K—((z+1)Yi—1))”>K) +®(1—((z+1)Yz+1(1—1;i,)>'<—((z+1)3"{1“-1))1%) —U—®+1> ) _<(“1)2(“2)_1)) >

|

1

1/K
1K\ K
<1 7<U(1 (24 VLK~ (2 + DY, - 1))”)'())K +0(1-((2+ DY - (4 DY, - 1))”“)>K —U-0+ 1) > {M, 1))

TN

(31)

We shall prove (31), on mathematical induction on z. (i) For z = 2, we have

3

2 N ~
( (z+ D¥ien) @ g5 ((z + 1)Y2+lcnz+1)o>
=1

.. U .. o . U . )
((3Y1CH1) ®SS(3Y3CH3) >®55<(3Y2cn2) ®SS(3Y3CH3) )

1/2K A

<U<1 —<3Y1(1 -1 - (3¥, - 1)>U>K>>K + O(l —<3Y3(1 -1 - (3Y, - 1))1/>K>>K —U-0+ 1> ,

<U(1 —<3Y1(1 -1 - 2¥, - 1))%)>K + O(l —<3Y3(1 ~19)" - (3Y, - 1)>1/>K)>K _U_6+ 1>1/>K

. . K . UK\ K o K . K\K 1K
.1_(U<1—(3Y1f1 - (2¥, - 1)) ) +®<1—(3Y3f3 - (3%, - 1)) ) —U—®+1) Yss



Complexity

(U(l (3% - 1) - (3%, - 1))1DK)

By using (11), we get

11
1/2K 1
X+®<1—(3Y3(1—1§)>K—(3Y3—1))”>K)>K—U—®+1> ,
1K XK |
. . K .. 1K\ X .. K .. .
U(l—(sYZ(l—IS) —(3Y2—1)) ) +0 1—(3Y3(1—I§) —(3Y3—1)>>K ~U-0+1
. .. . 1K\ K . . UK\ X K
.1-(U(1—(3Y2f§‘<—(3Y2—1)) ) +®<1—(3Y3f§K—(3Y3—1)) ) —U—®+1) .
(32)
_<1—<U(1—(3Yi(1—I?)X—(3Yi—1))1/X)K+®<1—(3Y3(1—I?)X—(3Y3—1))1/H{)K—U—o+1>U>K>)K—(3(32+1)-1)> '
) (1—<U<1—<3Yi(1—I}J)K—(ﬂ‘?i—1))1/)K)X+o(1_<3Y3(1—I?))K—(ss"@—1))]/)]())K—U—o+1>U>K>)K_(3(32+1)—1)> >

(ii) Suppose that Equation (28) is true z = 6.

5

Z( ((6+ I)Yicnx)u ®ss((6+ 1)Ya+1m6+1)o)

i=1

s X 1K\ K K 1K\ K R\ K
1- Z<1-<U<1-((6+1)Yi(1-1}) -(<6+1)Y,-1)) ) +o<1-((6+1>3"{6+,(1-1’5*,) —((6+1)YM—1)) ) -U-0+1> > -<
i=1

g 1K\ K
<Z (1 7(0(1 ~((6+ DX - (6 + DY, - 1))”'())K +e(1 (6 + V¥ 5 = (6 + V¥ - 1))”)’())K —U-0+ 1) ) 7<
i1

, (1 —(G(l T -6, - 1)) s o1 - 38, - 1)) ) -0 -0+ 1)”{)”{ 7(3(3 ‘-

. . X . 1K\ K . LK . UK\ XK 2
1- U(l—(((’)’-v-l)Y,(l—IiU) —((6+1)Yi—1)) ) +o<1-((5+1>YM(1-1§H) —((6+1)Y6+1—1)) ) —U-0+1 -<

1/XK

)

2

(33)

1K
B6+1)(6+2) B
2

1>)
)) )

B+1)(6+2)
e

))

17K
B+1)(6+2) B

2

(34)
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Then, when z = 8 + 1, we have

6+1

Z( 6+ Z)Y,mx)u ®gs((6+ 2)¥4,0004,, )0)
i=1

641 . ~ § .
= Z( (6 +2)¥en)" o (6 + 2)Y6+ché+2)o>$ss( (6 +2)¥ 5y 0n6,)" ®5 (6 + 2)Y6+2cn6+2)0)
I=1

(30

X

s

>

i=1

. . UK . K\ .
1—((6+2)Y‘(1—Ii) —((6+2)Y,—1)) ) +O<1—((6+2)Y6+2(1

5

>

i=1

f)K

(

(U(l 7((5 ¥ (1-1,

<

<1 —(U(l ~((6+ Y5 - (6 + ¥, - 1))”“())K + O(l ~((6+ ¥4,

K
))K 6+ DYy, 1))”*) +0(1 —((6+2)Y6+2(1 ~Ii

XK
<U(1 —((6 + Z)Y(M(l - I},ﬂ,)m - (6 +2)¥4,1 - 1))”»() + 0(1 _((5 + 2)Y5+z(1 - I:":{rz))K

1 7<U(1 ~((6+ 250, X = (64 2)¥ - 1))””‘)* + 0(1 ~((6+2)¥5,,E5, -

. . VK . 1K\ K .
1—<U<1—((6+2)Yi(1—1‘) —((6+2)Y|—1)) ) +O(1—((6+2)Y6+Z(1

6+1

(&

i=1

<1 7(U(1 ~(6+ 2% - (6 + )Y, - 1))”)")>K + @(1 ~((6+2)¥4,.EX,

Therefore, (31) is true z = 8 + 1. Hence, (31) is true for all
z. Similarly, we can prove other parts of (30). So, (30)
becomes

z+1 . _
. . o

z ((z+ D¥ien)” & s((z + D¥jen;)

irj=1

i

z+1

z+1 x

)

ij=1
J=i

i

(1 7(U<1 —((z+ DY;(1- Ii”)>K -((z+DY; - 1))1%)

2

ij=1
jei

.. . LyK . VX . L \K ; K\K N
U(l—((6+2)Y,(l—Ii‘) -((6+2)Y,-1)) ) +O<1—((6+2)Y6+Z(1—13ﬂ) —((6+2)Y6*2—1)) ) —U-0+1 -<

641

))K

((6+2)¥s,, -

XK
(1 - <U(1 -((5 2% (1 -1 - (6 + 20 - 1))”*) + O(l —((6 +29¥5(1

(1 _<U<1 —((z+ DY(1-1)* - (+ DY, - 1))“())K +o<1 —((z+ DY(1-1)" (2 + DY, - 1))”>K>)K —U-0+ 1>U>K>}K —(

K 1Ky K
+O<17((Z+I)YJ(I*IJ'U))K’((Z+1)Yj*l)) > ’Ufo*l) ) 7(

17K\ K
(1 7<U<1 ~(@+ DVEE ~ (2 + DY, - 1))”'())K + O(l ~(@+ DY (2 + 1Y, - 1))”)'()>K ~U-0+ 1) > 7<

Complexity

11K

)) |

(6+2)(6+3)
2

K\ K N a6+
’Iiz)m*((é*z)Y‘ﬁﬂ’l)) ) 7ﬂ76+1> > ’(%’

)

1K
(8+2)(86+3)
2

1K\ K
((6+2)Y6+1—1))”>K>)K—U—O+l) ) —(

K\ XK VK
,((6+2)Ym271)) >7070+1> s

1/K

) vK\K
—((6+2)YM—1)) ) —U-0+1

11K

1))””‘))[( —U-0+ 1> 5

17K
6+2)(6+3)

1K\ XK 17K\
’I<Lm'+z))K’((6+2)Yé+z’1)) ) ’U’O+1> ) ’(( 5

,1))
))* )

(6+2)(6+3)
2

)

UK\ K 1Ky K
_1‘,09*2)"(-((6+2)Y6+2—1)) ) —U—o+1> ) —(

1K\ K KNE (542)(543) "
- ((8+2)¥,,,-1)) ) 7U70+1) > 7(#’

(35)

(z+1)(z+2)
e

1/K 7
1)) |

)) )

(z+1)(z+2)7
2

))

(z+1)(z+2)
-

(36)
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Hence, (22) is true a = z + 1. Therefore, (22) is true for all By (22), we can say that (14), is right. From (22), and the
. SS operational laws for CNs, we have

2 0 e O
a@+1) ( 2 (a¥ien)” e SS(aYiC”j)O)

. (U(l (G 1))”“>X . o<1 (%011 (3, - 1))””‘>>K ~U-0+ 1)“>K>>K)w>x’.

