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)is paper deals with the multievent-triggering-based state estimation for a class of discrete-time networked singularly perturbed
complex networks (SPCNs). A small singularly perturbed scalar is adopted to establish a discrete-time SPCNs model. To reduce
the communication burdens, the data transmission between the sensor and the estimator is managed by a multievent generator
function. Depending on the singularly-perturbed-based Lyapunov theory, a sufficient condition is constructed to guarantee that
the estimation error is exponentially ultimately bounded in the mean square. Finally, the validity of the developed result is
demonstrated by a simulation example.

1. Introduction

A complex network is a set of interconnected nodes coupled
by certain network topology, each node of which can be
considered as a class of dynamic subsystems. Owing to its
complex inherent structure, most systems in real life can be
regarded simply as complex networks, including, but not
limited to social networks, biological networks, power grid
networks, and Internet [1–3]. Consequently, considerable
research interest has been stirred over the past few decades
and there has been a host of meaningful published
achievements of complex networks [4–9].

As far as we know, however, the complex networks with
two-time scales receive little attention. However, the two-
time scale case of many real-life complex networks [10–12] is
continually encountered. For instance, the circuit state
variables become faster than the mechanical state variables
in electronic power grids, due to the difference in the time
scalars on the circuit and the mechanical systems [10]. )is
can result in the appearance of diverse time-scale subsystems
in hosts of electromechanical systems, named fast and slow
dynamics. In most of the existing literature [13–15], a sin-
gularly perturbed approach is adopted to deal with the two-
time scale phenomenon of these real-life systems. In other
words, the fast-slow subsystem is distinguished by

introducing a small singularly perturbed scalar. Hence, such
complex networks can be regarded as SPCNs [16–23].

What is worth mentioning is that a host of the reporting
efforts [16–20] merely focuses on the synchronization
phenomenon of the SPCNs. However, in some real-world
scenarios, the exact state of the SPCNs on account of various
factors, like the high number of nodes, disturbances in all
directions, and high dimensions, is unavailable [7]. )us,
what we should pay attention to is the state estimation of the
SPCNs. On the other hand, we noticed that besides [22, 23],
the discrete-time SPCNs get little research concerns.)e two
important reasons for considering the discrete-time SPCNs
are that computational simulation and network commu-
nication. )erefore, it is very necessary to investigate the
state estimation of the discrete-time SPCNs.

In addition, increasing attention is devoted to the event-
triggered protocol (ETP), in which the current packet is
released if the ETP-based triggering condition is satisfied
[24–26]. Past years have witnessed an increasing interest in
ETPs, including static ETPs, dynamic ETPs, and memory
ETPs [27–34]. It is noted that in the above-referred ETPs, the
triggering parameter is assumed to be the same for all dy-
namic outputs/states. Nevertheless, such an assumption is
difficult to be satisfied, especially in multisensor networks,
which contributes to the varying triggering parameters. In
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light of above-discussed phenomenon, in this work, in order
to save resource consumption and solve the communication
congestion, a multi-ETP is employed to deal with the large
information communication among nodes of the discrete-
time SPCNs, which, to some extent, promotes the current
research. As such, a natural and interesting question is how
to design a proper multi-ETP for discrete-time SPCNs.

Based on the aforementioned observations, we try our
best to develop the multi-ETP-based estimator design issue
for the discrete-time SPCNs. )en, the mean square ex-
ponential bounded and state estimations are studied by
using the Lyapunov function dependent on a singular
perturbed parameter. In the end, a numerical example is
presented to prove the effectiveness of the state estimator
design method. It is worth emphasizing that even though the
discrete-time SPCNs are unstable, the result of this work is
still efficient. )e highlights of our contributions are out-
lined as follows: (1) A nonlinear discrete-time SPCNs model
is developed, which includes nonlinearities of complex
networks and multitime scales. (2) As the study progress, the
multi-ETP-based state estimation problem for the discrete-
time SPCNs with nonlinearities is considered.

