
Research Article
Flood Detection Based on Unmanned Aerial Vehicle System and
Deep Learning

Kaixin Yang ,1 Sujie Zhang ,1 Xinran Yang ,2 and Nan Wu 1

1Tianjin College, University of Science and Technology Beijing, Beijing, China
2Tianjin University of Science and Technology, Tianjin, China

Correspondence should be addressed to Kaixin Yang; kxyang@163.com

Received 20 February 2022; Revised 28 March 2022; Accepted 16 April 2022; Published 5 May 2022

Academic Editor: Chao Liu

Copyright © 2022 Kaixin Yang et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Floods are one of the main natural disasters, which cause huge damage to property, infrastructure, and economic losses every year.
*ere is a need to develop an approach that could instantly detect flooded extent. Satellite remote sensing has been useful in
emergency responses; however, with significant weakness due to long revisit period and unavailability during rainy/cloudy
weather conditions. In recent years, unmanned aerial vehicle (UAV) systems have been widely used, especially in the fields of
disaster monitoring and complex environments. *is study employs deep learning models to develop an automated detection of
flooded buildings with UAV aerial images. *e method was explored in a case study for the Kangshan levee of Poyang Lake.
Experimental results show that the inundation for the focal buildings and vegetation can be detected from the images with 88%
and 85% accuracy, respectively. And further, we can estimate the buildings’ inundation area according to the UAV images and
flight parameters.*e result of this study shows promising value of the accuracy and timely visualization of the spatial distribution
of inundation at the object level for the end users from flood emergency response sector.

1. Introduction

Floods are the most frequently occurring and damaging
natural disasters in the world.*e average annual deaths and
economic losses caused by floods are 1354.9 people and US
$32.847 billion in China, ranked 4th and 2nd in the world,
respectively [1]. Traditional flood monitoring uses hydro-
logical processes simulation with precipitation data from
surface hydrological stations, satellite observations, re-
analysis data based on numerical models, and assimilation.
*ese data have certain limitations in terms of temporal
resolution, spatial resolution, and accuracy [2]. *is signifies
the need to quickly detect flood-affected areas with advanced
technologies so that efficiently rescue activities can be ini-
tiated as soon as possible.

Satellite remote-sensing techniques have been widely
used when nature disasters occurred. *e main advantages
of satellite data are its time and cost effectiveness, since
satellite data of large areas can be gathered quickly and
economically [3, 4]. *e application of space borne remote

sensing in flood detection varies across the large variety of
spatial and temporal scales, as well as multisensor, operating
in several platforms [5]. Numerous studies have been carried
out for flood monitoring, inundation mapping, and loss
assessment. However, the quality of satellite images is greatly
affected by weather conditions such as clouds’ cover and
shadow effect. Another important consideration is the long
revisit time of most satellites that might be useful for long-
term and large-scale floods monitoring [6].

In recent years, the UAV remote-sensing system has
been used in disaster detection due to the advantages of real-
time data acquisition and full-time observation [7]. *is
makes UAVs to be an efficient way to investigate high-risk
areas that are unreachable by humans during disaster events.
Flood rescue agencies can use UAV to quickly collect data
and visualize flooded regions and grasp the state of the
disaster. Some studies have investigated the applications of
the UAV system for flood hazard modeling [8–10]. Lei used
UAV remote sensing to investigate and monitor the severe
cold rain, snow, and freezing disasters in southern of China
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in 2008 [11]. Schumann et al. evaluated the accuracy of a
UAV-derived Digital Elevation Model (DEM) and assessed
its reliability on flood mapping operation [12]. Annis et al.
demonstrated the performances of the UAV data in simu-
lating flood extension and depth [13]. Hashemi-Beni et al.
adopted the UAV system for spatial flood assessment
mapping and evaluating the extent of a flood event [14].
Most of the related works focus on the large-scale flood
model integrated with DEM and GIS data. However, when
flood occurred, transferring the trapped people in time is the
focus of rescue work. Detection of submerged buildings
would provide timely information for rescue efforts. To our
knowledge, the applications of UAV to retrieve flood in-
formation at the object level are usually less investigated.

Flooded object recognition such as the buildings, crops,
and infrastructures from aerial images can be analyzed to
make disaster response decisions. UAV can obtain a large
amount of image data when flood occurred. Remondino,
Han, and other scholars have carried out research in flood
data acquisition and disaster assessment using UAV remote-
sensing technology [15–19]. *e pertinent literature shows
that image processing such as edge detection, segmentation,
and machine learning have been widely utilized for flood
detection, but deep learning techniques are rare and not well
investigated with for this purposes [20].

