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To understand the variations in the financial characteristics, we examine the dynamical behaviors by considering the chaotic
financial model with external force. First, the dynamical characteristics are analyzed by introducing the external driven force in the
price index with commodity demand. We discover that the presence of an external force causes the alternate occurrence of
oscillatory and steady states as a function of time. Interestingly, we find the existence of bifurcation delay (BD) during the
transition from oscillatory (OS) to steady state (SS) or vice versa. Bifurcation delay is a phenomenon in which the bifurcation does
not occur at the actual bifurcation point but rather at a later time, which is referred to as bifurcation delay. To confirm the delay in
bifurcation, we estimate the actual bifurcation point and compare it to the observed bifurcation transition. Furthermore, to
understand the variations in the bifurcation delay, we estimate the delay time between each consecutive cycle and find random
fluctuations in the BD. Following that, the BD is virtualized via a transformed phase portrait. In addition, we show decreasing the
value of average BD while increasing the frequency of external forcing. Second, the presence of BD is explored by incorporating
external forces into the investment demand with unit investment cost. We discover the existence of a similar phenomenon with a
constant bifurcation delay.

1. Introduction

Economic dynamics has found the interest of many re-
searchers due to the rapid growth of the economy. More-
over, small changes in the environment can have a
significant impact on micro and macroeconomics, resulting
in irregular economic development [1–3]. For instance,
unforeseeable global events such as wars, disasters, epi-
demics, and so onmay provoke unanticipated changes in the
investment environment or affect the fluctuations of eco-
nomic development [4]. As [5] a result, modern economic
research is increasingly interested in developing nonlinear
financial models that incorporate a variety of relevant

parameters such as interest rates, prices, saving amounts,
and commodity demand, among others [6–8]. Typically,
savings are determined by wealth and income. Investment
and saving are separate decisions, and the relationship be-
tween these two is discussed in Ref. [9].

Besides, the dynamical behavior of the financial system
has recently received special attention. For instance, the
existence of periodic, quasiperiodic, strange nonchaotic,
chaos behaviors and their transition route were described
using a simple 3D financial system [10]. )e construction of
the 4D chaotic finance model and its significance were
detailed [11]. )e dynamics of the financial system have also
been investigated by introducing investment incentives into
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3D systems, resulting in a 4D financial system.)e chaotic
dynamics were observed using such a system with frac-
tional order, which was confirmed using the 0 − 1 test [12].
Further, the chaotic behavior was well studied in the
fractional financial system with time-delay [13–16]. In
addition, the control of the 4D hyperchaotic finance
system was analyzed by adding an inverse optimal con-
troller [17]. )us, the dynamics of the financial system
were thoroughly investigated by implementing a frac-
tional order and introducing single and two delays into
the financial systems [16].

On the other hand, many nonlinear systems can exhibit
[18–23] slow-fast dynamics that can be modeled as slow-fast
systems [18,20]. Such slow-fast systems exhibit many in-
triguing phenomena like bursting, mixed-mode oscillations,
and bifurcation delay or slow passage effect, among others.
Originally, the occurrence of bifurcation delay via Hopf
bifurcation was identified by Baer et al. in a fast-slow system
of FitzHugh–Nagumo (FHN) model [24]. Later, such oc-
currences were reported via various other bifurcation routes,
including the pitchfork and saddle-node [25–27]. Further,
the delayed bifurcation was reported in reaction-diffusion
systems, as well as the bistable thermoacoustic system
[28–30].

Furthermore, bifurcation delay is a fascinating phe-
nomenon that can be found in a wide range of natural and
engineering systems [31–34]. )e delay in which the bi-
furcation occurs can be referred to as bifurcation delay. As
a consequence, the existence of dynamic bifurcations as
well as strange nonchaotic phenomena was delineated in
[35] with single or two frequency driven nonlinear os-
cillators that is followed by the impact of propagation or
processing delay on bifurcation delay reported in a net-
work of slow-fast FHN oscillators [36]. It was identified
that there is existence of various collective states including
synchronization, chimera, and traveling wave when
perturbing the frequency of a single node of the oscillator
[37]. Furthermore, the effect of fractional order and noisy
parameter on BD was also analyzed [38]. According to the
above studies, the phenomenon of bifurcation delay has
been identified in biological, physical, and chemical
systems but has not yet been investigated in the financial
system. With the above motivation, we investigated
whether the chaotic financial model can exhibit the bi-
furcation delay phenomenon when introducing the ex-
ternal force into certain parameters. Since the price index
with commodity demand and investment cost with unit
investment cost is time-dependent, we analyzed the dy-
namical characteristics of the chaotic financial model by
adding the external driving force with it.

)e remaining sections of the article are as follows: In
Sec. 2, we first present the dynamical model by introducing
the driving force in the price index with commodity de-
mand. We specifically discuss the existence of bifurcation
delay and its characteristics. Followed by this, the occurrence
of constant bifurcation delay is discussed in Sec. 3 when
introducing the driving force into the investment demand
with unit investment cost. Finally, in Section 4, the observed
results are summarized.