Notation:N refers to a set of all nonnegative integers.Z⊤
represents the transpose of the matrixZ. diag ·{ } symbolizes
the diagonal matrix. He Z{ } � Z⊤ + Z. Im denotes the
m-dimensional unit matrix. λmin(·)/λmax(·) denotes the
minimal/maximal eigenvalue. ‖ · ‖ means Euclidean vector
norm. E ·{ } signifies the mathematical expectation.

2. Problem Formulations

Consider a type of SPCNs composed of N coupled nodes
described by

xi(k + 1) � gϵ xi(k)(  + 
N

j�1
ωijΓϵxj(k) + Ci,ϵ](k),

yi(k) � Dixi(k) + Ei](k), (i � 1, 2, . . . , N),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where xi(k) � [x⊤is(k)x⊤if(k)]⊤ ∈ Rnx , yi(k) � [y⊤is(k)y⊤if

(k)]⊤ ∈ Rny , gϵ(xi(k)) �
f(xis(k)) + Axif(k)

ϵ(h(xis(k)) + Bxif(k))
 ,

Γϵ �
Γ11 Γ12
ϵΓ21 ϵΓ22

 , Ci,ϵ �
Cis

ϵCif
 , Di � diag Dis, Dif ,

Ei �
Eis

Eif
 , xis(k) ∈ Rnxs , and xif(k) ∈ Rnxf (nx �

nxs
+ nxf

) refer to the slow state and the fast state of node i,
respectively. yis(k) ∈ Rnys and yif(k) ∈ Rnyf (ny � nys

+ nyf
)

mean the measurement outputs of node i, ϵ is a singular
perturbation parameter, and ](k) ∈ Rn] signifies the bound
disturbance input belonging to l2[0,∞), which meets
‖](k)‖2 ≤ ]. Γϵ refers to an inner-coupling matrix with given
dimensions. A, B, Ci,ϵ, Di, and Ei are known matrices with
suitable dimensions.

)e network topology W � N,X,W{ } is devoted to
reflect the outer coupling phenomenon of the SPCNs. N �

1, 2, . . . , N{ } and X⊆N × N symbolize the sets of nodes
and edges. For any (i, j ∈N), the out-coupled configuration
matrix W � ωij  is symmetric if ωij � ωji > 0, which
satisfies

ωii � − 
N

j�1,j≠ i

ωij, (2)

where ωij > 0(∀i≠ j) implies a connection between nodes j

and i; otherwise, ωij � 0.

Assumption 1 (see [23]). )e nonlinear sector-valued
functions f(·): Rnxs⟶ Rnxs and h(·): Rnxs⟶ R

nxf of
SPCNs (1) satisfy the following assumption:

f xis(k)(  − f xjs(k)  − Λ1 xis(k) − xjs(k)  
⊤

f xis(k)(  − f xjs(k)  − Λ2 xis(k) − xjs(k)  ≤ 0,

h xis(k)(  − h xjs(k)  − Υ1 xis(k) − xjs(k)  
⊤

h xis(k)(  − h xjs(k)  − Υ2 xis(k) − xjs(k)  ≤ 0,
(3)

where xis(k), xjs(k) ∈ Rnxs , f(0) � 0, h(0) � 0, Λℓ, and
Υℓ(ℓ � 1, 2) are constant matrices.

In this paper, for the sake of saving the communication
resources between the sensors and estimators, a multievent-
triggered approach is presented to reduce transmission
energy. )e triggering instant series of node i can be as-
sumed as 0≤ ki

0 < ki
1 < . . . < ki

t < . . . , (i � 1, 2, . . . , N) where
the new transmitted instant ki

t+1 can be formulated as

k
i
t+1 � min k ∈ [0,N]|k> k

i
t, θi − ε⊤i (k)Φiεi(k)< 0 . (4)

With ki
0 � 0, θi ∈ [0, 1] is the given parameter of the i-th

node, Φi � diag Φis,Φif > 0 is a weighting matrix of the

i-th node to be determined, and εi(k)≜yi

(k) − yi(ki
t)≜ [ε⊤is(k)ε⊤if(k)]⊤ with yi(ki

t) referring to the
latest transmitted measurement of node i. Hence, for
k ∈ [ki

t, ki
t+1),

θi − ε⊤i (k)Φiεi(k)≥ 0. (5)

