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'is paper proposes a novel adaptive dynamic programming (ADP) approach to address the optimal consensus control problem
for discrete-time multiagent systems (MASs). Compared with the traditional optimal control algorithms for MASs, the proposed
algorithm is designed on the basis of the event-triggered scheme which can save the communication and computation resources.
First, the consensus tracking problem is transferred into the input-state stable (ISS) problem. Based on this, the event-triggered
condition for each agent is designed and the event-triggered ADP is presented. Second, neural networks are introduced to simplify
the application of the proposed algorithm. 'ird, the stability analysis of the MASs under the event-triggered conditions is
provided and the estimate errors of the neural networks’ weights are also proved to be ultimately uniformly bounded. Finally, the
simulation results demonstrate the effectiveness of the event-triggered ADP consensus control method.

1. Introduction

Because of the wide applications in the control field [1–6],
the consensus control of MASs gained more and more at-
tentions. In recent years, quite a few methods have been
reported to solve the consensus control problem of MASs,
such as adaptive control [7, 8] and sliding mode control
[9, 10]. It is worth mentioning that the previous methods
focus on the stability of the MASs. However, the optimal
characteristic is also worth considering in the consensus
control problem. Optimal consensus control problem aims
to find the optimal control policies which guarantee the
stability of MASs and minimize the energy cost. As one of
the core methods to achieve the optimal control policies,
ADP approaches address the issue abovementioned by
approximating the solutions of Hamilton–Jacobi–Bellman
(HJB) equation [11–13].

Till now, ADP approaches have been applied in the
optimal consensus control of MASs [14–20]. In [14], an
optimal coordination control algorithm has been designed

to address the consensus problem of the multiagent dif-
ferential games through fuzzy ADP. 'e optimal output
heterogeneous MASs was considered in [15]. Based on this
work, Gao et al. [16] considered the dynamic uncertainties
factor in the cooperative output regulation problems. Zhang
et al. [17, 18] considered the optimal consensus tracking
control for discrete-time/continuous-timeMASs. In order to
address the optimal consensus problem for unknown MASs
with input delay, the authors proposed a data-driven dis-
turbed adaptive controller based on ADP technique in [19].
In [20], the problem of data-based optimal consensus
control was studied for MASs with multiple time delays. All
the above results are based on the assumption that the
communication and computing resources are big enough to
transmit system data and update the control policy in every
time step. However, it is difficult to be satisfied in practice.

Event-triggered control (ETC) is a well-recognized
technology to address the above issue [21–24]. Different
from the time-triggered control, whether the systems sample
the signals or not only depends on the event-triggered
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condition. If it is satisfied at some time instants, then the data
will be transmitted and the control policy will be updated.
'erefore, compared with the control algorithms based on
time-triggered scheme, the event-trigger control algorithms
can efficiently save the computation resources [25]. In the
past years, ETC is introduced to solve the optimal control
problem under the limited computing resources [26–29]. In
[26], an ETC method based on ADP is developed for
continuous-time MASs. 'e authors considered the un-
known internal states factor in the event-triggered optimal
control for continuous-time MASs in [27]. 'e multiplayer
zero-sum differential games are considered in [28] and an
optimal consensus tracking control based on event-triggered
is designed to solve this problem. In [29], an event-triggered
optimal control algorithm is designed for unmatched un-
certain nonlinear continuous-time systems. In [30], to save
the limited network resources, an event-triggered mecha-
nism was introduced to address the consensus problem of
linear discrete-time MASs. 'e authors considered the
event-triggered consensus problem of discrete-time multi-
agent networks in [31]. It is worthy to say, all the results in
[26–29] studied the event-triggered optimal control for
continuous-time MASs, but there were few works [30, 31]
which consider the discrete-time MASs.

Motivated by the above discussions, an event-triggered
ADP control algorithm is designed to address the optimal
consensus tracking problem for discrete-time MASs. 'e
major contributions of this paper are emphasized as follows:

(1) Comparing with the existing event-triggered ADP
consensus control methods [27–29], we design the
adaptive ET condition for every agent in the MASs.
'en, the agent samples the data and communicates
with the neighbors only when its event-triggered
condition is satisfied. 'at means the agents in the
MASs may not communicate with their neighbors or
update their control policies at the same time instant,
and then, the communicate resources are saved.