. X UK K /XK |

=< 1_(a(a2+1) z (1_(1'3(1_(;5@(1_I}J)”‘_(;Yi_1))””‘>X+o(1_(5szj(1_1f)*_(;Yj_1))i) —U—O+1) ) >

(37)

Furthermore,

1/(0+0)
2 e N - 0
(a(a+ D (,’,JZH (a¥ien;) ®SS(aYJan) ))
=i

11K

K

1—(Ui6(1_(a(azﬂ) :Zl (1_(U<1—(3Yiﬁm_(aYi—1))>K> +O(1—(anfJ)K_(an—l))”*))K_U—O+1) ) ) J —(016—1))

(38)
Hence,
CSSPHMU® (cn,, e, . .., cn,)
(Dio(l(a(il) i;<17(U<17(53“{,(145)"&(&71))‘*)mm(l7(;@(171;)*7(;171))1 )X—U—OJrl)mK )K) ) (5251
=< (UiO(l(a@in ,,4:_1<1 <U<17(;&(1713)"&(;?,1)) )Xm(l7(53"(}(143"&(;?,.71))' >)KUO+1>”)K))K) ) (5hs1) >

(39)
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Now, we confer some advantageous possessions of the
projected CSrSrPHOM operator. O

Theorem 3 (idempotency). Let U>0, 0>0 and U,O
capture no more than one value of 0 at a time, cn; = ([IF,
IY], f>(i=1,2,...,a) be a faction of CNs, and cn; = ([},
Y], fs;y =cen=([I51Y], f)(i=1,2,...,a). Then,

CSSPHMU® (eny,ceny,...,cn;) =cn = < [IL, IU],f>. (40)

CSSPHMY® (eny,eny, ...,

Complexity

Proof. Since  cn; = ([IF 1Y], f;) = en= (I 1Y], f) (i =
1,2,...,a), we have sup(cni, cn,)=1(Vg,z=12,...,a) so
Oy = (1@)(‘v’g =1,2,...,a) and EYg =a(l/a)=1(Vg =
1,2,...,a).

Then,

= CSSPHMU‘6 (en,cn,. .., cn)
- UK K 1/K 1
1 2 a LUK\ K X LK\ K Ko 1K 1
gvol| 55 .;,Zzl 1- U<1—((1—1) ) ) +o(1—((1—1) ) ) -U-0+1 _<U+O_1)
j=i
5\ 1Ky K K
:< 1 2 a . UK\ K XK VK VK Ko 1K 1 >’
Tl - mi; 1- U<1—((1—I) ) > +®<1—((1—1) ) ) -U-0+1 _<U+o_1)
J=i
K K 1/K
2 2 . K K- 1K\ K 1
- U+o@*(MMAM;AI*U“_D ro-p*-U-0+1)"™) ) ) (5757
j=i

((U+O)(IL)>K—U—O+ 1) _Uﬁl-O+ 1)1/)](,

1 17K
+1)
(¢]

«U+®U%*—U—O+Q—U+

( 1
U+0

(liets

17K
i K -
(U0 -H¥-T-0+1)-x+1)

1
1-(=——
<U+® +0

—([I" 1)) = en

Theorem 4. (commutativity). Let (cny,cny, ..., cnﬁ) be any

permutation of (cny,cn,, ..., cny). Then,

CSSPHMU’O(cnI', cny,...,cny) = CSSPHMY® (cny,cny,. .., cng).
(42)

CSSPHMY© (eny,cny, ... cng) =

a(a+1)

(41)

O
. ! ! ! . .
Proof. Since (cnj,cny,...,cny) is any permutation of

(cny,cn,,. .., cny),

1/(U+0)

(EYicni)U ® SS(Echnj)O

[
I T'Mml
LR



Complexity
1/(U+0)
2| Y (aten) e (atien))
a(@+ | g VT TV

= CSSPHMY® (cnj,cny, ..., cny).

CSSPHMY® (cny,cn,, ..., cny)

Theorem 5 (boundedness). Let cn; = ([IF,1V], f,) (i = ]
1,2,...,a) be a faction of CNs, cn™ = ([min,I}, min,IV], >CSSPHMY® (¢nj, cn;,...,cn; ) =cn”.
a
max; ;) and cn* = ([max,IF, max,IV], min, f;). Then,
56 Similarly, we can have
cn” <CSSPHM " (cny,cn,,...,cn;)<cn’. (44) .
CSSPHM"® (cny, cn,, . . ., cng)
< CSSPHMU® (cny,eny,...,cn; ) =cn’.

Proof. By the judgement technique in Definition 2, we have
So, we have

cn; > cn]', and then based on Theorems 3 and 4, we have

CSSPHEMU® (cn;, cn,,...,cn; )< CSSPHMY© (cny,cen,, ..., cnz) < CSSPHM Y (enj,cny,...,cn5")

15

(43)

(45)

(46)

(47)

CSSPHM operator can be attained, and are specified below

Hence,
as follows:

cn” < CSrSrPHOMY® (cny,cn,, ...

By apportioning different values to the constraints
K,Uand ©, numerous different circumstances of the

,eny)<en'. (48)

1/(U+0)

,cng) = ( (EYicni)U ® (Echnj)C))

PHMY® (cn,, cn,, ... —
CSS (cny, cn, GD 2
j=i
r o 1/(U+0) 17
a o U o L O\ 2ala+])
1-[] (1—(1—(1—1})”‘) (1—(1—119)an ) ,
i,j=1
=i
o 1/(U+0)
a = ] = o 2/a(a+1)
aY; ayY.
=< 1-[] (1—(1—(1—1?’) ) (1—(1—13’) ’) )
ij=1
L j=i
1/(U+0)
a T NG 2/a(a+1)
Y. aY,
- 1- 1 (1—(1—<fi>a ) (-0)™) )

Case 1. If 2K = 0, then the CSSPHM operator relapses
to the CPHM operator, which can be stated as follows:

(49)
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Case 2. If O — 0, then the CSSPHM operator reverts
to the cubic descending PA operator and is quantified

as follows:

CSSPHMY® (eny,eny, ...y cn;)

1/(U+0)

) 2 a . o - 0o
“dm G ijzzl<(aY‘C“”) ou(3en,)”)