Remark 1. Note that different from the existing static ETP,
the multievent-triggered protocol is studied in (2). )e
proposed triggering protocol can be seen as a generalized
framework of ETP, which cover the existing static ETP as a
special case (i.e., i � 1).
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Subsequently, based on the multievent-triggered ap-
proach, a state estimator is constructed as

xi(k + 1) � gϵ xi(k)(  + 
N

j�1
ωijΓϵxj(k) + Ki yi k

i
t  − Dixi(k) , (i � 1, 2, . . . , N), (6)

where xi(k) � [x⊤is(k)x⊤if(k)]⊤ with xis(k) and xif(k) rep-
resenting the state estimations of xis(k) and xif(k), re-
spectively. Ki � diag Kis, Kif  means the estimator gain of
the i-th node to be judged.

Let

ei(k) � e
⊤
is(k)e

⊤
if(k) 

⊤
,

eis(k) � xis(k) − xis(k),

eif(k) � xif(k) − xif(k),

A(k) � A
⊤
1 (k)A

⊤
2 (k) . . .A

⊤
N(k) 

⊤
(e, ε, ),

B eis(k)(  � B xis(k)(  − B xis(k)( (B � f, h),

g
⊤
ϵ eis(k)(  � f

⊤
eis(k)( ϵh

⊤
eis(k)(  ,

g
→
ϵ es(k)(  � g

⊤
ϵ e1s(k)( g

⊤
ϵ e2s(k)(  . . . g

⊤
ϵ eNs(k)(  

⊤
.

(7)

Combining (1) and (4), the dynamics of the estimation
error can be built as

e(k + 1) � g
→
ϵ es(k)(  + W⊗ Γϵ + IN ⊗Gϵ − KD( e(k) + Cϵ − KE( ](k) + Kε(k), (8)

where

Cϵ � C
⊤
1,ϵC
⊤
2,ϵ . . . C

⊤
N,ϵ 
⊤

,

K � diag K1,K2, . . . ,KN (K � K, D),

E � E
⊤
1 E
⊤
2 . . . E

⊤
N 
⊤

,

Gϵ �
0 A

0 ϵB
 .

(9)

In the sequel, one reschedules the order of dynamic
estimation errors (8). Denote T � T1 × T2 × · · · × TN,
with Tℓ ∈ RNnx⊗Nnx (ℓ � 1, 2, . . . , N) being row-switching
elementary matrices and T being invertible. )en, one has

Te(k + 1) � T g
→
ϵ es(k)(  + T W⊗ Γϵ + IN ⊗Gϵ − KD( T

− 1
Te(k) + T Cϵ − KE( ](k) + TKε(k), (10)

which yields

e(k + 1) � Aϵe(k) + I1f es(k)(  + ϵI2h es(k)(  + Cϵ](k) + Kε(k), (11)

where
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e(k) � e
⊤
1s(k)e

⊤
2s(k) . . . e

⊤
Ns(k)e

⊤
1f(k)e

⊤
2f(k) . . . e

⊤
Nf(k) 

⊤
,

D es(k)(  � D
⊤

e1s(k)(  D
⊤

e2s(k)(  . . . D
⊤

eNs(k)(  
⊤

(D � f, h),

ε(k) � ε⊤1s(k)ε⊤2s(k) . . . ε⊤Ns(k)ε⊤1f(k)ε⊤2f(k) . . . ε⊤Nf(k) 
⊤

,

Aϵ �

− KsDs + W⊗ Γ11 IN ⊗A + W⊗Γ12

ϵ W⊗ Γ21(  ϵ IN ⊗B + W⊗ Γ22(  − KfDf

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

I1 �

INnxs

0Nnxf
×Nnxs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

I2 �

0Nnxs
×Nnxf

INnxf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Cϵ �

Cs − KsEs

ϵCf − KfEf

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

K � diag Ks, Kf ,

Eℓ � diag E1ℓ,E2ℓ, . . . ,ENℓ (E � K, D, ℓ � s, f),

Fℓ � F
⊤
1ℓF
⊤
2ℓ . . .F

⊤
Nℓ 
⊤

(F � C, E, ℓ � s, f).