(2) In this paper, we give the stability analysis for the
MASs under the event-triggered condition. It shows
all agents in the discrete-time MASs will achieve
consensus under the ET condition. And, we also
prove the weight estimate errors for the critic neural
networks (NNs) and actor NNs are uniformly ulti-
mately bounded during the learning process.

'e rest of this paper is organized as follows. In Section
2, the discrete-time MASs are considered and the consensus
problem is formed. 'e event-triggered conditions for each
agent in the system are introduced and the stability analysis

is given in Section 3. 'en, NN-based event-triggered ADP
algorithm is introduced in Section 4, and the simulation
results of this algorithm are given in Section 5. Finally, the
conclusions are shown in Section 6.

2. Problem Formation

Consider the discrete-time MASs:

xi(k + 1) � Axi(k) + Biui(k), (1)

where xi(k) ∈ Rn×1 and ui(k) ∈ Rmi×1 denote the state and
the coordination control of agent i, i ∈ 1, 2, . . . , N, respec-
tively. A ∈ Rn×n andBi ∈ Rn×mi are the constant matrices.

'e leader’s dynamics function is defined as

x0(k + 1) � Ax0(k), (2)

where x0(k) ∈ Rn denotes the state of the leader.
'e local neighbor consensus tracking error ξi is defined

as

ξi(k) � 
j∈Ni

αij xi(k) − xj(k)  + βi xi(k) − x0(k)( .
(3)

where αij denotes the adjacency elements, aij > 0 if agent i

can communicate with agent j, otherwise, αij � 0, and βi

denotes the pinning gain, βi > 0, if agent i can communicate
with the leader, otherwise, βi � 0. We assume that there is at
least one agent who can get the information from the leader.

Under the event-triggered scheme, the discrete-time
MASs transmit the systems’ data only when the event is
triggered. Here, we define that the event is triggered at the
discrete-time instants’ sequence ki,1, ki,2, . . . , ki,p− 1, ki,p, for
i � 1, 2, . . . , N andp � 1, 2, . . . ,∞. At the pth event-trig-
gered instant of agent i, the consensus errors of agent i

denote as ξi(ki,p) � 
j∈Ni

αij(xi(ki,p) − xj (kj,q)) + βi(xi (ki,p)

− x0(ki,p)).
'e event-triggered error is defined as

δ(k) � ξi ki,p  − ξi(k), (4)

which means the difference between the consensus tracking
errors at the pth event-triggered instant and the current local
neighbor consensus tracking errors.

'en, the consensus problem of the discrete-time MASs
is to find the distributed feedback control law,
ui(k) � χ(ξi(ki,p)), which becomes a continuous signal
through a zero-order hold (ZOH) device when
ki,p ≤ k< ki,p+1.

'en, the local cost function is defined as

Ji ξi(k), ui(k), uj(k)  � 
∞

l�k

ρt− k
Ui ξi(t), ui(t), uj(t) 

� Ui ξi(k), ui(k), uj(k)  + ρJi ξi(k + 1), ui(k + 1), uj(k + 1) ,

(5)

where
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(i) Ui(ξi(k), ui(k), uj(k)): the utility function, for
agent i,

Ui ξi(k), ui(k), uj(k)  � ξΤi (k)Qiiξi(k) + uΤi (k)Riiui(k)

+ 
j∈Ni

uΤj (k)Sijuj(k).

(6)

(ii) uj(k): the control of the neighbors of agent i.
(iii) Qii, Rii, and Sij: positive symmetric weighting

matrices.
(iv) p: the discount factor, 0< ρ≤ 1.

According to Bellman’s principle, the optimal local cost
function J∗i (ξi(k), ui(k), uj(k)) can be defined as

J
∗
i ξi(k), ui(k), uj(k)  � min

ui ξi ki,p( ( 
Ui ξi(k), ui(k), uj(k) 

+ρJ
∗
i ξi(k + 1), ui(k + 1), uj(k + 1) ,

(7)

which is also called discrete-time HJB equations.
'e optimal disturbed control law u∗i (ξi(ki,p)) is defined

as

u∗i ξi ki,p   � arg min
ui ξi ki,p( ( 

Ui ξi(k), ui(k), uj(k)  + ρJ
∗
i ξi(k + 1),ui(k + 1), uj(k + 1)  .

