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Optimal strategy, one of the main transit assignment models, can better demonstrate the flexibility for passengers using routes in a
transit network. According to the basic optimal strategy model, passengers can board trains based on their frequency without any
capacity limitation. In the metropolitan cities such as Beijing, Shanghai, and Hong Kong, morning commuters face huge transit
problems. Especially for the metro system, there is heavy rush in metro stations. Owing to the limited train capacity, some
passengers cannot board the first coming train and need to wait for the next one. To better demonstrate the behavior of passengers
pertaining to the limited train capacity, we consider capacity constraints for the basic optimal strategy model to represent the real
situation. We have proposed a simulation-based algorithm to solve the model and apply it to the Beijing Subway to demonstrate
the feasibility of the model. -e application of the proposed approach has been demonstrated using the computational results for
transit networks originating from practice.

1. Introduction

Providing passenger-oriented service is the most important
and core target for every metro system. To support pas-
senger-friendly service planning and modification, it is
necessary to have a passenger assignment model, which can
demonstrate the passenger behavior and the distribution of
passengers. Based on the assignment results, it would be
clear to determine if the service is passenger friendly and
how to provide a better service. Because of this, the as-
signment models are wildly used in trip planning process
and the passenger departure time decision [1–3]. At the same
time, when the disturbance or disruption happened, the
operation scheme and the timetable could be adjusted
according to the assignment results, such as retiming and
providing short loop trains. In this way, the disorder could
be solved with a more passenger-friendly solution [4–6].

Service frequency, which has high relation with system
service quality and efficiency, is the key component for

metro systems. -e frequency is determined with the pas-
senger demand, the passenger distribution, and operation
costs. In some exurban places or low-demand areas, the
transit service is quite poor and the train frequency is at the
low level. Passengers must be informed with the accurate
timetable, and they can schedule their departure time to
catch the specific train service at the station. To demonstrate
this precise passenger behavior and the interaction between
passengers and trains, a schedule-based transit assignment
approach is needed.

-e schedule-based assignment is modeled based on a
time-space network according to a timetable [7–10]. Similar
to the frequency-based assignment, congestion is also an
issue in the schedule-based network. Poon et al. [11] used a
time-increment simulation to obtain the arrival and de-
parture time of passengers to predict dynamic queuing
delays and update the shortest path for the next simulation
run. Nuzzolo et al. [12] defined a dynamic loading process
on each transit run according to the user’s choice and the
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residual capacity of vehicles arriving at the stops. Consid-
ering the differential comfort level experienced by sitting and
standing passengers, Hamdouch and Lawphongpanich [13]
and Hamdouch et al. [14] proposed equilibrium conditions
as variational inequalities that involve a vector-valued
function of the expected strategy cost. -e method of suc-
cessive averages (MSA) was applied to solve the model. In
addition to the capacity limitation, the supply is not stable.
Hamdouch et al. [15] considered uncertainties in supply and
proposed an analytical model to record the stochastic nature
of transit schedules. -e uncertainties are considered as the
covariances of travel time between the links in a space-time
graph. An MSA-based algorithm was used to solve the
aforementioned problem. However, demand and supply
uncertainties significantly affected the passenger behavior.
Zhang et al. [16] modeled this phenomenon using the in-
vehicle congestion parameter. A heuristic MSA-based al-
gorithm was applied, and the results showed that the risk-
taking attitude significantly impacts the travel mode and
departure-time selection of passengers.

-e schedule-based assignment could explain the pas-
senger behavior in detail, but it is relatively complex and
time consuming owing to the involvement of time-space
path search and dynamic simulation. However, in metro-
politans such as Beijing and Tokyo, when passengers
planning their trip, they do not have to target to the specific
train service because the train frequency is relatively high.
Especially in the peak hour, the minimal headway is reduced
to 90 s. Meanwhile, there is only one kind of service on the
transit line, which means all trains on the same line stop at
the same stations. In this situation, passengers do not have to
consider timetables or train departure times before trying to
catch the trains. Moreover, the train arrival times are an-
nounced beforehand for passengers to plan their travel.
Passengers can switch their previous paths at some stations
to travel more quickly or comfortably. -is kind of behavior
correlates with the frequency-based assignment assumption.