*e images acquired with UAV have the characteristics
of small picture format and image distortion, which in-
crease the difficulty in image processing and information
extraction [21]. In recent years, major breakthroughs have
been made in the field of computer vision based on deep
learning technology. In 2012, Hinton proposed a deep
convolutional neural network algorithm and won the
ImageNet competition champion in the field of computer
vision [22]. Since then, companies such as Microsoft,
Facebook, Google, and Baidu have successfully applied
deep learning in image recognition and voice identification.
In flood research, Chang utilized artificial neural network
(ANN) to create a flood inundation forecast model [23].
Abbot optimized rainfall forecasting using ANNs [24].
Jiménez-Jiménez proposed an object-based approach for
flood damage assessment [25].

*is study proposes a method to detect flooded buildings
and vegetation by integrating deep learning and UAV image
processing. We use the YOLOv3 algorithm as a deep
learning model on aerial images and estimate the area of
submerged buildings through the relationship among the
UAV flight parameters.*e case study is the flood area of the
Kangshan Levee of Poyang Lake. *is study aims to estimate
the affected area and potential trapped people by detecting
the inundated buildings, analyze the disaster intensity, and
provide real-time data for flood rescue departments to make
decision.

*e study is organized as follows. Section 2 introduces
the study area, the Kangshan levee of Poyang Lake. Section 3
focusses on the research methodology, and the process of
image acquisition is also elaborated. Section 4 illustrates data
processing and experimental results. Finally, the overall
achievements and limitations of the proposed approach are
presented.*emain contribution of this study is to combine

UAV image data and deep learning algorithm for flood
detection at the object level and provide timely visualization
of the spatial distribution of inundation for flood emergency
response sector.

2. Study Area

Poyang Lake is located at the north of Jiangxi Province,
China. It is the largest freshwater lake in China and one of
the main tributaries of the middle and lower Yangtze River.
*e lake is about 3,150 square kilometers, supplied by the
Ganjiang River, Xiuhe River, Xinjiang River, Raohe River,
and other water sources. It flows into the Yangtze River in
Jiujiang City from south to north. *e geographical location
of Poyang Lake is shown in Figure 1.

In late June 2020, most of Jiangxi Province continued to
rain heavily. Affected by heavy rainfall and upstream water,
the total rainfall in northern Jiangxi was more than three
times that of normal years. *e area of the main body of
Poyang Lake expanded by 352 square kilometers on July 8
compared with that on July 2. On July 14, the area expanded
to 4,403 square kilometers, which was 2.5% larger than the
historical average (3,510 square kilometers) during the same
time period.*e flood disaster has affected 499,000 people in
36 counties in Jiangxi. *e flood control pressure of the local
government is increasing along with the flooding area of
Poyang Lake.

From July 2 to July 8, 2020, high-resolution satellite
images with a spatial resolution of 10meters were used for
remote sensing monitoring by National Satellite Meteoro-
logical Center. *e flooded areas of Poyang Lake are shown
in Figure 2. *e blue in the figure indicates the unchanged
water body, the red indicates the expanded water body, and
the green box is the study area, which is located at Kangshan
Dike of Poyang Lake.

3. Data and Methodology

3.1. Data Acquisition. In response to the emergency floods
in the Poyang Lake area, the aerial images were captured by
Feima F200 UAV system. A total of 10 sorties were flown,
covering an area of more than 50 square kilometers in total,
and more than 3000 images were captured by the UAV
platform.*e forward overlap of the aerial image is 70%, and
the lateral overlap is 65%.

*e F200 UAV platform is a light fixed-wing UAV
with a wingspan of 1.9meters and a maximum flight time
of 1.5 hours. *e system has high stability and can repeat
high-precision flight operations. It can be thrown off by
hand, landed by parachute, easy to control, and can be
operated by one person. Due to the limited load of the
UAV, the size and weight of the sensor are limited. *e
UAV carries a miniature Sony ILCE-5100 camera. Its
effective pixels are about 24.3 million, and the focal length
is 20mm. Figure 3 shows part of the trajectory planning of
the F200 UAV equipped with a Sony ILCE-5100 camera to
obtain flood image data. Table 1 shows the parameters of
the Sony camera.
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3.2. Methodology. *is study uses the UAV image data and
deep learning method to conduct flood automatic detection
and estimation. *e proposed methodology is shown in
Figure 4. *e methodology consists of three main steps.

3.2.1. Flood Image Dataset Construction. *e purpose is to
extract buildings and vegetation submerged by floods.
*erefore, the flood images obtained by the UAV system
need to be filtered out which contains buildings and vege-
tation submerged scenes. Since the forward and lateral
overlap of the acquired images by UAV is as high as 65% to
75% of a single image and a large number of images are
completely flooded areas, about 600 images have been
screened as flood image samples for training and testing. We
choose 500 images as the training data and 100 images as the
test data.*e dataset sample is shown in Figure 5 (Section 4).