=i

_ vy
= (7(;+ D Z((i +1-1) (EYicn,-)U>>

i=1
[ 3 X 1Ky K 1K X "
1 28 . _. . 1K . 1
(6(1—<a(a+1)§<(a+l—1)<1—<U(1—(aYl(1_IiL))K_(aYi—l)> ) —(U—1)> ) )—((Za ’)(5(5+1)>_ )) ) _(G_l)
i y K UK K 1K
1 2 @ . . UK . N 1
:< (U(l(a(a+1);<(a+11)<1<U(1(aYi(1[iU))K(aYi1)) > —(U—l)) ) )<(2az)<m+l)) )) ) 7<671> >
_ 1\ X 1K & v\ K "
1 2 & ) " - . - . _ 1
1- U(1(5(5+1);((a+11)(1(U(l(aYifi)K(aYi1)))K> —-(U-1 ) )_<(231)<5(5+1)) )) ) *(6*1)
(50)
Case 3. If U — 0, then the CSSPHM operator reverts
to the cubic ascending PA operator and is quantified as
follows:
CSSPHM™? (eny,eny, ...y cng)
B 1/(U+0)
. 2 e U _
"o, (a(a+1) iJZl((aY'C“*') oss(s¥jen;) ))
Jj=i
) 7 . 1/0
Jp— 0
:<T*'U;<l(aYicni ))
K K 17K 17
1 2 & . e Ko vK\K 1 _ 1
(é(l(a(aJrl);(z(l(O(l(aYi(lIiL) —(aYifl)) ) —( 71)> ) 7((a+171)(5(a+1))7) 7(T71)
_< ) , - K UK K , 1K\ K 1 17K >
= 6(1_(a(a+l);(z‘<1—<6(1—(EYi(1_1§7)>‘<_(§Yi—1)) ) —(O—1)> > )—((5+i—1)(a(a+l)>—1>) ) _(6_1) :




Complexity
Case 4. If O — 0 and sup(cni,cnj) =h(h e [0,1])

(foralli# j), then the CSSPHM operator reverts to the

CSSPHMY? (eny,cn,, ... cny)

1/0+0

2 i O . 0o
= li _— Y.cn, Y.cn.
(.)ino a(a + 1) i)JZZI (a lcnl) ®ss(a ]CnJ)

1_(5(1_

Certainly, the significant degree of CNs cn}"J (i=12,
.,a)is (aa-1,...,1).

<a(az+1) §<(a+ 1 —i)(l -(0Q -£)* - (U- 1))”X)}K> —((25—1')(%) - 1>>U>K)>K —(%— 1))

17

cubic linear descending WA operator and is stated as
follows:

(52)

Case 5. If U— 0 and sup(cn;, cnj) =h(he[0,1])
(foralli# j), then the CSSPHOM operator reverts to
the cubic linear ascending WA operator and is stated as
follows:
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CSSPHMO’O (eny,ceny, ..., cn;)
1/(U+0)

a U - 0o
_Ul_‘o G0 iJZl (aYien;) ®SS(ancnj)

(53)

300000 (mi-v(i) 1) ) (3]

—_
|
—//
Ol =
/-~
—
|
/N
o
=
+ )

M

reverts to the cubic basic HM operator and is stated as

Case 6. If U=0=1/2 and sup(cn;,cn;) = h(h
then the CSSPHM operator follows:

€ [0, 1]) (foralli # j),

CSSPHM (/2 (112) (cnl,cnz, RN cn;)

5 e

5
1/2K 1/K
2 3 PSRN S 2 3 1, ok 1, ok PR\
S EE I (R C A N B IS Ee N (R GO B
Jj=i j=i
« )
2 a 13K
a@+1) Zl( (505" +50-15)%) )
(54)

Case 7. If U=0=1, and sup(cn,cn ;) =h(h reverts to the cubic linear HM operator, and is stated as
€ [0,1]) (foralli# j), then the CSSPHM operator follows:



Complexity 19

1/2

2 T
CSSPHM"' (cn,cny, . . ., cnz) = iGiD L}Z:l (cni®cnj)
j=1
[ 1K\ K 7K
1 2 ! INK oK K\ X 1
({5 -ty )
=i
K XK 172K
= 1 2 ! UNK K 1K\ X 1 >
( ( e 2 (@ )T )
L Jj=i J

UK K 172K
2 f K K 15K\ X 1
- 1-((1-f, 1- -1 -
! a(a+1) L;( <( 1) +( f]) ) ) "
=i
(55)
O
Definition 9. Let cn; = ([IF,1V], f)(i=1,2,...,2) be
a faction of CNs, then the cubic SS power geometric HM
(CSSPGHM) operator is explicated as follows:
2/a(a+1)
S 1 a .. a (14T (eny))/ ,;7 T (cn, a(1+T cny) )/ ;—1 T (cn,
CSSPGHM"Y® (eny,cen,, ... cng) = = H Ucni( (e Cen)) e (7 )))GBSSOCI’L( (o fem) L, (1o ))) ,
U+0Of L )
j=i
(56)

where U,020,T(cn) = Z; _ 1 sup (cny, cny), sup (cn;, Let Y; = (1+ T (cny))/ Y5, (1+T(cn,)), then the defi-

I= nition of CSSPGHM operator is correspondent to the

j#i subsequent formula:
cnj) =1 - DNE (cn;, cn]-), and DNE(cni,cnj) can be total-
ized by (6).

2/a(a+1)
. 1 S a
CSSPGHM”® (en eny, . eng) = | [ <UcniaY‘€BssOcn;YJ> . (57)
ij=1

i

Theorem 6. Let U>0, ©>0 and U, O take no more than ~ CNs. Then, exploiting the CSSPGHM operator, their merged
one value of 0 at a time, cn; = ([I},1V], f,) be a faction of ~ values are CNs, and
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Proof. Proof of Theorem 6 is similar to that of Theorem 2.
Therefore, omitted here.

Now, we deliberate some privileged properties of the
projected CSSPGHM operator. O

Theorem 7 (idempotency). Let U>0, O3>0, and U, O grab
no more than one value of 0 at a time, cn; = ([IF,17], f,) (i =

1,2,...,a) be a faction of CNs, and cn; = ([I51V], f;)
=cn=([I51Y], f)(i=1,2,...,a). Then,
CSSPGHMY® (cny,cn,,...,cnz) =cn = < [IL,IU],f>.
(59)
Theorem 8 (commutativity). Let (cnj,cny,...,cn;) be any

permutation of (cny,cn,,...,cn;). Then,
CSSPGHMUD(cnl’, cny,...,cni) = CSSPGHMY (cny,eny, ..., cng).

(60)

CSSPGHMY® (cn,, cn,, . .., cns) = -
ij=1
=i

a

i,j=1
=i

i,j=1
L j=i

a

ij=1
=i

(—((<> > (1—(U(l—(amm*-(m—1>>”"<))K+e(1—(aiiof)*—m—1))‘”")“—0—%l)m)x)m) —(ﬁ—l))

e (1—<1—(IiL)5Yi)U<1—(I]L.)EYJ>O)2/EG+D |
(|1 1_f[(1_(1_(zy)aYi)U(l_(zg)aYJ)O)Z/a(M) )

I (o) o0

Complexity

17K

(58)

Theorem 9 (boundedness). Let cn; = ([IF,1Y], f;) (i =
1,2,...,a) be a faction of CNs, cn™ = ([min, I}, min;IV],

max; f;) and ©" = ([max;IF, max;IY], min, f;). Then,

cn” < CSSPGHMY® (cn,, cn,, . .., cns) <cn’. (61)

The proofs of these properties are the same as for
CSSPHM operators. Hence, these are executed here.