-e frequency-based assignment is commonly used for
transit and urban network planning, where the frequency is
fixed and high [17]. It is assumed that the passengers may
board the first attractive train when they arrived at the stop,
which is named the optimal strategy [18] or shortest
hyperpath [19]. However, owing to busy transit networks,
systems get overloaded and highly congested. As a result,
passengers who have missed the first train may have to wait
for the second or third attractive train. To demonstrate this
phenomenon, De Cea and Fernández [20] proposed the
effective frequency, which is linearly related to equivalent
average waiting time index, to correctly model the impact of
congestion. Since then, several researchers have tried their
best to focus on the frequency assignment with capacity
constraints [21]. Cepeda et al. [22] considered that travel
time is related to the passenger flow. -ey formulated an
equivalent optimization problem with a new characteriza-
tion of equilibria, which vanished in the computable gap
function. Schmöcker et al. [23] modeled the capacity con-
straint with the “fail-to-board” probability and searched the
hyperpath. -e Markov network loading process was pro-
posed for passengers who failed to board the first train and

reconsidered their selection of routes. Disabled people and
pregnant women cared more about the travel experience.
Schmöcker et al. [24] introduced a “fail-to-sit” probability,
according to which passengers would follow the priority rule
that standing on-board passengers would occupy any
available seats of alighting passengers before newly boarding
passengers do. Passenger behavior is sensitive to pertur-
bations when it comes to running times or service fre-
quencies [25], and some systems provide online information
on predicted arrival times. -e frequency-based transit as-
signment model that considers online information can
significantly reduce the overall travel time [26]. -ey tried to
proposed capacity limitation with the mathematical formula
and transform the model into a new optimization model.

Compared with the schedule-based assignment, the
frequency-based assignment could solve the problem more
quickly and also demonstrate passenger behavior. It would
be interesting if we can combine the merits of the realism of
schedule-based methods and the simplicity of frequency-
based methods in a single framework to find a balance
between accuracy and computational efficiency [27, 28]. At
the same time, it is necessary to consider the capacity
limitation during the model andmake the model into a more
practical way.

-erefore, this study considered capacity constraints for
the classic optimal strategy model. Moreover, a CVX [29]
(for Disciplined Convex Programming) simulation algo-
rithm, which simulates the passenger behavior based on the
timetable, has been proposed to solve the problem. -e
paper is arranged as follows: Section 2 describes the pa-
rameters and basic terminologies that will be used in the
study. Moreover, a service network has been proposed as the
base network for this study. Section 3 proposes the optimal
strategy model with the capacity constraints, and the ef-
fective frequency has been used to enable the model. Section
4 proposes the CVX simulation algorithm to solve the model
proposed in Section 3. Section 5 describes the application of
the optimal strategy model and the CVX algorithm to the
Beijing Subway Network to verify the feasibility of the
model. Section 6 concludes the paper and discusses future
related studies.

2. Notation and Service Network

2.1. Notation. We first list all the involved notations and
decision variables (also mentioned in the aforementioned
discussion) in Table 1.

2.2. Service Network. -e transit network is the base of the
transit assignment process. In the frequency-based assign-
ment model, the network is based on physics lines, which
means the physics track. Todiscribe passenger behavior in
detail, we demonstrate a service network that comprises
passenger behavior and train service links.

To simplify the network illustration, we consider a single
direction. As shown in Figure 1(a), there are two physics
lines: Line 1 and Line 2. Line 1 serves stations A, B, and
E. Line 2 serves stations B, C, and D. Station B is a transfer
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Table 1: Notations used in this study.