*e construction of the training dataset includes the
collection of flood images and object labeling. At present,

there are still no public datasets consist of aerial flood
images, and image search engines such as Google and Baidu
are used to collect aerial flood images. Totally, there are
about 500 aerial flood images collected through the Internet,
together with the images obtained by the UAV system,
which form a training dataset. After that, the training
samples are labeled and input into the deep learning model
for feature learning.

3.2.2. Deep Learning Model. *e research conducts the
object detection based on YOLOv3 algorithm with Ten-
sorflow framework. *e model learns the characteristics of
the buildings and vegetation inundated by flood through
data labeling and training.*en, the inundated objects could
be extracted using the trained model.

*e deep learning framework Tensorflow has very
powerful versatility. *is study chooses Tensorflow as the
operating environment. *e experimental platform chooses
the YOLOv3 algorithm to conduct object detection.
YOLOv3 is a new peak in target recognition after the
emergence of R-CNN series models. *e object detection
method with YOLOv3 [26] is shown in Figure 6.

*e YOLOv3 algorithm divides the input images into
S∗S grids; for each object and grid, it calculates the prob-
ability that the center of the objects falls within the grids. If
the probability exceeds a threshold value, it is determined
that there is an object in the grid. *e boundary boxes are
built for the grids with objects, and the confidence level of
each box is computed simultaneously. Each bounding box
contains five parameters: center of bounding box relative to
the bounds of the tile (x, y), the width and height related to
the entire image (w, h), and confidence level.

Figure 1: Geographical location of Poyang Lake.

Unchanged water body
Enlarged water body
Study area

Figure 2: Flood change monitoring in Poyang Lake area.

Study area

Route planning (partial area)

Feima F200 UAV

Digital camera

Figure 3: Flood image data acquired by UAV in the study area.

Table 1: Camera parameters of Sony ILCE-5100.

Name Parameters
Pixel 6000∗4000
Sensor CMOS (23.4∗15.6)
Shutter speed 1/1600s
Pixel size 6.41 μm
Focal length 20mm
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Figure 4: Proposed methodology.
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Figure 5: *e relationship of UAV flight parameters.
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Figure 6: Dataset sample.
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*e output of each grid includes the position infor-
mation, the confidence level of the boundary box, and the
class probabilities. *us, the loss function consists of three
parts: the coordinate error (Errorcoord), the intersection-
over-union error (Erroriou), and the classification error
(Errorclass) [27]. *e loss function is defined as follows:

Loss � 􏽘
S2

i�0
λcoordErrorcoord + λnoobjErroriou + Errorclass􏼐 􏼑,

(1)

where Errorcoord represents the sum of the squared errors of
the position information, Erroriou is the sum of the squared
errors of the confidence level, and Errorclass represents the
sum of squared errors of the classes. *e formula of loss
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where S is the number of grid that input images are divided into,
B is the number of bounding boxes predicted for each tile, Iiobj
denotes if the target appears in tile i and Iijobj denotes that the jth
bounding box predictor in tile i is responsible for that prediction,
and λcoord and λnoobj are hyperparameters that separate the loss to
loss from bounding box coordinate predictions and that from
confidence predictions for boxes that do not contain targets.
During the deep learning training process, when looking for the
optimal parameters in themodel, it is to find the parameters that
make the value of the loss function as small as possible [28].

3.2.3. Flooded Buildings’ Estimation. *e deep learning
model could detect flooded object; after that, we can estimate
the area of the flooded object.*e flying height of the UAV is
mainly related to the focal length (f ) of the camera, the pixel
size, and the image ground sampling distance (GSD). *e
relationship of the UAV flight parameters is shown in
Figure 7 and the following equation:

f

H
�

pix
GSD

. (3)

*e formula for calculating the area corresponding to a
single pixel is as follows:

Area of the pixel � GSD2
�

pix ∗ H

f
􏼠 􏼡

2

, (4)

whereGSD is the ground sample distance,H is the UAV flight
altitude relative to the ground level, f is the focal length of

digital camera, and pix is the size of one single pixel on the
CCD of the digital camera.*us, the area of flooded buildings
is the product of the pixel area and the number of pixels.

4. Flood Automated Detection Method

4.1. Data Preparation. Currently, there is no flood-related
image data in the public datasets. *e research in this study
uses the Internet to search for aerial images of flooded
houses and vegetation, together with the data obtained by
UAV in the Poyang Lake flood area. *e software Labelimg
is used for labeling to create the training sample dataset.
When UAVs perform more flood monitoring missions in
the future, the acquired images can continuously fill the
sample database to improve the accuracy and reliability of
the model. Figure 7 shows part of the flood sample data.