(8)

3. Stability Analysis

Assumption 1 (see [32]). 'ere exist positive constants L, L1,
ϕ, and ψ, a C1 function V: Rn⟶ R≥ 0, and class κ∞
functions c1 and c2, such that

‖A‖≤ L, ‖B‖≤L, χ ξi(k) + δ((k)( 
����

����≤L ξi ki,p 
�����

�����, (9)

c1(‖x‖)≤V(x(k))≤ c2(‖x‖)∀x ∈ Rn
, (10)

V Axi(k) + Biχ ξi(k) + δ(k)( (  − V xi(k)( ≤ − ϕV xi(k)(  + ψ‖δ(k)‖. (11)

If (10) and (11) are satisfied, function V is called an ISS-
Lyapunov function for the discrete-time MAS.

Let us consider a situation that k ∈ [ki,p, ki,p+1), which
means that the ET condition is satisfied at the sampling
instant ki,p. In this situation, it is obvious that
δi,p(k + 1) � ξi(ki,p) − ξi(k + 1). 'en, we have

‖δ(k + 1)‖≤ ξi ki,p 
�����

����� + ξi(k + 1)
����

����. (12)

Substituting (1) and (2) into (3), we have

ξi(k + 1) � 
j∈Ni

αij A xi(k) − xj(k)  + Biui(k) − Bjuj(k)  + βi A(xi(k) − x0(k) + Biui(k)( 

� Aξi(k) + 
j∈Ni

αij Biui(k) − Bjuj(k)  + βiBiui(k)).
(13)

'en, we can have
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ξi(k + 1)
����

����≤ ‖A‖ ξi(k)
����

���� + 
j∈Ni

αij Biui(k) − Bjuj(k) 
�����

����� + βi Biui(k)
����

����

≤ ‖A‖ ξi(k)
����

���� + 
j∈Ni

αij Biui(k) − Bjuj(k) 
�����

����� + βi Biui(k)
����

����

≤ ‖A‖ ξi(k)
����

���� + 
j∈Ni

αij Biui(k)
����

���� + Bjuj(k)
�����

�����  + βi Biui(k)
����

����.

(14)

Substituting (9) into (14), we have

ξi(k + 1)
����

����≤ ‖A‖ ξi(k)
����

���� + 
j∈Ni

αij Biui(k)
����

���� + Bjuj(k)
�����

�����  + βiL ui(k)
����

����

≤ L ξi(k)
����

���� + L 
j∈Ni

αij uj(k)
�����

����� + ui(k)
����

����  + βiL ui(k)
����

����

≤ L ξi(k)
����

���� + L 
j∈Ni

αij uj(k)
�����

����� + L ξi ki,p 
�����

�����  + βiL
2 ξi ki,p 
�����

�����.

(15)

'erefore,

‖δ(k)‖≤ ξi ki,p 
�����

����� + ξi(k − 1)
����

����≤ ξi ki,p 
�����

����� + L ξi(k − 1)
����

����

+ L 
j∈Ni

αij uj(k)
�����

����� + L ξi ki,p 
�����

�����  + βiL
2 ξi ki,p 
�����

�����

� ξi ki,p 
�����

����� + βiL
2 ξi ki,p 
�����

����� + L 
j∈Ni

αij uj(k)
�����

����� + L ξi ki,p 
�����

����� 

+ L ξi(k − 1)
����

����≤ 1 + βiL
2

  ξi ki,p 
�����

����� + L 
j∈Ni

αij uj(k)
�����

����� + L ξi ki,p 
�����

����� 

+ L L ξi(k − 2)
����

���� + L 
j∈Ni

αij uj(k)
�����

����� + L ξi ki,p 
�����

�����  + βiL
2 ξi ki,p 
�����

�����⎛⎝ ⎞⎠

· · · ≤ 1 + βiL
2

+ βiL
3

+ · · · + βiL
k− ki,p+1

  ξi ki,p 
�����

�����

+ 1 + L + · · · + L
k− ki,p− 1

 L 
j∈Ni

αij uj(k)
�����

����� + L ξi ki,p 
�����

�����  + L
k− ki,p ξi ki,p 

�����

�����.