Notation Explanation
G � (E, I, T) Network G with nodes I, link E, and time slice set T

K Passenger set
E+

a,t Links from node a at time t

E
∗
t Optimal strategy at time t

vt
a Passenger volume at node a and time t

vt
a -e total incoming passengers at node a

Ina -e entry passenger at node a, which generated at node a

α Calibration parameters, which depends on the distribution assumed for buses headways and passenger arrival times.
ct

(a,b) Link (a, b) travel time at time t

ft
(a,b) Service frequency for link (a, b) at time t

vt
(a,b) Passenger volume for link (a, b) at time slice t

f
t

(a,b) Train valid frequency

Capt
(a,b) Capacity at link (a, b) at time slice t

η Maximal loading factor, which is usually set as 120% or 130%
ct

e Best value for link e at time t

uk Total travel time for passenger k from automated fare collection (AFC) data

ct
e0 Minimal travel time for link e at time t

bk,t Total waiting time calculated from the AFC data with a given path for passenger k at time t

xt
(a,b) Binary variable, whether link (a, b) is recorded in the optimal strategy or not

δk,t
e Binary variable, whether link e is selected by passenger k at time t

ck,t
e Binary variable, whether link e is the none-waiting link or not
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Figure 1: Transit service topology network: (a) physical network, (b) operation service, (c) frequency-based network, and (d) service network.
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station. -ere are four kinds of transit services in the demo
network, which are as follows (Figure 1(b)): stop-stop ser-
vices denoted by blue and orange colors, skip-stop service
denoted by green, and cross-line service denoted by red. In
the frequency-based network, the stations are duplicated
according to the transit services shown in Figure 1(c).
Considering passenger behaviors such as waiting, boarding,
and alighting, more links are added to the frequency-based
network, which is defined as the service network here. -ere
are five kinds of links: entry-egress links, waiting links,
boarding-alighting links, in-vehicle links, and transfer links
(Figure 1(d)).

-e service network can detail the behavior of passengers
from entrance to exit. We take the movement of a passenger
from Station C to Station D as an example. -e passenger
reaches node C and walks to the dummy node C′, and he
waits for trains at the waiting link C′–C1. When the train
arrives, he can take the in-vehicle link C1–D1. He/she gets
off when the train arrives at D1, following the alighting link
D1–D′, and walks out of the station following D′–D.

2.3. Link Cost and Frequency. Each link has two parameters:
link frequency and link cost. Link frequency represents the
service frequency in which a passenger has to wait for the
link. -e link cost is the travel time or walking time spent on
this link. -e service topology network can be classified into
two categories: the fixed link frequency and the flexible link
frequency. -e access and exit, boarding-alighting, in-ve-
hicle, and transfer links belong to the fixed link frequency,
where passengers can be served immediately when they

reach to the start point of these link.-e frequency was set to
be infinite.-e cost of transfer links, access, and exit links are
based on the link walking time, which could be calibrated by
field research. -e cost of in-vehicle links comes from the
timetable, which is the running time between the successive
stations. We consider the boarding and alighting can be
finished in a quick time and these link costs are set to be 0.
For waiting links, the waiting time depends on the arrival
distribution of trains and passengers. When the frequency of
passengers follows a uniform distribution and the trains
arrive evenlyand without capacity limitation, the waiting
link frequency is half of the train frequency.-e waiting link
cost is 0.

3. Optimal Strategy with Capacity Constraints

In the normal optimal strategy model [2], it is assumed that
there is no capacity limitation for the service network.
However, in Beijing and Tokyo, themetro systems serve over
10 million passengers every day. In peak hours, the train
capacity limitation is a huge obstacle for the passenger
boarding process. Based on this, we have generated a time-
based transit network G � (E, I, T), where T denotes the set
for time slice t. We have introduced the capacity limitation
constraint, shown in the last equations in F1, which is to
minimize the total travel time of all passengers for all links.
-e train capacity changes or gets updated based on time
and stations. -e updated optimal strategy model (F1) with
capacity constraint variables is shown below:

(F1)Min 
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(1)

We have applied effective frequency f
t

(a,b), which is
related to the train capacity, to simplify the model. For
instance, we assume that the passenger follows a uniform
distribution, the train arrives evenly, and the service fre-
quency is 3min. When the train capacity is not limited, the
waiting time of the passenger is 1.5min. However, when

there are many passengers on the platform and the train
capacity is limited, a passenger may wait for the following
trains to board on. In this condition, the waiting time is
4.5min, and the valid train frequency is 9min. Considering
the effective frequency, the new model (F2) can be rewritten
as
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(2)

-e effective frequency has relaxed the transportation
capacity constraints. -e reformed model shares the same
structure as the initial optimal strategy model, which implies
that the model can be solved using the searching algorithm
proposed by Spiess and Florian [18]. As the effective fre-
quency cannot be directly obtained from the timetable, we
have proposed a simulated CVX algorithm to obtain the
effective frequency for each waiting link.