(12)

To facilitate the derivation of the main results, the fol-
lowing definition and lemma are introduced.

Definition 1 (see [35]). Estimation error dynamics (7) is
exponentially ultimately bounded in mean square (EUBMS),
if for any solution e(k) with initial state e(0),

E ‖e(k)‖
2

 ≤ α‖e(0)‖
2βk

+ c(k), limk⟶∞c(k) � c, (13)

holds, where α> 0, β ∈ [0, 1), and c> 0 imply the mean
square asymptotic upper bound of (11).

Lemma 1 (see [23]). Combined with Assumption 1, the
nonlinear functions f(es(k)) and h(es(k)) of estimation error
dynamics (7) satisfy the conditions as follows:

e
⊤

(k) f⊤ es(k)(  
F1 ∗

F2 INnxs

⎡⎢⎣ ⎤⎥⎦
e(k)

f es(k)( 
 ≤ 0,

e
⊤

(k) h⊤ es(k)(  
H1 ∗

H2 INnxf

⎡⎢⎢⎣ ⎤⎥⎥⎦
e(k)

h es(k)( 
 ≤ 0,

(14)

where

F1 � diag IN ⊗
Λ⊤1Λ2 + Λ⊤2Λ1

2
 , 0Nnxf

 ,

F2 � − IN ⊗
Λ1 + Λ2

2
  0Nnxs

 ,

H1 � diag IN ⊗
Υ⊤1Υ2 + Υ⊤2Υ1

2
 , 0Nnxf

 ,

H2 � − IN ⊗
Υ1 + Υ2

2
  0Nnxf

 .

(15)

Lemma 2 (see [23]). For any matricesH andG and a scalar
ϵ0 > 0, ∀ϵ ∈ (0, ϵ0], if H≤ 0 and H + ϵ0G< 0 hold, it yields
H + ϵ < 0.

3. Main Results

In this section, a sufficient condition is presented to guar-
antee that the estimation error dynamics (7) is exponentially
ultimately bounded in mean square and the desired state
estimator will be designed.
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Theorem 1. For given ϵ> 0 and c ∈ [0, 1), estimation error
dynamics (7) is EUBMS, if there exist scalars
λς > 0(ς � 1, 2, 3) and κ> 0 and matrices Pϵ > 0, such that

− (1 − c)Pϵ − λ1F1 − λ2H1 ∗ ∗ ∗ ∗

− λ1F2 − λ1INnxs
∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
Aϵ

����
1 + κ

√
I1

����
1 + κ

√
ϵI2

����
1 + κ

√
K − P

− 1
ϵ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (16)

where

Φ � diag Φ1s,Φ2s, . . . ,ΦNs,Φ1f,Φ2f, . . . ,ΦNf . (17)

Proof. Firstly, construct the following Lyapunov functional
candidate:

V(k) � e
⊤

(k)Pϵe(k). (18)

According to (5), another equivalent form of the event-
triggering condition is as follows:



N

i�1
θi − ε⊤(k)Φε(k)≥ 0. (19)

Along the trajectory of (11), calculating themathematical
expectation of the difference of V(k), one gains that

E ΔV(k){ } � E V(k + 1) − (1 − c)V(k) − cV(k){ }

� E e
⊤

(k + 1)Pϵe(k + 1) − (1 − c)e
⊤

(k)Pϵe(k) − cV(k) 

≤E e
⊤

(k + 1)Pϵe(k + 1) − (1 − c)e
⊤

(k)Pϵe(k) − cV(k) 

� E Aϵe(k) + I1f es(k)(  + ϵI2h es(k)(  + Cϵ](k) + Kε(k)( 
⊤

Pϵ Aϵe(k) + I1f es(k)( (

+ ϵI2h es(k)(  + Cϵ](k) + Kε(k) − (1 − c)e
⊤

(k)Pϵe(k) − cV(k)

≤E Aϵe(k) + I1f es(k)(  + ϵI2h es(k)(  + Kε(k)( 
⊤

Pϵ Aϵe(k) + I1f es(k)( (  + ϵI2h es(k)( 

+ Kε(k)) + ]⊤(k)C
⊤
ϵ PϵCϵ](k) + 2 Aϵe(k) + I1f es(k)( (  + ϵI2h es(k)(  +Kε(k))

⊤
PϵCϵ](k)

− (1 − c)e
⊤

(k)Pϵe(k) − cV(k).