(16)

'en, we can rewrite the ET condition as

δi,p(k)
�����

�����≤ δiT � 1 + L
k− ki,p  ξ ki,p 

�����

����� + βi

L
2 1 − L

k− ki,p 

1 − L
ξ ki,p 

�����

�����

+ L
1 − L

k− ki,p

1 − L


j∈Ni

αij uj(k)
�����

����� + L ξi ki,p 
�����

����� ,

(17)

for every k ∈ [ki,p, ki,p+1).
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To better illustrate the control process, a flowchart has
been displayed in Figure 1. 'e transmitted data and control
policies are updated at ki,p instant, and the event-triggered
error is reset to zero. Once the event-triggered condition is
satisfied, the current instant becomes the next triggering
instant ki,p+1, and the system data are transmitted.

Otherwise, keep the transmitted data and control policies
unchanged.

'en, we will prove the discrete-time MAS is stable
under our event-triggered conditions.

Theorem 1. If a discrete-time MASs which is under as-
sumption 1 and satisfies the function,

V(x(k))≤V x ki,p+1   � − φϕV( x(ki,p ) ki,p+1 − ki,p  + ψV x ki,p  , (18)

for every k ∈ [ki,p, ki,p+1), where φ ∈ (0, 1), then the system is
asymptotically stable.

Proof. According to (9) and (11), we obtain

V Axi(k) + Biχ ξi(k) + δ(k)( ( ≤ (1 − ϕ)V xi(k)(  + ψ‖δ(k)‖.

(19)

'en, applying (18) into (19), we have

V Axi(k) + Biχ ξi(k) + δ(k)( ( ≤ (1 − ϕ)V xi(k)(  + ψδ(k)

≤ (1 − ϕ)V xi(k)(  + ψ 1 + L
k− ki,p + βi

L
2 1 − L

k− ki,p 

1 − L
⎛⎝ ⎞⎠ ξi ki,p 

�����

�����⎛⎝

+L
1 − L

k− ki,p

1 − L


j∈Ni

αij uj(k)
�����

����� + L ξi ki,p 
�����

����� ⎞⎠.

(20)

Solving (20), we can obtain

V Axi(k) + Biχ ξi(k) + δ(k)( ( ≤ (1 − ϕ)
k− ki,p V xi ki,p  

+ ψ
1 − (1 − ϕ)

k− ki,p

ϕ
1 + L

k− ki,p + βi

L
2 1 − L

k− ki,p 

1 − L
⎛⎝ ⎞⎠ ξi ki,p 

�����

�����⎛⎝

+L
1 − L

k− ki,p

1 − L


j∈Ni

αij uj(k)
�����

����� + L ξi ki,p 
�����

����� ⎞⎠.

(21)

We define a function as

F(x(k)) � − φϕV((x ki,p   k − ki,p  + ψV x ki,p  , ∀k ∈ ki,p, ki,p+1 . (22)

According to (18), we have

V(x(k))≤F(x(k)), (23)

for every k ∈ [ki,p, ki,p+1).
From (22), we obtain

ΔF � F x(k + 1) − F(x(k)) � − φϕV x ki,p   . (24)

Applying (9) into (24), we have

ΔF≤ − φϕc1 x ki,p 
�����

�����∀k ∈ ki,p, ki,p+1 . (25)

Since (23) and (25) hold, the stability of the discrete-time
MAS is proved. □
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Remark 1. We give the event-triggered condition for each
agent in the discrete-time MASs. Moreover, the stability of
the systems is also proved in this paper.

4. Event-Trggered Controller Design

In this section, considering the good fitting characteristics of
the neural networks (NN) [33, 34], the actor-critic neural
network structure is introduced to approximate the local
cost function Ji(ξi(k), ui(k), uj(k)) and the distributed
feedback control law ui(x). 'e actor-critic NNs are defined
as

F(ω, z, w) � ωΤΨ w
Τ
z  � ωΤΨ(Z), (26)

where z denotes the input data, Ψ(·) denotes the activation
functions, and w and ω denote the weight matrices of the NNs.

4.1. Formulation of the Critic Networks. 'e critic NN ap-
proximates the local cost function Ji(ξi(k), ui(k), uj(k)) in
this paper as follows:

Vi(k) � ωΤciΨci w
Τ
cizci(k) , (27)

where zci(k) denotes the input vector of the critic NN which
is constituted by ξi(k), ui(k), and uN(i)(k), Ψci(·) denotes
the activation function of the critic NN, and wci and ωci are
the weight matrices for the critic NN.