4. PassengerSimulationProcessandValidTrain
Frequency Updating Model

4.1. Simulated CVX Algorithm. -e algorithm flow chart is
shown in Figure 2. We cut the simulation time slice by
15min. In the simulated CVX algorithm, there are two stop
criteria. When the simulation time converges to the actual
travel time, it implies that the simulation can represent the
real situation. -us, we can stop the simulation process.
When the waiting link cost converges compared with the last
iteration, the optimal strategy converges, and the simulation
stops. -e simulation will stop when it meets any of the
aforementioned criteria.

-e simulated CVX algorithm contains two important
parts. -e first one is the multi-agent simulation for the
optimal strategy, which simulates the passenger behavior
based on the optimal strategy and train capacity constraints.
-e second is the link-updating process to find the optimal
value for the waiting link.

4.2. Simulation Using the Capacity-Limited Optimal Strategy.
Agent-based simulation for transit services is not a new
method [30–32]. -e passenger behavior and timetable are
set in the agent. For the previous research, the passenger
path is assigned to each passenger agent.-e passenger agent
will follow the given path to finish its trip in the network.
Based on the boarding, alighting, and transfer behaviors, the

passenger agents and vechicle agents interact with each
other.

Based on the previous research, we have designed the
passenger and vehicle agents, denoted by red (left part) and
blue (right part) in Figure 3. In this simulation process,
passengers at each station first search for the optimal
strategy. -e passengers will follow the strategy when
moving toward the destination.-ey can board the first train
or transfer to the following trains according to the optimal
strategy. When transferring to other train services, the train
capacity should be considered to determine whether the
passengers can board the train.

4.3. Link-UpdatingModel for CVX. A closed automated fare
collection (AFC) system obtained an accurate total travel
time for each passenger, which can help approach the real-
time effective frequency. -e least-squares link-updating
model P1 is proposed as follows. -e objective of P1 is to
minimize the gap between the total calculated travel time
and the total actual travel time.

(P1)min 
K

k�1


e∈p E
t

i( 

c
t
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⎛⎜⎜⎜⎜⎜⎜⎝
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e0, e ∈ p E
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(3)

where 
e∈p(E

t

i )
ct

e is the sum of successive links that the

passenger used in the network to finish their trip and δk,t
e is

the selecting index that represents whether the link is se-
lected. P1 can be rewritten as P2, as given below:

(P2)min
K
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δk,t
e c

t
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⎛⎝ ⎞⎠

2

,
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c
t
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1, e ∈ p E
t

i ,
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⎧⎨

⎩

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where e∈Eδ
k,t
e ct

e defines the total travel time simulated for
passenger k. As discussed before, all the link costs, except for
waiting links, are constant. -e total travel time gap can be
set as the time gap between the simulation waiting time and
real waiting time. -us, the model can be rewritten as P3.

(P3)min
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(5)
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-e model complexity decreases from all the links to
waiting links, and only the non-negative constraint remains.
To simplify the model, bk,t is introduced, which is the total
waiting time calculated based on the AFC data with a given
path.

b
k,t

� u
k,t

− 

e′∈ p E
t

i( −EBording 

c
k,t

e′ c
t
e′ . (6)

-e matrix formulation of P3 is shown below:

(P4)min ‖AC − B‖2( 
1/2

,

s.t.C≥ 0
→

.

(7)

where C is the column for all waiting links in the network
and A is the k × n matrix. For each element in A, ai,j is a dual
variable, 1 denotes passenger i, and waiting link j is used in
this simulation. B is the travel time gap for k passengers.
Considering the monotonicity of 2-norm, min(‖AC−

B‖2)
1/2 equals min‖AC − B‖2. -e current waiting link up-

date model is shown as P5.

(P5)min‖AC − B‖2,

s.t.C≥ 0
→

.
(8)

-e new model has a convex optimization problem and
can be solved using CVX, which was proposed by Prof.
Stephen Boyd and Dr. Michael Grant from Stanford Uni-
versity [22]. -e link-updating process is shown in Figure 4.