(20)

Depending on Young’s inequality, the following in-
equality holds:

2 Aϵe(k) + I1f es(k)(  + ϵI2h es(k)(  + Kε(k)( 
⊤

PϵCϵ](k)

≤ κ Aϵe(k) + I1f es(k)(  + ϵI2h es(k)(  +Kε(k))
⊤

Pϵ Aϵe(k) + I1f es(k)(  + ϵI2h es(k)(  + Kε(k)( ( 

+
1
κ

]⊤(k)C
⊤
ϵ PϵCϵ](k)( .

(21)

Combining (19) and (21) and Lemma 1, we obtain that
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E ΔV(k){ }≤E

(1 + κ) Aϵe(k) + I1f es(k)(  + ϵI2h es(k)(  + Kε(k)( 
⊤

Pϵ Aϵe(k) + I1f es(k)(  + ϵI2h es(k)(  + Kε(k)( 

+ 1 +
1
κ

 ]⊤(k)C
⊤
ϵ PϵCϵ](k) − (1 − c)e

⊤
(k)Pϵe(k) − cV(k) − λ1 e

⊤
(k) f⊤ es(k)(  

F1 ∗

F2 INnxs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e(k)

f es(k)( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− λ2 e
⊤

(k) h⊤ es(k)(  

H1 ∗

H2 INnxf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e(k)

h es(k)( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ λ3 

N

i�1
θi − ε⊤(k)Φε(k)⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� ℵ⊤(k)Ξϵℵ(k) − cV(k) + ϱ,

(22)

where

ℵ(k) � e
⊤

(k)f⊤ es(k)( h⊤ es(k)( ε⊤(k) 
⊤

,

ϱ � λ3 

N

i�1
θi + 1 +

1
κ

 λmax C
⊤
ϵ PϵCϵ ],

Ξϵ �

Ξ11ϵ ∗ ∗ ∗

(1 + κ)I
⊤
1 PϵAϵ − λ1F2 (1 + κ)I

⊤
1 PϵI1 − λ1INnxs

∗ ∗

(1 + κ)ϵI⊤2 PϵAϵ − λ2H2 (1 + κ)ϵI⊤2 PϵI1 (1 + κ)ϵ2I⊤2 PϵI2 − λ2INnxf

∗

(1 + κ)K
⊤

PϵAϵ (1 + κ)K
⊤

PϵI1 (1 + κ)K
⊤

PϵϵI2 (1 + κ)K
⊤

PϵK − λ3Φ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ξ11ϵ � (1 + κ)A
⊤
ϵ PϵAϵ − (1 − c)Pϵ − λ1F1 − λ2H1.

(23)

Applying the Schur complement lemma to (16), it is clear
that Ξϵ < 0. Consequently, one has

E ΔV(k){ }≤ − cV(k) + ϱ, (24)

which yields

E V(k + 1){ }≤ (1 − c)V(k) + ϱ. (25)

)en, it follows from (25) that

E V(k){ }≤ (1 − c)
k
V(0) +

1 − (1 − c)
k

c
ϱ. (26)

Moreover, it is easy to obtain that V(k)≥ λmin
Pϵ e⊤(k)e(k) and V(0)≤ λmax Pϵ e⊤(0)e(0); combining
(26), it yields that

E ‖e(k)‖
2

 ≤
(1 − c)

kλmax Pϵ 

λmin Pϵ 
‖e(0)‖

2
+
1 − (1 − c)

k

cλmin Pϵ 
ϱ.