By specifying distinctive values of the parameters
2K, U and ©, numerous specific AOs are obtained from the
CSSPGHM operator, and are stated as given below:

Case 1. If 2K = 0, then the CSSPGHM operator reverts
to the CPGHM operator and is stated as follows:

2/a(a+1)

1 a;. v, ay;
710 1_[<Uc:ni ®Ocn; >

1/(U+0) 7

, (62)
1/(U+0)

1/(U+0)
2/a(a+1)
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Case 2. If O — 0, then the CSSPGHM operator re-

verts to the cubic descending PG operator and is stated

as follows:

,,,,,

2/a(a+l)
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1K~

~ 1
761~>OO+® Pyl
j=i
2/a(a+1)
1 2 (a+1-1i)
g [ ™)
K 1K K N Y
1 2 : . K . _ 2 1
1_(U<1_<a(a+l); ((a+1—z)<1—<U<1—<aY,(1,) —(aYi—1)> ) —(U—1)> ) )((2a—1)<a(a+l)>—l>> ) —(U—1>)
2 K\ K 1K K v "
= 1 il - . —e s UK = 1 .. . 1 .
< 1_(1‘1(1_(a(a+1)“ ((a+1—z)<1—<U<1—(aYi(1}) —(aYi—l)) ) —(U—l)) ) )_<(2a_)<a(a+l))_> ) —(U—l)) , >
1 2 i~ . K = UK\K K\ 2 N\ 1 -
5 17<5(5+1) 2 ((a+1—1)(1—<U(1—(aY,(l—fi) -(a¥;-1)) ) —(U—l)) > )7<(Za 1)(5(5”))7 7(6“)
(63)
Case 3. If U — 0, then the CSSPGHM operator re-
verts to the cubic ascending PG operator and is stated as
follows:
CSSPGHM"® (eny,eny, ..., cnz)
2/a(a+1)
= lim = H Ucni;Y e}aOcn;i
s, 2| T (6ttooa?)
j=i
. 3 i2/§(§+1)
_ A ~-2Y
'6(!](0“ ))
_ - K K 1K\ K
1 2 &, . o K U - . 2 1
1- 6<1<§(§+1);(1<1<0(1<aY(1) 7(aYi71)> ) 7(071)> ) ) (a+171)(m>7 )) ) 7(671>
1 X 17K\ K
- 1 P . — o K\K X _ 2 1
< 1- O(l 5(5+1); 1(1—(0(1—<aYi(1?’))K_(aYi—1)> ) -(0-1)> ) —((a+1—1)<5(5+1)>—1> —(6—1
e 1K\ X 1K\ X
<z(1—(6(1 (aYl(l—f,))K—(EYi—l))mK) —(6—1)) ) )-((5+i—1)(ﬁ>—1) ) —<i—1

(64)
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Case 4. If O— 0 and sup(cni,cnj) =h(he
[0,1]) (Vi # j), then the CSSPGHM operator reverts to

CSSPGHM™® (cny, cny, s cnz)

2/a(a+l)
im LI [T (Venmoen™)
= lim = cn; '@0cn;
0—o U ;. ! )

1,]:1
j=i

1
1_<U( <a(a+1 ((a+1—z)

Certainly, the significant degree of CNs cn, (i = 1,2,
.,a)is (a,a-1,...,1).

Case 5. If O — 0 and sup(cny,cn;) = h(h € [0,1])
(Vi# j), then the CSSPGHM operator reverts to the

CSSPGHM®® (cn,, cn,, .. ., cnz)

2/a(a+1)

a - —
.. a¥. aY.
l_[ (Ucn? ‘e)@cnj J)
ij=1
] l

> <<a+1—z) 1— o(1-1)* —(U—1>)”>K)>K>—<(za—i)<ﬁ)—1>>m)m—(.—é—1)) ,
c-7-0-0) ") ) (=) 1)) )
(é(l—(a;l);5<<a+1—i>(1—(Uﬁ—<U—1))”*)X<)—(<za—i>(5(;+l))—1>>I/>K>>K—(é—1))

-1_<%(1 (a(a+1)Z <(’)(1_( (1-1 ) _(O_l)>l}K> )_<(5+i_1)<5(52+1)>_1>>1/>K>>K_<%_1))
_<_1_<é<1 <a(a+1)Z (“’(1‘( (1-1)" ‘(O‘”)DK>X>‘<(“"‘1)<a(az+1)>‘1>>m>

Complexity

the cubic linear descending weighted geometric op-
erator and is stated as follows:

K 172K

(65)

cubic linear ascending weighted geometric operator
and is stated as follows:

it o e 1)

(66)
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Case 6. If U=0=1/2 and sup(cn,, cnj) =h(he
[0,1]) (Vi # j), then the CSSPGHM operator reverts to
the cubic GHM operator and is stated as follows:

2/a(a+1)
1 & T ot
CSSPGHM /22 (o ,CNy,y ..., CNZ) = = <UcnfiY‘€BOcn- ]>
( 1 2 a) U+0 1,1]'_:[1 i j
=i
2/a(a+1)
1 a
=l 35 H (cnie)cnj)
i,j=1
=i
r /X A
2 @ 1, ok 1, ok
— 1-(=(1-1")" +5(1 -1 , (67)
w5 2 (1-Go-m 50 -1)
i,j=1
=i
X |
2 a 1 UK 5\ 1K K
(|| s@rn & (-Go-m" 3057
i,j=1
L j=i J
17K
2 T 1 K 1 K 1/XK X
1- 1-(=f;
T(t+1) ,-,Z_l( <2fl 2/ )
7
Case 7. If U=0©=1 and sup (cm;, cn;) = h(he
[0,1]) (Vi # j), then the CSSPGHM operator reverts to
J P
the cubic basic GHM operator and is stated as follows:
CSSPGHM"! (cny, cn,, . . ., cn;)
2/a(a+1)
1 . 2t a¥,
== 1_[ (Ucni ‘@Ocn; ’)
U+0 ijoi
=i
2/1 (1+1)
1 a
=3 H(cni@cnj)
i,j=1
=i
UK\ K K
2 a 1\ K L\ XK 1K X 1 (68)
1- 1-| =— 1-((1-1 +(1-; -1 +— s
e 2 ({0t )T) 2
=i
1K\ K VK
t 17K\ K
X XK 1
=< 1-| [ 1-] = 1—((1—1”) +(1-17) —1) +- >
a(a+1) i J 2
L j=i J
UK XK 1/XK
1 2 ! KoK KK 1
| 1-| == —(fi +f5 -1 + -
2 a(a+1) er—1< (f' ff ) ) 2
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4.2. CSSWPHM and CSSWPGHM Operators. In this por-  Definition 10. Let U,020,cn; = ([I51V],£) (i
tion, we instigate the CSSWPHM operator and the =1,2,...,a) be a faction of CNs and ¢ = (¢;,6,,...,6;)" be
CSSWPGHM operator by taking the significance of the  the importance degree of cn;(i =1,2,...,a), where ¢;>0
attributes. and Y} ,¢; = 1. The CSSWPHM operator is rationalized as
follows:
. . 1/(U+0)
2 [ ( marrEe) Y, (a0er(e) Y
CSSWPHM " (eny,cn,, . .., cng) = == Z - ! Y cn; | ®g - cn; ,
a@+D| 5= \2ie (1+T(en,)) 2ia6: (1+T (en,))
j=i
(69)
where U,020,T(cn) =Y  sup (cny, eny), sup (cn;, Let ¥, = (1+T(eny)/Y; (1+T(cn,), then (69) be
) ; correspondent to the following shape:
j#i
cn;) = 1 - DNE(cn;, en)), and DNE(cn;, en;) can be reck-
oned by (6).
1/(U+0)
U’o 2 a e U S O
CSSWPHM " (eny, cn,, . .., cng) = 2@+ D Z (ag;Y;cn;) ®SS(ancjcnj) . (70)

T“\‘

1

Theorem 10. Let U>0, ©>0 and U, O take no more than ~ CNs. Then, exploiting the CSSWPHM operator, their merged
one value of 0 at a time, cn; = ([I},19], f,) be a faction of ~ values are CNs, and