5. Application for Beijing Subway

5.1.Data inBeijing Subway. Data used in the empirical study
are listed in Table 2. We have used one-week AFC data
(December 2016) of the Beijing Subway. During that time,
there were 17 lines serving more than 10 million passengers
every day withmore than 8000 train services.-emajority of
line headways ranged from 2 to 5min. In the peak hour, the
headway could reach 90 s. After applying the service to-
pology construction method, we gathered 96974 links, and
every link is labeled with cost and frequency. Based on the
annual report of the Beijing Subway, the on-time rate is
>99.9%, and we use the timetable as the base document to
initialize the train frequency.
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Figure 2: Dynamic simulation process for Beijing subway based on the optimal strategy.
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5.2. Results Validation. We focus on passenger behavior
during the peak hours, 7:00–9:00 AM. -e simulation starts
at 6:00 AM to warm up the system and ends at 10:00 AM.
-e simulation process converges to the waiting time cri-
terion after 23 iterations. -e validation results are analyzed
as follows:

5.2.1. Verification of Total Travel Time. Test samples are
simulated results of 7:30 to 8:30 AM. For every 15min, we
have compared the real travel time with the simulated travel
time using mean relative error (MRE) and mean absolute
relative error (MARE).

MRE �
1
n



n

i�1

T
s−Exit
i − T

a−Entry
i  − T

a−Exit
i − T

a−Entry
i 

T
s−Exit
i − T

a−Entry
i 

,

MARE �
1
n



n

i�1

T
s−Exit
i − T

a−Entry
i  − T

a−Exit
i − T

a−Entry
i 





T
s−Exit
i − T

a−Entry
i 

.

(9)

whereTs−Exit
i is the simulated exit time for passenger i.Ta−Exit

i

and T
a−Entry
i are the exit and entry times recorded in the AFC

system, respectively. -e MRE and MARE results are listed
in Table 3.

Based on the test period, MRE is ∼7%, and MARE is
∼10%. Considering the fluctuation in walking time of dif-
ferent passengers, we accept the simulation results.

5.2.2. Verification of Typical Origin-Destination (OD) Pair.
Considering the diverse travel times among different OD
pairs, we have selected typical OD pairs, which have a high
passenger volume of 250–400 in 15min. -ese OD pairs
comprise large residential areas, e.g., Huilongguan and
Huoying, and commercial areas, e.g., Xierqi and Fengtai
Science Park. To balance the sample OD spatial distribution,
we selected some other OD pairs located in the southeast
part of the network.

We applied the F-test and T-test for the total travel time
obtained from these OD pairs, as listed in Table 4. -e result
indicates that more than 99% of the OD pairs passed the test.
Less than 1% of the OD pairs failed the test because the OD
volume is somewhat minimal, which means that the less
travel time sample is not very stable. -us, the proposed
model and algorithm can represent passenger behavior in
the Beijing Subway network. Furthermore, we can analyze
the passenger behavior using the optimal strategy.

5.3. Passenger Behavior Analysis Using the Optimal Strategy

5.3.1. Waiting Time during the Peak Hours in the Morning.
Owing to the station entrance limitation, operation plan, and
total travel demand, passengers get delayed while reaching
the platform and need to wait for trains during the peak
hours in the morning. To analyze the waiting time at the
platform, we select the stations that has a top entry-in or
transfer passenger volume, including the direction. -e
selected stations and their waiting times are shown in
Figure 5.

For the first 15min, from 7:30 to 7:45 AM, the average
waiting time (AWT) is 157 s.-e AWTdecreases to 123 s in
the next 15min. -is represents the crowd dispersed over
time. Considering the Xingong station on Line 4 as an
example, the train headway is 120 s. From 7:30 to 7:45 AM,
the AWT increases to 297 s, which implies that passengers
need to wait for three headways until they board the ar-
riving train. After 30min, the AWT deceases to 74.3 s,
approximately half of the headway, which implies that the
passenger can board the next train when it arrives. -e
condition of the Shuangjing station denoted by Line 10 is
the opposite. -e headway is 120 s. In the first 15min, the
AWT is 84 s, and it increases to 158.7 s after 30min, which
means that passengers have to wait for another train. -is
could be summarized as the rule that most of the com-
muters live in a rural area and work downtown. During the
peak hours in the morning, the main stations, e.g.,
Tiangngyuan, Xingong, and Shahe, pertaining to waiting

Table 2: Dataset in the empirical study.