We define the difference between the current cost value
and the estimate value as the error function of the critic NN
as follows:

εci(k) � − Ui ξi(k), ui(k), uj(k) + ρωT
ciΨci w

Τ
cizci(k + 1)   + ωT

ciΨci w
T
cizci(k) . (28)

'en, the loss function for the critic NN is given as

Eci �
1
2
εΤci(k)εci(k). (29)

Our objective is to minimize the loss function during the
critic NN training.

'e weights for the critic NN are updated according to
the gradient-based rule, which is given as follows:

ωci(k + 1) � ωci(k) − Kci

zEci(k)

zεci(k)

zεci(k)

zωci(k)

� ωci(k) − Kciε
T
ci(k) − ρψci w

T
cizci(k + 1) 

+ ψci w
T
cizci(k) ,

(30)

where Kci denotes the learning rate.

4.2. Formulation of the Actor Networks. 'e actor NN ap-
proximates the disturbed control law ui(k), which can be
formulated as

ui(k) � ωT
aiΨai w

T
aizai(k) , (31)

where zai(k) is the input vector of the actor NN, ψai(·) is the
activation function for the actor NN, and ωai and wai are the
weight matrices for the actor NN.

We define the difference between the current local cost
value Vi(k) and the target cost value Pi(k) as the error
function, which is given as

εai � Vi(k) − Pi(k). (32)

Yes

Keep current transmitted state

No

Keep current control policy

Update the transmitted state

Update the control policy

xi = xi (ki,p), δi (ki,p) = 0
ui = ui (ki,p), uj = uj (ki,p)

xi = Axi + Bui
x0 = Ax0

Compute δi (k), k Є (ki,p, ki,p+1)

ki,p+1 = k, xj = xj (k)

ui = ui (k) ui = ui (ki,p)

xj = xj (ki,p)

||δi (k)||2 > δiT (K)

Figure 1: 'e flowchart of the event-triggered consensus control algorithm.
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In this paper, the target cost value is defined as 0.
'en, the loss function for the actor NN is given as

Eai �
1
2
εT

ai(k)εai(k). (33)

Our objective is to minimize the loss function during the
actor NN training.

'e weights for the actor NN is updated according to the
gradient-based rule, which is given as follows:

ωai(k + 1) � ωai(k) − Kai

zEai(k)

zεai(k)

zεai(k)

z Vi(k)

zVi(k)

zui(k)

zui(k)

zωai(k)

� ωai(k) − Kaiε
T
ai(k)ωciΩ(k)CiΨai w

T
aizai(k) ,

(34)

where Ω(k) � zΨci(wT
cizci)/zzci, Ci � zzci/zui, and Kai is

the learning rate for the actor NN.
'e procedure of the NN-based event-triggered optimal

consensus control algorithm for discrete-time MASs is
shown in Algorithm 1.

Theorem 2. Consider a discrete-time MAS. <e weights of
critic NN and actor NN are updated following (30) and (34),
respectively, under condition (17). <e state xi, the critic NN

weight estimation error, ωci � ωci − ω∗ci, and the action weight
estimation error, ωai � ωai − ω∗ai, in the close loop system are
UUB.

Proof

Case 1: the ETcondition is satisfied at iteration index k.
'e Lyapunov function for agent i can be defined as
follows:

Li(k) � Li,1(k) + Li,2(k) + Li,3(k), (35)

where Li,1(k) � xi
T(k)xi(k), Li,2(k) � (1/Kci)tr

ωT
ci(k)ωci(k) , and Li,3(k) � 1/Kai · tr ωT

ai(k)ωai(k) .
'e difference between Li,1(k + 1) and Li,1(k) can be
given as

ΔLi,1 � xi
T
(k + 1)xi(k + 1) − xi

T
(k)xi(k),

� xi(k + 1)
����

����
2

− xi(k)
����

����
2
,

� − xi(k)
����

����
2

+ Aixi(k) + Biω
∗
aiΨ waiξi( 

����
����
2
.