/XK 7

(Uiﬁ(l_(ﬁ(aﬂn JZI <1<U(1(5<‘Y‘(1I:‘)X(EC‘Y‘1))1/X)X+O<I<EC’YJ(II;)X(gcm1))”)K))KUO+1>WK>X) ) (Ui6_1>)

(Uio(l(a(ail) “1<1(U(l(ac,v,(u,v)”‘(ac,yi1))”">K+o<1(a<jy}(1Iy)”‘(aqjszj1))'”‘))'(0@“)%)*)%) (Uiol)) >

b

j=i

112K

1—((;0(1(21(;1) ; <1(U(1(ac,Y,ﬁ’K(ac,Y,1))”)'()>K+®(1(ac,YJffK(ac,YJ1))1/X>XU®+1>UX>K) ) (0i01>)

j=i

(71)
Definition B I11. Let  c¢n;(i=1,2,...,a), where ¢>0 and Z;f_’:lq,- =1. The
U,0>0,cn; = ([II1V],£)(i=1,2,...,a) be a faction of = CSSWPGHM operator is rationalized as follows:
CNs and ¢ = (61,6, - ..,cg)T be the significant degree of
_ _ ) 2/a(a+1)
CSSWPGHMU® (cn,cny .. ., cnc) = . i . I <Gcni;<\(m(cﬂ‘))/z;w,(1+T<c,1,))®8r5r®cnjsg(1+T(m,))/z;lc,(m(m,,))) , (72)
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TaBLE 1: Cubic decision making matrix.
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Alternative/attributes ﬁl ﬁz ﬁ3 azx ﬁS
ﬁl {[0.3,0.4],0.2) {[0.4,0.6],0.2) {[0.3,0.7],0.9) {[0.2,0.3],0.8) {[0.4,0.5],0.7)
t:r2 {[0.1,0.2],0.7) {[0.3,0.7],0.2) {[0.2,0.4],0.3) {[0.4,0.5],0.4) {[0.3,0.8],0.6)
ﬁS ([0.5,0.8],0.3) {[0.4,0.6],0.8) ([0.2,0.3],0.4) {[0.5,0.8],0.5) {[0.3,0.6],0.8)
54 {[0.2,0.4],0.3) {[0.3,0.8],0.2) {[0.3,0.5],0.5) {[0.4,0.5],0.2) {[0.3,0.4],0.6)
t:rs {[0.8,0.9],0.2) {[0.4,0.6],0.3) {[0.2,0.4],0.8) {[0.3,0.7],0.2) {[0.2,0.3],0.5)
. - Let Y; = (1+ T(c:n,-))/zg:1 (1+T(cn,)), then (72) is
where U,020,T(eny) = 35 _ § sup (e, eny),sup(enp,  correspondent to the following type:

)
- J#i
cn]-) =1-DNE(cn;, cn]-), and DNE (cn;, cnj) can be pro-
cessed by (6).

: 1
CSSWPGHM"Y® (cny, cn,, . . .

Theorem 11. Let U>0, O3>0 and U, © take no more than
one value of 0 at a time, cn; = ([IL,1Y], f)(i=1,2,...,a)

CSSWPGHM"® (cn,, eny, . .., cng)

((Plrﬁ)(l(e_\(;m él <l—<U(l—(;ciYi(1*f,))‘( *(Eq,Y‘—1))”)'())K+©<17(£qJYj(1ffj)>K7(5JYj71))1/)K>)K7076+ 1)1/)[())'()”»{) ’(ﬁ’ 1))

The proofs of Theorems 10 and 11 are the same as The-
orems 2 and 6. Therefore, here we omit their proofs.

5. An Application of SSPHM
Operator to MADM

In this portion, we pertain to the aforementioned CSSPHM
AOs to discover creative approaches for MADM under cubic

#g} be the group of
distant alternatives, the group of attributes is verbalized by

environments. Let Tr = {ﬁl,ﬁz, ce

Cei = {ﬁl,ﬁz, . ,ﬁh}, the importance degree of the

1((..})10(1(3(311) i <1<U(1(5<,Y,(I,L))K(5<,Y,1))1/)K>>K+0<1(EcJY(IJL))K(EchJ1))1/)K>)KUO+1>”>K>>K) ) (Ui@l))

- (((H Z (I(U(1<E<x<lf>*(acx1>)”*)”+o(1(wj“)"(acm1))””)XUO+1)W))K)M) (vrs

2/a(a+1)

a _ - .
[ agY; agY;

| | (Ucni ®gsOcn;

i,j=1

J=

(73)

be a faction of CNs. Then, employing the CSSWPGHM op-
erator, their fused values are CNs, and

1

/XK

(74)

attributes is epitomised by Wit = (ﬁl,ﬁz,‘..,ﬁhf
such that ﬁe e [o, 1],2?:1ﬁe =1. In the procedure of
decision making, the evaluation information about the al-
ternative fr,(u=1,2,..., g) concerning the attribute
ﬁw (w=1,2,...,h)is expressed by a cubic decision matrix
CD = (cng,) g Where cng, = ([, WY1, Y) is a CN.

Afterwards, take a chance on actual decision scenarios
where the weight vector of attributes has already been de-
termined. As a result, we launch MADM methods based on
the suggested CSSPHA operators.
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5.1. MADM with Known Weight Vectors of Attributes. In this
section, to pact with real decision circumstances in which the
importance degrees of attributes are known in advance, we
apply the CSSWPHM operator and CSSWPGHM operator
to launch the following approach to solve MADM problems

Complexity

under cubic environments. To do so, instantly follow the
steps given:

Step 1. Locate support Sup (cng,, cny,) by utilizing the
following formula:

Sup (cng,, cn,, ) = 1 = DNE(cng,,cn,, ), (d =1,2,...,g,e = 1,2,...,h,e#x), (75)

where DNE (cny,, cn,, ) is the distance measure and is
intended by utilizing (6).

Step 2. Discover the weighted support degree T (cng,)
that CN cny, collects from other CNs cny, (x = 1,2,
oo hie#x),
h
T (cng,) = Z sup (cng,, cng, ). (76)

x=1,x#e

Step 3. Establish a weighting vector 2, (d =1,2,
..»g,e=1,2,...,h) associated with cn,, ,
gwite (1+T (eng,))

Zgzlﬁe (1 + T(Cnde)) .

Step 4. Employ CSSWPHOM or CSSWPGHOM op-

erators to aggregate the evaluation values cny, (d = 1,2,
..»g,e=1,2,...,h) into an overall evaluation value

Ede = (77)

cn;(d=1,2,...,9) matching the alternatives
try(d=12,...,9);
cny = CSSWPHOM(’E (dl’ CNyys - - s Cnds)’ (78)

or

cny = CSSWPGHOMCﬁ (engp> eng,, ... engg).  (79)

Step 5. Locate the scores So:F(cnd) for the overall CNs
of the alternatives r; (d = 1,2, ..., g) by manipulating
Definition 2.

Step 6. Rank all alternatives fry(d = 1,2,...,9) and
select the best one (s) with the ranking order
cng(d=1,2,...,9).

5.2. Illustrative Example. In this subpart, a numerical ex-
ample adapted from [26] about enterprise resource planning
in order to verify the unassailability and compensations of
the initiated approach.