Dataset Fields Explanation

AFC

Card ID Unique number that could be taken as the passenger ID
O station Boarding station ID
Entry time Access time to the boarding station
D station Alighting station ID
Exit time Exit time from the alighting station

Link

Link ID Unique number that could be taken as the link ID
LinkType Represent the link belongs to the walking/transfer/boarding or alighting link
Link cost Link travel time

Link frequency Service frequency for the link
Day of week Workday or weekend
Time of day Peak hour and off-peak hour

Timetable

Train no. Train number
StationID Served station for a specific train, ordered by service sequence
Train loop Two terminal stations of the loop

Arriving time Arriving time at each station
Departure time Departure time at each station
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time are distributed in rural lines. Over time, the crowd
moves to the central part of the network and downtown
stations.

5.3.2. Loading Factor for Different Loops on the Same Line.
Line 4-daxing has two loops (Figure 6).-e long loop is from
Tiangongyuan to Anheqiaobei; both are terminal stations.

Table 3: MRE and MARE results for every 15min.

Period (AM) MRE% MARE%
7:30–7:45 −6.094 9.5164
7:45–8:00 −7.148 10.2293
8:00–8:15 −7.026 10.4602
8:15–8:30 −6.133 10.0834

Table 4: T-test and F-test for OD travel time.

Origin OD pairs destination
7:30–7:45

AM
7:45–8:00

AM
8:00–8:15

AM
8:15–8:30

AM
V P V P V P V P

TiantongyuanNorth Huixinxijie Beikou 88 Y 117 Y 187 Y 122 Y
Xingong Xuanwumen 54 Y 77 Y 52 N 61 Y
Tuqiao Sihui 223 Y 227 Y 184 Y 145 Y
Shahe University Park Xierqi 412 Y 428 Y 437 Y 352 Y
Huoying Wudaokou 162 Y 215 Y 200 Y 160 Y
Shilihe Jintaixizhao 99 Y 196 Y 269 Y 271 Y
Changyang Fengtai Science Park 140 Y 204 Y 354 Y 281 Y
Caofang Chaoyangmen 145 Y 169 Y 141 Y 82 Y
Libafang Fengtai Science Park 89 Y 73 Y 150 Y 92 Y
Songjiazhuang Chaoyangmen 105 Y 95 Y 93 Y 77 Y
V: OD volume; P: pass the test; Y: yes; N: no.
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Figure 5: Waiting time analysis for stations.
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-e shorter loop (dashed line) is from Gongyixiqiao to
Anheqiaobei (Figure 6). To simplify the presentation, sta-
tions from Tiangongyuan to Gongyixiqiao have been
excluded.

In the morning, many passengers travel from south to
north. According to the optimal strategy, the service links
from long and short loops are recorded, and passengers can
choose a long loop or a short loop. We have selected three
successive long-short loop train services. Train 1 and Train 3,
i.e., long-loop services, arrive at Gongyixiqiao at 7:29:06 and
7:32:06 AM, respectively (Figure 6). Train 2, i.e., the short-
loop service, arrives at Gongyixiqiao at 7:30:51 AM (Fig-
ure 6). -e loading factors of the trains at each section from
Gongyixiqiao to the terminal station are denoted by bar
charts in Figure 6.

-e loading factor in the long loop is greater than that in
the short loop. A huge difference is observed between
Gongyixiqiao and Taoranting (Section ID 1–5). In the sta-
tions in this section, passengers can switch between long-
loop and short-loop trains. Owing to the low frequency of
the short loop, which is 10min on an average, passengers
who board the long-loop train will not switch to the short
loop train, even if the short loop has a lower loading factor.
-is leads to an imbalance between the long and short loops.
For future operations, we should apply skip-stop plans with
flexible loop operations to balance the passenger flow and
reduce their total travel time.