(36)

'e difference between Li,2(k + 1) and Li,2(k) can be
given as

ΔLi,2 � 1/Kci( tr ωT
ci(k + 1)ωci(k + 1)  − 1/Kci( tr ωT

ci(k)ωci(k) 

� 1/Kci( tr ωT
ci(k + 1)ωci(k + 1) − ωT

ci(k)ωci(k) .
(37)

According to the update function for the weight matrix
of critic NN (30), we have

ωci(k + 1) � ωci(k) − Kciε
T
ci(k) − ρψci w

T
cizci(k + 1)  + ψci w

T
cizci(k)  

� ωci(k) − Kci − ρψci w
T
cizci(k + 1) + ψci w

T
cizci(k)   

× − Ui(k) + ρωT
ciΨci w

T
cizci(k + 1)   + ωT

ciΨci w
T
cizci(k)  

� ωci(k) − Kciη(k) − Ui(k) + ωT
ci(η(k)) 

� I − Kciη(k)ηT
(k) ωci(k) + KciUi(k)η(k),

(38)

where η(k) � − ρΨci(wT
cizci(k + 1)) + Ψci(wT

cizci(k)). Substituting (38) into 37 we have

ΔLi,2 � 1/Kci( tr
I − Kciη(k)ηT

(k) ωci(k) + KciUi(k)η(k) 
T

× I − Kciη(k)ηT
(k) ωci(k) + KciUi(k)η(k)  − ωT

ci(k)ωci(k)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ 1/Kci(  Kciη(k)ηT
(k)

����
����
2
F

ωci(k)
����

����
2

+ KciUi(k)η(k)
����

����
2

 

� η(k)ηT
(k)

����
����
2
F

ωci(k)
����

����
2

+ Ui(k)‖η(k)‖
2

� ‖η(k)‖
4

ωci(k)
����

����
2

+ Ui(k)‖η(k)‖
2
.

(39)
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'e difference between Li,3(k + 1) and Li,3(k) can be
given as

ΔLi,3 � 1/K2
ai tr ωT

ai(k + 1)ωai(k + 1)  − 1/Kai( tr ωT
ai(k)ωai(k) ,

� 1/K2
ai tr ωT

ai(k + 1)ωai(k + 1) − ωT
ai(k)ωai(k) .

(40)

According to the update function for the weight matrix
of critic NN (34), we have

ωai(k + 1) � ωai(k) − Kaiε
T
ai(k)ωciΩ(k)CiΨai w

T
aizai(k) 

� ωai(k) − Kai
Vi(k)ωciΩ(k)CiΨai w

T
aizai(k) .

(41)

Substituting (41) into (40), we have

ΔLi,3 �
1

Kai

tr

ωai(k) − Kai
Vi(k)ωciΩ(k)CiΨai w

T
aizai(k)  

T

× ωai(k) − Kai
Vi(k)ωciΩ(k)CiΨai w

T
aizai(k)  

− ωT
ai(k)ωai(k)

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�
1

Kai

tr

− ωT
ai(k)Kai

Vi(k)ωciΩ(k)CiΨai w
T
aizai(k) 

− Kai
Vi(k)ΨT

ai w
T
aizai(k) C

T
i Ω

T
(k)ωT

ci ωai(k)

+K
2
ai

V
2
i (k)ΨT

ai w
T
aizai(k) C

T
i Ω

T
(k)ωT

ci ωciΩ(k)CiΨai w
T
aizai(k) 

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

� tr

− 2Vi(k)ΨT
ai w

T
aizai(k) C

T
i Ω

T
(k)ωT

ci ωai(k)

+Kai
V
2
i (k)ΨT

ai w
T
aizai(k) C

T
i Ω

T
(k)ωT

ci ωciΩ(k)CiΨai w
T
aizai(k) 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� − 2Vi(k)tr ωT
ai(k)ωciΩ(k)CiΨai w

T
aizai(k)   + Kai

V
2
i (k) ωciΩ(k)CiΨai w

T
aizai(k) 

�����

�����
2

F
.

(42)

Combining (36), (39), and (42), the difference between
ΔL(k) and ΔL(k + 1) is given as

ΔL≤ − xi(k)
����

����
2

− 2Vi(k)tr ωT
ai(k)ωciΩ(k)CiΨai w

T
aizai(k)  

+ Aixi(k) + Biω
∗
aiΨ waiξi( 

����
����
2

+‖η(k)‖
4

+ Ui(k)‖η(k)‖
2

+ Kai
V
2
i (k) ωciΩ(k)CiΨai w

T
aizai(k) 

�����

�����
2

F

≤ − xi(k)
����

����
2

− 2Vi(k)tr ωT
ai(k)ωciΩ(k)CiΨai w

T
aizai(k)   + Dmi,

(43)
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where Dmi � sup((‖Aixi(k) + Biω∗aiΨ(waiξi)‖
2 + ‖η

(k)‖4 + Ui (k)‖η(k)‖2 + Kai
V
2
i (k)‖ωciΩ ((k)CiΨai

(wT
aizai (k)))‖2F).