Let us say a corporation decides to use an ERP system
(enterprise resource planning). The specialist’s panel chose
try(g =1,2,3,4,5) five prospective investors after gath-
ering all relevant information on ERP dealers and systems.
Some external decision-making specialists are among the
organization’s members. The group decides on five attri-

butes ﬁe (e=1,2,3,4,5). To assess the alternatives, (1)
function and technology ﬁl, (2) strategic fitness ﬁz, 3)
the ability of the vendor ﬁy (4) reputation of the vendor
ﬁ4, and (5) growth analysis of the vendor ﬁS, with

weight vectors of the attributes are

(0.2,0.15,0.15,0.25,0.25)". CEN’s will be used by the ex-
pert’s committee to create the initial decision matrix given
in Table 1. To solve this decision making, the following
steps to be followed:

Step 1. Analyse the support Sup(cn?,cn? ) by the
following formula (61), and we have
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S1, = S5, = 0.9000,
Si; = S5, = 0.6667,
Si, = Sy, = 0.7333,

S}s = Si, = 0.7667,

S}, = S}, = 0.7000,

S}, = S,, = 0.6333,

Si. = Si, = 0.8000,

S}, = Sy = 0.8333,

S5 = Si; = 0.8667,

Sys = Si, = 0.8333,

3, = S5, = 0.6000,

i, =S5, = 0.7667,
S?, = S3, = 0.7000,

S3, = Sz, = 0.7000,

S>, = S2, = 0.8333,

S3, = S;, = 0.8333,

S5, = S2, = 0.8333,

S3, = Si; = 0.8667,

S3, = 82, = 0.7333,

S35 = Sz, = 0.8000,

S, =8, = 0.7333,
S, = S3, = 0.7000,
S}, =S, =0.9333,
S}, = S, = 0.7000,

S3, = 83, = 0.7000,

S, =S, = 0.8333,

3, = S, = 0.9667,

Sy, = Si; = 0.7333,

S35 = Si, = 0.7333,

S3; = S, = 0.8000,

Si, = S5, = 0.8000,

Si, = S5, = 0.8667,

Si, = S;, = 0.8667,

Si, = Si, = 0.8667,

S5, = S5, = 0.8000,

S5, = S, = 0.8667,
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S3s = Si, = 0.7333,
Sy, = S5 = 0.8667,
S35 = Sty = 0.9333,
Sis = St, = 0.8000,

S, =8, =0.7333,

3, =S, = 0.4333,

S, =S, =0.7667,
S, =8, =05,
S, =S =0.7000
23 T Y32 T VY >
3, = S;, = 0.9000,
S5, = S, = 0.7667,
S5, = S5 = 0.6667,
S5 = S, = 0.8667,

S, =S, = 0.7333.
(80)

Step 2. Exploiting Equation (62), to discover the
weighted support T (cn,,) that CN cny, collects from
other CNs cny, (d,x=1,2,...,5;e#x).,. For sim-
plicity, we indicate T (cng,) by T, we have

T, = 3.0667,
T,, = 3.0333,
T, = 3.0000,
T,, = 3.0000,
T,s = 3.2333,
T,, = 2.7667,
T,, = 3.1000,
T,; = 3.2000,
T,, = 3.2000,
T,s = 3.0667,
T,, = 3.0667,
T,, = 3.2000,
T,, = 2.8333,
T,, = 3.2000,
T, = 3.1667,
T,, = 3.4000,
T,, = 3.2000,
T, = 3.4667,
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Complexity

T,, = 3.4000, fr; =([0.2063,0.3921],0.5230),
Tys = 3.3333, fr, = ([0.1599,0.3776],0.4751),
Ts, =2.4333, r, = ([0.3693, 0.6628], 0.5562),
Ts, = 3.1000, —
32 tr, =([0.2892,0.5329],0.3297),
T., = 2.6667, _
fry = ([0.4041,0.6646), 0.3415)
Ty, = 3.0667, _ (83)
tr, ={([0.3866, 0. ,0.6196),
T, = 28667, Orfr; ={[0.3866,0.5985],0.6196)

g,, = 0.9975,

(81)

Step 3. Manipulating Equation (63), to locate the weight
Epld=1,..5e=1,..5), we have

i =¢[0.2869, 0.5297],0.6201,
i =¢[0.3697,0.6298],0.6091),
ﬁ =([0.2973,0.5170], 0.3474),
ﬁ =([0.3292,0.5763], 0.4192).

E,, = 0.7420,
Step 5. Operating Equation (6) given in Definition 2, to
813 =0.7359, locate the score values of overall tr;(d = 1, ..., 5) CN,
B, = 1.2265, to rank the alternﬂes, we have
5., = 0.0173, SoF(fr,) = 0.0251,
E,, = 0.9266, oF(fr; ) = 0.0208,
5,, = 0.7565, ﬁ(f) = 0.1586,
Ey; = 0.7749, SoF(ir, ) = 0.1641,
By = 1.2915, SoF (75 ) = 0.2424
_ e (84)
Ey5 = 0.0167, Or SoF(fr,) = 0.1218,
E; =0.9895, ﬁ(f) — 0.0655,
E;, = 0.7664, —_—
2 SoF(fr;) = 0.1301,
E.; = 0.6995, (82) _
SoF(fr,) = 0.1556,
By, = 12774, —
SoF(fr;) = 0.1621.
B, = 1.2672,
g,, = 1.0084, Step 6. According to the score values, ranking order of
the alternatives tr;(d = 1,2,...,5) is as follows:
542 = 07219’ _ = = == —
trs >try >try >try >tr,
g, = 0.7678, o (85)
ortrs >try >try >try >tr,.
g, = 1.2605,
By = 1.2414, Therefore, according to the ranking order, the best al-
ternative is 75, while the worst one is fr,.
E., = 0.8953,
s, = 0.8018, 5.3. Impact of the Parameter XK on Final Ranking Orders
2. = 0.7171 Applying CSrStWPHM and CSrSrWPGHM Operators. In
T T A this subportion, the impact of the parameter 2K on last
gy = 1.3255, ranking orders employing CSSWPHM and CSSWPGHM

845 = 1.2603.

operators is explored, and the value of parameters U = © = 2
are permanent. For distinct values of the parameter 2K, the
score values and ranking orders while operating CSSWPHM

Step 4Manipulating Equation (64) or (65), to locate the  and CSSWPGHM operators are given in Table 2. One can
overall assessment values of each alternative, we have  observe from Table 2 that for different values of the pa-
(U=2,0=2XK=-2) rameter 2K the ranking orders are different. That is,
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employing the CSSWPHM operator and CSSWPGHM
operator the best alternative is either trs or tr, for different
values of 2K while the worst alternative is either fr, or tr;.
One can also see from Table 2 that when the values of the
parameter 2K decrease, the score values of the alternative
ﬂ( g =1,...,5) increases while exploiting the CSSWPHM
operator. Similarly, from Table 2, when the values of the
parameter 2K decrease, the score values of the alternatives
E(g =1,...,5) decreases.

5.4. Effect of the Parameters U, © on Final Ranking Order.
In this subsegment, the effect of the parameters U, © on last
ranking orders operating CSSWPHM and CSSWPGHM
operators are inspected, and the value of parameter 2K = -2
are permanent. For distinct values of the parameters A, B,
the score values and ranking orders while operating
CSSWPHM and CSSWPGHM operators are quantified in
Table 3. From Table 3, one can observe that when the values
of the parameters U, O are different, the ranking orders
obtained are different. That is, to employ the CSSWPHM
operator and CSSWPGHM operator, the best alternative is
either tr5 or tr, or try for different values of the parameters
U, O, while the worst alternative is either r, or fr; or trs.
One can also see from Table 3 that when the values of the
parameters U, © increase, the score values of the alternatives
try(g =1,...,5) decrease, while exploiting the CSSWPHM
operator. Similarly, from Table 3, when the values of the
parameter U, © decrease, the score values of the alternatives
E( g =1,...,5) increase, while exploiting the CSSWPHM
operator. The basic reason for this is because the above AOs
are more adjustable since they are constituted of generic
parameters, limit the influence of inconvenient information,
and take into account the relationship between input in-
formation. As a result, the MADM model developed on
these aggregation operators is more adaptable. As a conse-
quence, the decision-maker may modify the values of these
parameters to the specific requirements of the scenario.