(27)

Consequently, estimation error dynamics (7) is EUBMS,
and c � 1/cλmin Pϵ ϱ is the mean square asymptotic upper
bound of (7), which completes the proof. □

Theorem 2. For ∀ϵ ∈ (0, ϵ0] with the upper bound ϵ0 > 0 and
c ∈ [0, 1), estimation error dynamics (7) is EUBMS, if there
exist scalars λς(ς � 1, 2, 3) and κ> 0 and matrices P

⌣
�

P
⌣

11 ∗
P
⌣

21 P
⌣

22

⎡⎣ ⎤⎦, P �
P11 ∗
P21

P22
 , Xℓ � diag Xℓ1, Xℓ2, . . . , XℓN 

(ℓ � 1, 2), andKi℘(i � 1, 2, . . . , N,℘ � s, f), such that
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P
⌣
≥ 0, P

⌣
+ ϵ0P> 0, (28)

− (1 − c)P
⌣

− λ1F1 − λ2H1 ∗ ∗ ∗ ∗
− λ1F2 − λ1INnxs

∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
�A

����
1 + κ

√
XI1 0

����
1 + κ

√
K P

⌣
− X − X

⊤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0, (29)

− (1 − c) P
⌣

+ ϵ0P  − λ1F1 − λ2H1 ∗ ∗ ∗ ∗

− λ1F2 − λ1INnxs
∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
�A + ϵ0 A 

����
1 + κ

√
XI1

����
1 + κ

√
ϵ0XI2

����
1 + κ

√
K P

⌣
+ ϵ0P − X − X

⊤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (30)

where

X � diag X1, X2 ,

K℘ � diag K1℘, K2℘, . . . , KN℘ , (℘ � s, f),

�A �
− KsDs + X1 W⊗ Γ11(  X1 IN ⊗A + W⊗ Γ12( 

0 − KfDf

⎡⎢⎣ ⎤⎥⎦,

A �
0 0

X2 W⊗ Γ21(  X2 IN ⊗B + W⊗ Γ22( 
 ,

K � diag Ks, Kf .

(31)

Moreover, the estimator gain matrices are calculated as

Kis � X
− 1
1i Kis,

Kif � X
− 1
2i Kif,

(i � 1, 2, . . . , N).

(32)

Proof. From (28)–(30) and Lemma 2, it follows that for
∀ϵ ∈ (0, ϵ0], the following conditions hold:

Pϵ � P
⌣

+ ϵP> 0

·

− (1 − c)(P
⌣

+ ϵP) − λ1F1 − λ2H1 ∗ ∗ ∗ ∗

− λ1F2 − λ1INnxs
∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
( �A + ϵ A)

����
1 + κ

√
XI1

����
1 + κ

√
ϵXI2

����
1 + κ

√
K P

⌣
+ ϵP − X − X

⊤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.
(33)

Substituting (32) into (33) and noticing that
− XP− 1
ϵ X⊤ ≤Pϵ − He X{ }, one has

− (1 − c)Pϵ − λ1F1 − λ2H1 ∗ ∗ ∗ ∗

− λ1F2 − λ1INnxs
∗ ∗ ∗

− λ2H2 0 − λ2INnxf

∗ ∗

0 0 0 − λ3Φ ∗
����
1 + κ

√
XAϵ

����
1 + κ

√
XI1

����
1 + κ

√
ϵXI2

����
1 + κ

√
XK − XP

− 1
ϵ X
⊤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (34)
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Recalling (29), it is clear that P
⌣

− X − X⊤ < 0 with P
⌣
≥ 0.

)en, X is invertible.
Premultiplying and postmultiplying (34) by

diag INnx
, INnxs

, I2Nnxf

, INny
, X− 1 , its transposes yields (16).

)erefore, inequality (16) can be guaranteed if (28)–(30)
hold. )is completes the proof. □

4. Numerical Example

Similar to [23], consider SPCNs (1) with three nodes and the
following parameters:

A � 1.2 0.45 ,

B �
1.3 0.6

2.3 0.9
 ,

C1s � 0.2,

C2s � 0.1,

C3s � 0.4,

C1f �
0.86

1.15
 ,

C2f �
0.5

1.75
 ,

C3f �
0.02

0.05
 ,

D1s �
2

1.2
 ,

D2s �
0.9

2.1
 ,

D3s �
1.6

1.62
 ,

D1f � 2.4 1 ,

D2f � − 1.4 0.6 ,

D3f � 2.3 2 ,

E1s �
0.8

1
 ,

E2s �
0.5

0.1
 ,

E3s �
0.4

− 1
 ,

E1f � 0.2,

E1f � 0.4,

E1f � 0.25.