If one of the conditions ‖x(k)‖≥
����
Dmi


or

Vi(k)tr ωT
ai(k)ωciΩ(k)CiΨai(wT

aizai(k)) ≥Dmi holds,
the difference is ΔL< < 0. 'is means the states of the
system and the error of the weight matrices for critic
NN and actor NN are UUB.
Case 2: if the ET condition is not satisfied at iteration
instant k, consider the Lyapunov function (35) in case 1.
'e difference between Li,1(k + 1) and Li,1(k) can be
given as

ΔLi,1 � xT
i (k + 1)xi(k + 1) − xT

i (k)xi(k)

� xi(k + 1)
����

����
2

− xi(k)
����

����
2

≤ − xi(k)
����

����
2

+ Lx(k) + L
2
‖ξ(k)‖

����
����.

(44)

'e weight matrices for the critic NN and actor NN are
not updated when the ET condition is not satisfied, so
the differences are ΔLi,2 � 0 and ΔLi,3 � 0.
Combining ΔLi,1, ΔLi,2, and ΔLi,3, the difference
between ΔL(k) and ΔL(k + 1) is given as

ΔL � ΔLi,1 + ΔLi,2 + ΔLi,3

≤ − xi(k)
����

����
2

+ Lx(k) + L
2
‖ξ(k)‖

����
����.

(45)

If the condition ‖xi(k)‖≥
����������������
‖Lx(k) + L2‖ξ(k)‖‖


holds,

the difference is ΔL< 0. 'is means when the ET
condition is not satisfied at the time index k, the states
of the system and the error of the weights matrices for
the critic NN and actor NN are UUB. □

5. Simulation Analysis

To test the effectiveness of the proposed algorithm, we apply
the proposed algorithm in a numerical example. Consider a
discrete-time leader-follower MAS consisting of 4 agents
with a network topology, as shown in Figure 2. In the to-
pology, agent 0 denotes the leader and the followers are
labeled as agent 1 to agent 4.'e adjacency elements α21, α31,
and α42 are set to 1.'e other adjacency elements are set to 0.
In this numerical example, only agent 1 can communicate
with the leader, which means β1 � 1 and β2 � β3 � β4 � 0.
'e weight matrices of the utility function are selected as
Q11 � Q11 � Q11 � Q11 � I2×2, R11 � R22 � R33 � R44 � 1,

and S12 � S13 � S14 � S23 � S24 � S32 � S34 � S41 � S43 � 0.
'e dynamics matrix for the leader are set to

A �
0.9950 0.0798

− 0.0798 0.9950 . 'e dynamics matrices for the

followers are set to A �
0.9950 0.0798

− 0.0798 0.9950 ,

B1 �
0.2047
0.0898 , B2 �

0.2147
0.2895 , B3 �

0.2097
0.1897 , and

B4 �
0.2000
0.1000 .

'e parameters for the critic NN and the actor NN are
set to ρ � 0.9, and Kc1 � Kc2 � Kc3 � 0.01, Kc4 � 0.001,
and Ka1 � Ka2 � Ka3 � Ka4 � 0.01. Ψc1(k1,p) � [ξ

2
11

(k1,p), ξ
2
12(k1,p), u1(k1,p)], Ψc2(k2,p) � [ξ

2
21(k2,p), ξ

2
22 (k2,p),

u2
1(k2,p), u2

2(k2,p)], Ψc3(k3,p) � [ξ
2
31(k3,p), ξ

2
32 (k3,p), u2

1
(k3,p), u2

3(k3,p)], and Ψc4(k4,p) � [ξ
2
41(k4,p), ξ

2
42 (k4,p), u2

(k4,p), u4(k4,p)] are the activation functions of the critic
NNs. 'e activation functions of the actor NNs are set to
Ψai(ki,p) � [ξi(ki,p)]. x0(0) � [0.6311, 0.0899]T, x1(0)

0

2

1 3

4

Leader

Follower

Figure 2: 'e network topology for the discrete-time MAS.
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� [0.9954, 0.3321]T, x2(0) � [0.2973, 0.0620]T, x3(0) �

[0.2982, 0.0464]T, and x4(0) � [0.5054, 0.7614]T are chosen
as the initial states for the leader and the follower agents in
the system. We set L � 0.1.