5.5. Comparison with Existing Approaches. In this section,
the developed MADM model, which is predicated on this
newly established novel AGOs, to various current ap-
proaches, namely, Mahmood et al. [12], Ayub et al. [24], and
Fahmi et al. [26] MADM models. The comparison between
these approaches and the proposed approach is given in
Table 4. From Table 4, we can observe that the best alter-
native obtained from the existing approaches and the
proposed approach is the same except for utilizing the
CWHMDA operator, while the worst alternative obtained
from the existing approaches and the proposed approach is
different. The MADM model that will be implemented is
based on the recently launched aggregation operators. To put
it another way, these aggregation operators are suggested for
CNs using Schweizer-Sklar operational, which are generic
parameters that make the decision-making procedure more
adaptable. In the meanwhile, existing MADM models are
drawn on aggregation operators that are launched using
algebraic operational laws or Dombi operational laws. The
aggregation operator proposed by Mahmood et al. [12] is
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a simple weighted aggregation operator, which does not have
the capacity of taking interrelationships or removing the
effect of awkward data from the final ranking results. While,
the aggregation operators developed by Ayub et al. [24], are
drawn on Dombi operational laws, which have the capacity
of tinterrelationships among input arguments and also
consist of a generic parameter. The aggregation operators
developed by Fahmi et al. [26] are simple weighted averaging
operators based on Einstein operational laws for CNs. These
aggregation operators do not have the characteristic of
taking interrelationship among input arguments or re-
moving the effect of awkward data from the final ranking
results. Up to now, the existing aggregation operators for
CNs have only the capacity of considering interrelationships
among input arguments and cannot remove the effect of
awkward data from the final ranking results. Whereas,
anticipated aggregation operators will be able to remove the
effect of awkward data while also taking into account the
interrelationship between the input data at the same time.
The predicted AOs also have the benefit of including generic
parameters, which sorts the decision-making procedure
more supple. As a result, while solving MADM models using
cubic information, the initiated AOs are more practical and
comparable in their application.

6. Conclusion

The evaluation of the ERP (enterprise resource planning)
system is one of the numerous applications of MADM. The
goal of this article is to introduce a cubic set-based decision
support as a practical way to explain ambiguity, reluctance,
and uncertainty. This article makes a four-fold contribution.
Firstly, inimitable Schweizer-Sklar operational rules for CNs
are developed, and some of their key characteristics are
examined. Secondly, using these inimitable Schweizer-Sklar
operational laws, some CSSPHM operators are discussed,
including the cubic Schweizer-Sklar power Heronian mean
operator, the cubic Schweizer-Sklar power geometric
Heronian mean operator, the cubic Schweizer-Sklar power
weighted Heronian mean operator, and the cubic Schwei-
zer-Sklar power weighted geometric Heronian mean op-
erator, as well as their vital properties. We can see that some
of the existing AOs are special instances of these freshly
launched AOs by supplying particular values to the generic
parameters. These AOs offer benefits over current AOs.
While the current aggregate operators for CSS can only
consider interrelationships among input data, the initiated
AOs can remove the effect of awkward data, examine the
interrelationship among the input data, and also have
a general parameter at the same time. Finally, a MADM
model is expected based on these AOs. The suggested
technique is supported by numerical examples from en-
terprise resource planning. We also investigate the impact of
the decision’s outcome using the recently released cubic
fuzzy Schweizer-Sklar power Heronian mean aggregation
operators. Then, we compare our work to that of others and
also discussed the advantages of the proposed aggregation
operators.
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In future, we will define Schweizer-Sklar operational
laws for trapezoidal intuitionistic fuzzy numbers, dual
hesitant fuzzy soft sets [41], Neutrosophic cubic sets [30],
complex intuitionistic fuzzy sets [42], and extend several
aggregation operators such as power average [27-29], robust
aggregation operators [43], Choquet Integral for Spherical
Fuzzy Sets [44], initiated for these structures and initiate
some MADM models and apply these models to solve
MADM problem under the said structure. We will also apply
the anticipated approach to some new applications, such as
detecting hate speech in social media [42], public trans-
portation, technologies selection [45], traffic control, the
digital twin model, and so on, or extend the anticipated
model to some more extended form of CSS.

Data Availability

Data sharing does not apply to this article as no datasets were
generated or analyzed during the current study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338-353, 1965.

[2] Q. Khan, J. Gwak, M. Shahzad, and M. K. Alam, “A novel
approached based on T-spherical fuzzy Schweizer-Sklar
power Heronian mean operator for evaluating water reuse
applications under uncertainty,” Sustainability, vol. 13, no. 13,
p. 7108, 2021.

[3] P. Phochanikorn and C. Tan, “A new extension to a multi-
criteria decision-making model for sustainable supplier se-
lection under an intuitionistic fuzzy environment,” Sustain-
ability, vol. 11, no. 19, p. 5413, 2019.

[4] M. L. Tseng, P. A. Tan, S. Y. Jeng, C. W. R. Lin, Y. T. Negash,
and S. N. A. C. Darsono, “Sustainable investment: interrelated
among corporate governance, economic performance and
market risks using investor preference approach,” Sustain-
ability, vol. 11, no. 7, p. 2108, 2019.

[5] R. Wang, G. Nan, L. Chen, and M. Li, “Channel integration
choices and pricing strategies for competing dual-channel
retailers,” IEEE Transactions on Engineering Management,
vol. 69, no. 5, pp. 2260-2274, 2022.

[6] S. H. Mousavi-Avval, S. Rafiee, and A. Mohammadi, “De-

velopment and evaluation of combined adaptive neuro-fuzzy

inference system and multi-objective genetic algorithm in
energy, economic and environmental life cycle assessments of

oilseed production,” Sustainability, vol. 13, no. 1, p. 290, 2020.

R. Stekelorum, I. Laguir, S. Gupta, and S. Kumar, “Green

supply chain management practices and third-party logistics

providers’ performances: a fuzzy-set approach,” International

Journal of Production Economics, vol. 235, Article ID 108093,

2021.

L. Coppolino, L. Romano, A. Scaletti, and L. Sgaglione, “Fuzzy

set theory-based comparative evaluation of cloud service

offerings: an agro-food supply chain case study,” Technology

Analysis & Strategic Management, vol. 33, no. 8, pp. 900-913,

2021.

[7

[8

33

[9] 1. B. Turksen, “Interval valued fuzzy sets based on normal
forms,” Fuzzy Sets and Systems, vol. 20, no. 2, pp. 191-210,
1986.

[10] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87-96, 1986.

[11] Y. B. Jun, C. S. Kim, and K. O. Yang, “Cubic sets,” Annals of
Fuzzy Mathematics and Informatics, vol. 4, no. 1, pp. 83-98,
2012.

[12] T. Mahmood, S. Abdullah, and M. Bilal, “Multicriteria de-
cision making based on cubic set,” Journal of New Theory,
vol. 16, pp. 1-9, 2017.

[13] R.R. Yager, “The power average operator,” IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 31, no. 6, pp. 724-731, 2001.

[14] Z. Xu, “Approaches to multiple attribute group decision
making based on intuitionistic fuzzy power aggregation op-
erators,” Knowledge-Based ~Systems, vol. 24, no. 6,
pp. 749-760, 2011.