(35)

)e out-coupled configuration matrix W of SPCNs (1)
and its inner-coupling matrix, respectively, are selected as
follows:

Γ11 � 0.45,

Γ12 � 0.2 0.6 ,

Γ21 �
0.1

0.5
⎡⎢⎢⎣ ⎤⎥⎥⎦,

Γ22 �
0.6 0.2

0.4 0.25
⎡⎢⎢⎣ ⎤⎥⎥⎦,

W �

− 0.2 0.1 0.1

0.1 − 0.2 0.1

0.1 0.1 − 0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(36)

In light of Assumption 1, the nonlinear vector-valued
functions are chosen as

f xis(k)(  � 0.8xis(k) − tanh 0.4xis(k)( ,

h xis(k)(  �
0.3xis(k) − tanh 0.1xis(k)( 

0.4xis(k) − tanh 0.2xis(k)( 
 , (i � 1, 2, . . . , N),

(37)

and Λ1 � 0.5,Λ2 � 0.58,Υ1 � 0.2 0.2 
⊤

, andΥ2 �

0.5 0.41 
⊤. )e event-triggered thresholds are set as

θ1 � 0.17, θ2 � 0.104, and θ3 � 0.5, and the weighting ma-
trices are calculated as Φi � diag 44.1124, 44.1124,{

44.1124}(i � 1, 2, 3). Other parameters are given as follows:
ϵ0 � 0.0193 and c � 0.1.

According to )eorem 2, the gain matrices of state es-
timator (6) can be obtained as

Ks �

0.1755 0.1053 0 0 0 0

0 0 0.0824 0.1924 0 0

0 0 0 0 0.1473 0.1491

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Kf �

0.0107 0 0

0.0290 0 0

0 − 0.0179 0

0 − 0.1104 0

0 0 0.0102

0 0 0.0222

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

)e bound disturbance input is considered as
](k) � 0.05cos(2k), and the initial conditions of (1) and (6)
are given as x1(0) � 0.04 0.01 0.02 

⊤, x2(0) �

0.03 0.015 0.02 
⊤, x3(0) � 0.1 0.004 0.004 

⊤, and
x1(0) � x2(0) � x3(0) � 0 0 0 

⊤.
)e simulation results are presented in Figures 1–5.

Figures 1–3 display the state trajectories and their estima-
tions of three nodes, respectively. )e event-based release
instants and release intervals of three nodes are shown in
Figure 4. Figure 5 plots the evolutions of the estimation error
dynamics. It can be discovered from Figure 5 that estimation
error dynamics (7) is EUBMS.

8 Complexity



0
0.02
0.04

0

5

10 ×10-3

×10-3

0

10

20

0 2 4 6 8

x1
(1) (k)

x̂1
(1) (k)

10 12 14 16 18 20
Time (k)

0 2 4 6 8

x1
(2) (k)

x̂1
(2) (k)

10 12 14 16 18 20
Time (k)

0 2 4 6 8

x1
(3) (k)

x̂1
(3) (k)

10 12 14 16 18 20
Time (k)

Figure 1: )e state trajectories and estimations of node 1.
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Figure 2: )e state trajectories and estimations of node 2.
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Figure 3: )e state trajectories and estimations of node 3.
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5. Conclusions

)is paper has investigated the issue of the multievent-
triggered state estimation for a novel class of discrete-time
nonlinear SPCNs. A discrete-time SPCN model with non-
linearities has been modeled. To alleviate energy con-
sumption, a multievent triggered protocol is applied to
regulate the communication among nodes of the SPCNs.
Finally, a simulation has demonstrated the rationality, su-
periority, and effectiveness of the proposed method.
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