5.3.3. Transfer Volume in the Network. -e average transfer
index in Beijing is 1.8, which means every passenger has to
be transferred 1.8 times before arriving at the destination.
Figure 7 represents the top eight transfer stations ordered by
the transfer volume. For every 15min, the transfer volume
was over 4000 in average. Similar to the waiting time dis-
tribution, the transfer volume decreases with time in the
rural area, while the transfer volume increases in the station
that is located in the center of the network. In the future
operation design, thorough services for some transit lines
should be considered to reduce the transfer and total travel
time, with the constraints of turn-back and rolling stocks.

From simulation results, it could be found that, in the
morning peak hour, both the long waiting time stations and
large transfer volume stations are not in the central of the
network, which are specific evidences that most of the
commuters are living in the rural area. Second, from the time
series of waiting time and transfer volume, the peak of the
morning peak hour is very intense. Because of the super high
demand and the limited capacity, passengers need to wait for
the second even third successive train. To better satisfy the
passenger demand, the flexible operation solution such as
the long-short loop was provided. Compared with the single
operation scheme, the long-short loop relieved some op-
eration pressure, but it could be better if other operation
scheme could be applied, such as stop-skip pattern. Actually,
the Beijing metro operation company keeps trying to

Train 1

1.5 1 0.5

Train 2
Train 3

Tian’gongyuan

1. Gongyixiqiao

2. Jiaomen West

3. Majiapu

4. Beijing South Railway Station

24. Anheqiao North

23. Beigongmen

22. Xiyuan

21. Yuanmingyuan Park

20. East Gate of Peking University

19. Zhongguancun

18. HaidianHuangzhuang

17. Renmin University

16. Weigongcun

15. National Library

14. Beijing Zoo

13. Xizhimen

12. Xinjiekou

11. Ping’anli

10. Xisi

9. Lingjing Hutong

8. Xidan

7. Xuanwumen

6. Caishikou

5. Taoranting

Figure 6: Operation loop of line 4-daxing in Beijing.
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improve the system capacity. During the COVID-19 period
in 2020, the more flexible and strong timetables were pro-
vided, such as the asymmetry timetable and skip-stop
timetable to better serve the tidal passenger flow. At the same
time, in order to reduce the passenger transfer time, the
trough services between Line 1 and Line Batong are pro-
vided. Because of the lack of data, the performance of the
new timetables was not analyzed in this research.

6. Conclusion

-e Beijing Subway has a high and fixed transit service
frequency based on the assumption analysis of the fre-
quency-based transit assignment method and optimal
strategy. Considering the train capacity limitation in the
metro system, this study introduces the capacity constraint
for the optimal strategy. To overcome the capacity limita-
tion, a CVX simulation algorithm has been proposed. -e
empirical study demonstrates that the updated model and
algorithm can solve the transit assignment problem for busy
transit systems. -e results detail the passenger behavior in
the network. It is possible to analyze the passenger behavior
under complex conditions to provide better solutions.

-e main aim of the optimal strategy is to represent
passenger behavior. However, some passengers preferred to

determine the path in advance. In that case, they seldom
change their path during the trip, and the logit model can
demonstrate their behavior better than the optimal strategy.
Every model has its own assumptions and characteristics. It
is better to analyze passengers based on their perspectives.

Meanwhile, the objective of the optimal strategy model is
to minimize the total travel time of passengers. However, the
decision-making process considers more than total travel
time. Moreover, they would consider discomfort or transfer
time. -erefore, the transfer time and transfer penalty
should be added to the objective function, thereby making
the model closer to reality.

Data Availability

-e AFC and timetable used to support the findings of this
study were supplied by the project: the metro network oper-
ation supervision and forecasting, provided by Transportation
Operations Coordination Center and Beijing Jiaotong Uni-
versity, cannot bemade freely available.-e service link is from
https://map.bjsubway.com, which is open to public.
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[23] J.-D. Schmöcker, M. G. H. Bell, and F. Kurauchi, “A quasi-
dynamic capacity constrained frequency-based transit as-
signment model,” Transportation Research Part B: Method-
ological, vol. 42, no. 10, pp. 925–945, 2008.
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