2. Effect of Time-Varying Price Index with
Commodity Demand

We consider a chaotic financial (CF) model as in Ref. [16] to
exemplify the bifurcation delay in economic growth and its
characteristics. Since the commodity demand and price
indexes can vary depending on external factors, we modified
the system to be a driven chaotic financial (DCF) model by
including external forcing. )e corresponding model
equation is as follows:

_x � z +(y − α)x,

_y � 1 − βy − x
2

− βxy,

_z � −x − cf(t)z,

(1)

where x, y, and z are the system parameters that represent
the interest rate, the investment demand, and price index,
respectively. )e constant parameters α, β, and c denote the
saving amount, the unit investment cost, and the elasticity of
commodity demand, respectively. f(t) is the external
forcing, defined as f(t) � (1 + f sin(ωt)), where f is the
amplitude of external force or the drive parameters and ω is
the forcing frequency. )e parameters values are fixed as
α � 2.0, β � 0.1, and c � 1.0.

2.1. Bifurcation Delay (BD) and Its Transition. To demon-
strate the occurrence of bifurcation delay (BD), we showed
the time evolution of the x variable (represented by the red
line) overlapped by f(t) � 1 + f sin(ωt) (represented by
the black line) in Figure 1(a). )e time series signal clearly
shows the continuous repetition of the oscillatory and steady
state as a function of time. Further, to understand the bi-
furcation transition, the one-parameter bifurcation diagram
(using XPPAUT Ref. [39]) is portrayed in Figure 1(b) as a
function of f. )e transition from an unstable steady (US)
state to a stable steady (SS) state exists via subcritical Hopf
bifurcation (HB).We also observed that unstable oscillations
(OS) coexist with a stable steady state. From Figure 1(b), we
obtained that the transition to steady state occurs at the Hopf
bifurcation point HB � −0.205.

In addition to displaying the bifurcation delay clearly,
we plotted a zoomed view of the time series signal with f(t)

as in Figure 1(c). )e dashed line represents the Hopf
bifurcation line, which is represented by using a point
where HB occurs. Typically, the actual bifurcation occurs
when the Hopf bifurcation point intersects the function
f(t), and then a steady state emerges. tHB1

and tHB2
are the

time of first and second actual Hopf bifurcation which arise
during the transition from OS to SS and SS to OS, re-
spectively. But we observed that the transition to SS occurs
at a time tS and OS occurs at tO. )erefore, the first and
second bifurcation delay during OS state to SS state and SS

state to OS state are obtained as τb1
� tHB1

− tS and
τb2

� tHB2
− tO, where tS and tO are the delay in bifurcation

during the transition to steady state and oscillatory state,
respectively. From the observation, it is clear that the ex-
istence of bifurcation delays is due to driving force. In the
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following, we analyze whether the bifurcation delays τb1
and τb2 manifest �uctuations in long time series signals and
their probability density functions.

2.2.Variation ofBDand ItsCharacteristics. To determine the
�uctuations in the bifurcation delay, we computed the bi-
furcation delay for each subsequent periodic cycle (n) in the
long time series signals in Figure 2. In particular, Figures 2(a)
and 2(c) are plotted for variation of �rst and second bi-
furcation delays τb1 and τb2. We can see the random �uc-
tuations (irregular motion) in both bifurcation delays τb1 as
well as τb2. However, it is also clear that the average mean
value of the bifurcation delay is distributed around
(τb1 � 134) and (τb2 � 149) for �rst and second BD, re-
spectively. Furthermore, we estimate the probability dis-
tribution function (PDF) for the signal corresponding to
Figures 2(a) and 2(c) in 2(b) and 2(d). �e probability
distribution function is estimated by �nding the number of
events (each point in the signal can be considered as an
event) in the signal lying between a speci�c magnitude of
bifurcation delay in the entire cycles in time series signal. It is
observed that both the BDs follow the Gaussian distribution
in the probability distribution function.

For amore clear understanding of the delay in bifurcation,
we plotted transformed phase portrait in (f(t), x) space as in
Figure 3. Furthermore, to detect the bifurcation point, the
bifurcation diagram (Figure 1(b)) is superimposed on the
transformed phase portrait.�e bifurcation point HB is where
the actual bifurcation transition takes place. From Figure 3, it
is evident that there is a delay in bifurcation, whichmeans that

the bifurcation OS-SS transition does not occur at the actual
bifurcation point but rather after some time. �us, it clearly
depicts the occurrence of bifurcation delay.

In addition, the average bifurcation delay is estimated in
Figure 4 by varying the forcing frequency. We can observe
that the magnitude of bifurcation delays τb1 is reduced when
increasing the frequency ω, as seen in Figure 4(a). We can
note the second BD τb2 also manifests similar dynamical
behaviors as shown in Figure 4(b).Futhermore, we also look
the emergence of bifurcation delay when applying external
forcing as time-varying investment demand with unit in-
vestment cost in the following section.