'e tracking path for every agent in the discrete-time
MAS is shown in Figure 3. From Figure 3, we can observe
that all the agents in the system can reach the same state as
the leader, and then, they achieve synchronization. 'e

driving errors for the agents in the system are shown in
Figure 4. All the agents’ driving error all are not updated at
every instant k, that is to say, all the agents are driven when
the ETcondition is satisfied. Figure 5 shows the comparisons
of event-triggered errors and thresholds for every agent in
the system. In Figure 5, we can observe that the event-
triggered errors are always smaller than the thresholds
during the tracking process, and we only sample the data

Initialization:
Give the computation precision τ and the initial state xi(0) for agent i;
Give the initial state x0(0) for the leader;
Select the learning rate Kai and Kci;
Give the positive matrices Qii, Rii, and Sij;
Initialize the event-triggered error condition δiT(0) � 0;
Select the positive constant L;

Iteration:
Let the iteration index k � 0;
repeat:
Calculate the tracking error ξi(k) and the event-triggered error δi(k);

IF ‖δi(k)‖≥ δiT(k):
Event-triggered error ‖δi(k)‖ � 0;
Event-triggered index ki,p � k;
Compute the control law ui(k);
Compute the local cost function Vi(k);
Compute the next state xi(k + 1) of agent i and the next state x0(k + 1) of the leader agent;
Calculate the next tracking error ξi(k);
Compute the control law ui(k + 1);
Compute the local cost function Vi(k + 1);
Update the weights matrix of the critic NN;
Update the weights matrix of the actor NN;

ELSE:
'e control law ui(k) � ui(k − 1);

Compute the control law ui(k);
Compute the next state xi(k + 1) of agent i and the next sate x0(k + 1) of the leader agent
according to the model NN;
k � k + 1 ;

Until |ωci(k + 1) − ωci(k)|≤ τ;
End

ALGORITHM 1: NN-based event-triggered optimal consensus control algorithm for discrete-time MASs.

Agent 0
Agent 1

Agent 3
Agent 4

Agent 2

xi1

1

1

0.5

0.5

–0.5

–0.5

–1

–1

0

0

0
100

200
300

x i2

k

Figure 3: 'e tracking path for the system under the ET condition.
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Figure 4: 'e driving error for every agent in the system under the ETcondition. (a) Driving error for agent1. (b) Driving error for agent2.
(c) Driving error for agent3. (d) Driving error for agent4.
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Figure 5: Continued.
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Figure 5: Comparisons of event-triggered errors and thresholds for every agent in the system. (a) Comparisons of event-triggered errors
and thresholds for agent1. (b) Comparisons of event-triggered errors and thresholds for agent2. (c) Comparisons of event-triggered errors
and thresholds for agent3. (d) Comparisons of event-triggered errors and thresholds for agent4.
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Figure 6: Comparisons of required number of transmitting data under the time-triggered and event-triggered ADP for every agent in the
system. (a) 'e required number of transmitting data under the time-triggered ADP and event-triggered ADP for agent1. (b) 'e required
number of transmitting data under the time-triggered ADP and event-triggered ADP for agent2. (c) 'e required number of transmitting
data under the time-triggered ADP and event-triggered ADP for agent1. (d) 'e required number of transmitting data under the time-
triggered ADP and event-triggered ADP for agent1.
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when the event-triggered errors are bigger or equal to the
thresholds, so we sample the less data and save computing
resources using our algorithm. Figure 6 shows the com-
parisons of the required number of transmitting data under
the time-triggered and event-triggered ADP algorithm for
every agent in the system. We can observe the required
number of the event-triggered algorithm is much less than
the required number of the time-triggered algorithm.

6. Conclusion

An event-triggered optimal consensus tracking control al-
gorithm based on the ADP structure is proposed in this
paper. To save the communication and computation re-
sources, we introduce the event-triggered scheme to the
optimal consensus tracking control algorithm. 'e neural
networks technology is introduced to simplify the appli-
cation of the proposed algorithm. It is proved the discrete-
time MASs are stable with the proposed algorithm and the
estimate errors of the weights for NNs are UUB. 'e sim-
ulation results illustrate the efficiency of the proposed
method.
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