[15] C. Bonferroni, “Sulle medie multiple di potenze,” Bollettino
dell’Unione Matematica Italiana, vol. 5, no. 3-4, pp. 267-270,
1950.

[16] S. Sykora, “Mathematical means and averages: generalized
heronian means,” Stan’s Library Castano Primo, vol. 3, 2009.

[17] R. F. Muirhead, “Some methods applicable to identities and
inequalities of symmetric algebraic functions of n letters,”
Proceedings of the Edinburgh Mathematical Society, vol. 21,
pp. 144-162, 1902.

[18] C. Maclaurin, “A second letter to Martin Folkes, Esq.; con-
cerning the roots of equations, with the demonstration of
other rules of algebra,” Philosophical Transactions, vol. 1729,
no. 36, pp. 59-96, 1997.

[19] H. Garg and Nancy, “Multi-criteria decision-making method
based on prioritized Muirhead mean aggregation operator
under neutrosophic set environment,” Symmetry, vol. 10,
no. 7, p. 280, 2018.

[20] P. Liu, Q. Khan, and T. Mahmood, “Some single-valued
neutrosophic power muirhead mean operators and their
application to group decision making,” Journal of Intelligent
and Fuzzy Systems, vol. 37, no. 2, pp. 2515-2537, 2019.

[21] Y. Li, P. Liu, and Y. Chen, “Some single valued neutrosophic
number Heronian mean operators and their application in
multiple attribute group decision making,” Informatica,
vol. 27, no. 1, pp. 85-110, 2016.

[22] Z. Xu and R. R. Yager, “Intuitionistic fuzzy Bonferroni
means,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B, vol. 41, no. 2, pp. 568-578, 2011.

[23] W. Zhou and J. m. He, “Intuitionistic fuzzy geometric
Bonferroni means and their application in multi-criteria
decision making,” International Journal of Intelligent Systems,
vol. 27, no. 12, pp. 995-1019, 2012.

[24] S. Ayub, S. Abdullah, F. Ghani, M. Qiyas, and M. Yaqub Khan,
“Cubic fuzzy Heronian mean Dombi aggregation operators
and their application on multi-attribute decision-making
problem,” Soft Computing, vol. 25, no. 6, pp. 4175-4189, 2021.

[25] J. Dombi, “A general class of fuzzy operators, the DeMorgan
class of fuzzy operators and fuzziness measures induced by
fuzzy operators,” Fuzzy Sets and Systems, vol. 8, no. 2,
pp. 149-163, 1982.

[26] A. Fahmi, F. Amin, S. Abdullah, and A. Ali, “Cubic fuzzy
Einstein aggregation operators and its application to decision-
making,” International Journal of Systems Science, vol. 49,
no. 11, pp. 2385-2397, 2018.

[27] S. p. Wan, “Power average operators of trapezoidal intui-
tionistic fuzzy numbers and application to multi-attribute



34

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35

(36]

(37

[38

(39]

[40

[41]

(42]

group decision making,” Applied Mathematical Modelling,
vol. 37, no. 6, pp. 4112-4126, 2013.

S. P. Wan and J. Y. Dong, “Power geometric operators of
trapezoidal intuitionistic fuzzy numbers and application to
multi-attribute group decision making,” Applied Soft Com-
puting, vol. 29, pp. 153-168, 2015.

S. P. Wan and Z. H. Yi, “Power average of trapezoidal
intuitionistic fuzzy numbers using strict t-norms and t-
conorms,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 5,
pp. 1035-1047, 2016.

M. Alj, I. Deli, and F. Smarandache, “The theory of neu-
trosophic cubic sets and their applications in pattern recog-
nition,” Journal of Intelligent and Fuzzy Systems, vol. 30, no. 4,
pp. 1957-1963, 2016.

G. Deschrijver and E. E. Kerre, “A generalization of operators
on intuitionistic fuzzy sets using triangular norms and con-
orms,” Notes Intuit. Fuzzy Sets, vol. 8, no. 1, pp. 19-27, 2002.
G. Deschrijver, “Generalized arithmetic operators and their
relationship to t-norms in interval-valued fuzzy set theory,”
Fuzzy Sets and Systems, vol. 160, no. 21, pp. 3080-3102, 2009.
X. Zhang, H. He, and Y. Xu, “A fuzzy logic system based on
Schweizer-Sklar t-norm,” Science in China - Series F: In-
formution Sciences, vol. 49, no. 2, pp. 175-188, 2006.

P. Liu and P. Wang, “Some interval-valued intuitionistic fuzzy
Schweizer-Sklar power aggregation operators and their ap-
plication to supplier selection,” International Journal of Sys-
tems Science, vol. 49, no. 6, pp. 1188-1211, 2018.

L. Zhang, “Intuitionistic fuzzy averaging Schweizer-Sklar
operators based on interval-valued intuitionistic fuzzy
numbers and its applications,” in Proceedings of the 2018
Chinese Control and Decision Conference (CCDC), pp. 2194-
2197, Shenyang, China, June 2018.

P. Wang and P. Liu, “Some Maclaurin symmetric mean ag-
gregation operators based on Schweizer-Sklar operations for
intuitionistic fuzzy numbers and their application to decision
making,” Journal of Intelligent and Fuzzy Systems, vol. 36,
no. 4, pp. 3801-3824, 2019.

P. Liu, Q. Khan, and T. Mahmood, “Multiple-attribute de-
cision making based on single-valued neutrosophic Schwe-
izer-Sklar prioritized aggregation operator,” Cognitive
Systems Research, vol. 57, pp. 175-196, 2019.

H. Zhang, F. Wang, and Y. Geng, “Multi-Criteria decision-
making method based on single-valued neutrosophic
schweizer-sklar muirhead mean aggregation operators,”
Symmetry, vol. 11, no. 2, p. 152, 2019.

D. Nagarajan, M. LathaMaheswari, S. Broumi, and
J. Kavikumar, “A new perspective on traffic control man-
agement using triangular interval type-2 fuzzy sets and in-
terval neutrosophic sets,” Operations Research Perspectives,
vol. 6, Article ID 100099, 2019.

Y. Rong, Q. Li, and Z. Pei, “A novel Q-rung orthopair fuzzy
multi-attribute group decision-making approach based on
schweizer-sklar operations and improved COPRAS method,”
in Proceedings of the 4th International Conference on Com-
puter Science and Application Engineering, pp. 1-6, Sanya
China, October 2020.

H. Garg and R. Arora, “Distance and similarity measures for
dual hesitant fuzzy soft sets and their applications in multi-
criteria decision making problem,” International Journal for
Uncertainty Quantification, vol. 7, no. 3, pp. 229-248, 2017.
S. Mukherjee and S. Das, “Application of transformer-based
language models to detect hate speech in social media,”
Journal of Computational and Cognitive Engineering20 pages,
2022, Preprint. 11.

(43]

(44]

(45]

Complexity

H. Garg and D. Rani, “A robust correlation coefficient
measure of complex intuitionistic fuzzy sets and their ap-
plications in decision-making,” Applied Intelligence, vol. 49,
no. 2, pp. 496-512, 2019.

M. Unver, M. Olgun, and E. Tirkarslan, “Cosine and co-
tangent similarity measures based on Choquet integral for
spherical fuzzy sets and applications to pattern recognition,”
Journal of Computational and Cognitive Engineering, 2022,
(preprint).

X. B. Mao, M. Wu, J. Y. Dong, S. P. Wan, and Z. Jin, “A new
method for probabilistic linguistic multi-attribute group
decision making: application to the selection of financial
technologies,” Applied Soft Computing, vol. 77, pp. 155-175,
2019.