3. Effect of Time-Varying Investment
Demand with Unit Investment Cost

In addition to the preceding analysis, in realistic situations,
the investment demand with unit investment cost can
�uctuate over time. As a result, we include the additional
external force f(t) in the β variable, and the dynamical
model could be written as

_x � z +(y − α)x,

_y � 1 − βf(t)y − x2 − βxy,

_z � −x − cz.

(2)

To show the dynamical transition, we plotted the one-
parameter bifurcation diagram in Figure 5(a) by varying the
forcing amplitude f. �e bifurcation transition illustrates
that the transition from stable periodic oscillation to the
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Figure 1: (a) Time series signal of a driven chaotic �nancial system overlapped with external force f(t). (b) One-parameter bifurcation
diagram (using XPPAUT) as a function of forcing amplitude. US and SS are unstable and stable steady state represented by dashed (black)
and solid (red) lines, respectively. OS is the oscillatory state (denoted blue open circles) and HB is the Hopf bifurcation point. (c) Zoomed
view of time series x and external force f(t), where τb1 � tHB1−tS and τb2 � tHB2−tO. Other system parameters are α � 2.0, β � 0.1, f � 0.85,
ω � 0.02, and c � 2.5.
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Figure 2: Bifurcation delay of consecutive periodic cycles for (a) �rst bifurcation delay τb1 and (c) second bifurcation delay τb2. (b) and (d)
are the corresponding probability distribution of both the bifurcation delays. Here, the average mean bifurcation delay is (a) τb1 � 134 and
(b)τb2 � 149. Other parameter values are �xed same as in Figure 1.
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dashed lines correspond to stable and unstable steady state, respectively. �e green un�lled points represent the amplitude of the limit cycle
oscillation. Other parameter values are �xed same as in Figure 1.
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bifurcation 〈τb2〉. Other parameter values are �xed same as in Figure 1.
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stable steady state occurs via Hopf bifurcation. Since the
transition from stable limit cycle oscillation to the stable
steady state, the associated bifurcation point is supercritical
Hopf bifurcation, and the Hopf bifurcation point is iden-
ti�ed asHB � 0.4286. Using the observed HB point, the HB
line (denoted by dashed line) is plotted in Figure 5(b).
Comparing the time series signal with actual bifurcation
point (intersection of f(t) with tHB1 or tHB2), we observed
that there is the delay in bifurcation τb1 � tHB1 − tS and τb2 �

tHB2 − tO during the OS state to SS state or OS state to SS
state, respectively.

Further, it is also inspected whether the bifurcation delay
can have any �uctuations in the successive cycle in the time
series signal. �erefore, the bifurcation delays τb1 and τb2 of
each consecutive cycles are portrayed in Figures 6(a) and
6(b). Due to periodic repetition of oscillation, we observed
constant bifurcation delay during OS-SS(τb1) and
SS-OS(τb2) transitions.
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oscillations. �e dashed (black) and solid (red) lines denote the unstable and stable steady state, respectively. (b) Time series signal
overlapped with the function f(t). Other parameter values are �xed same as in Figure 1.
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Following that, the transformed phase portrait is illus-
trated in (f(t), x) space by overlapping bifurcation plot
(shown in Figure 5(a)) to show the delay in bifurcation
during the transition from the oscillatory to the steady state.
Figure 7 depicts the transition to SS occurring after the
actual (HB) bifurcation. �us, it is clear that the occurrence
of bifurcation delay while the transition from oscillatory to
steady state.As shown in Figure 4, the average bifurcation
delays 〈τb1〉 and 〈τb2〉 decrease as forcing frequency in-
creases, as shown in Figures 8(a) and 8(b).

4. Conclusion

In this study, we have investigated the in�uence of a time-
varying parameter in a chaotic �nancial model. First, we ex-
plored the dynamical behavior of the price index with com-
modity demand by applying external forcing. Surprisingly, we
discovered that the external force had a bifurcation delay in the
system. When the bifurcation transition to the steady state or
oscillatory state occurs, some delay time can be found as bi-
furcation delay. We discovered that the price index with
commodity demand can result in the BD, which shows random
�uctuations in each successive cycle. �e relevant probability
distribution function (PDF) was also estimated, and we dis-
covered that it follows the Gaussian distribution function. �e
existence of BD was also investigated using the transformed
phase portrait, which clearly shows that the transition fromOS
to SS occurs after some time when compared to the actual
bifurcation point. In addition, we carried out a similar analysis
by incorporating external forces in investment demand with
unit investment cost. In the time evolution of the signal, we
detected a continuous bifurcation delay between each suc-
cessive cycle. Using the transformed phase portrait, the BDwas
further validated. Finally, it was discovered that similar to the
prior case, raising the frequency range reduces the range of
bifurcation delay. �us, based on the observations, one may
infer that an external e�ect on a certain parametermay produce
a bifurcation delay in a chaotic �nancial system. Our research
will o�er insight into the bifurcation transition in �nancial
systems.
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