4.2. Training Data Labeling. Deep learning methods need to
train themodel through a large amount of data. An important
step is to label the data in the training dataset. In this study,
the software Labelimg is used to label the training data.

Figure 8 shows the software Labelimg operation inter-
face. Select the create-RectBox button to mark the flooded
houses and vegetation on the right side. *e green border in
the picture is the effect after marking. If an image has
multiple targets, repeat the above steps. After an image is
marked, it would be saved as xml file.

*e training data selected in this study contain about
1,000 images of houses and vegetation submerged by floods.
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In total, the identifiers are marked as building and vege-
tation. Table 2 shows the training data statistics.

4.3. Model Training and Optimization. Object detection
based on deep learning is different from traditional methods.
It no longer requires time-consuming steps such as feature
selection and extraction; effective feature discovery can be
made through deep learning networks. *e main factors
affecting the accuracy of the model are the richness and
connotation of the training dataset. Figure 9 shows the
training process.

*e model is trained using YOLOv3 algorithm, and it
took about 60 hours to get the parameters optimization. If
the learning rate is appropriate, it should be ensured that the
loss after each round of complete training is reduced and
maintained at a small level after a period of training. During
the training process, loss will continue to decline at the
beginning and drop quickly; after a period of time, it will
begin to converge, and finally, it will gradually stabilize.
Figure 10 shows the loss curve of the model that when the
number of iterations reaches about 5000 times, it starts to
converge and gradually stabilizes and fluctuates around a
fixed value.

5. Experimental Results and Discussion

5.1. Experimental Results. After the model training is
completed, the model can perform target recognition on the
test images. We select flood images from different scenes to
verify the recognition effect of submerged buildings and
vegetation. Figure 11 shows the detect effect of different
scenes include images with good quality and illumination
condition, images under insufficient light, images under
occlusion, and only the building roof is exposed. *e blue
box represents building recognition, and the red box rep-
resents vegetation recognition.

Approximately 100 flood images were used for testing. For
images with good quality and illumination condition, the
recognition results are satisfactory. When the images are
captured under insufficient light, the recognition accuracy is
unsatisfactory for long-distance objects. In the case of images

flood (1) flood (2) flood (3) flood (4) flood (5) flood (6)

flood (12)flood (11)flood (10)flood (9)flood (8)

flood (13) flood (14) flood (15) flood (16) flood (17) flood (18)

flood (7)

Figure 7: *e YOLOv3 object detection method.

Figure 8: Training data labeling.

Table 2: Training data statistics.

Class name Building Vegetation
Total number 1623 2190

Figure 9: Training process.
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under occlusion, as long as the main features of the recognized
object can be captured, it can be recognized. If the objects are
severely occluded, it is difficult to identify the target. For images
only the building roof is exposed, there are few test data that
cannot be recognized due to incomplete features. However, in
general, the detection and recognition rate are satisfactory.

5.2. Recognition Result Evaluation. *e model was evalu-
ated with the test results. *ere are 120 buildings and 230
vegetation in 100 test images, as shown in Table 3. *e
results show the model can effectively identify the

inundated objects in the images from different scenes.
*e overall recognition rate can reach more than 85%. In
terms of recognition speed, the detection time of each
image only needs 2–4s. Experiments show that the UAV
system can obtain flood data in time, and the proposed
method can identify submerged buildings and vegetation
effectively.

5.3. Inundated Building Area Estimation. We chose one
flood image as an example to estimate the inundated
building area. *e pixel number of the example image is

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0 5000 10000 15000 20000 25000 30000 35000

batches

The loss curves

avg_loss

Figure 10: Loss function curve.

(a) (b)

(c) (d)

Figure 11: Examples of the recognition effect. (a) Good quality and illumination condition. (b) Image under insufficient light. (c) Image
under occlusion. (d) Only the building roof is exposed.
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1080∗810, and the pixel number of the flooded building area
includes three sky blue labeling boxes, as shown in Figure 12,
which is calculated as 44,3159 pixels.

*e formula for calculating the area corresponding to a
single pixel is shown in formula (4). In this example, the
parameters are shown in Table 1:

H � 500m, f � 20mm, pix � 6.41μm. (5)

After unifying the measure units, we can get the result of
the pixel is 0.025 square meters, and the area of inundated
buildings in the example image is 11078.98 square meters,
which is shown in equation (5):

Area � Area of the pixel ∗Number of pixels,

�
pix∗H

f
􏼠 􏼡

2
∗Number of pixels ,

� 0.025∗443159,

� 11078.98.

(6)

According to the area of buildings inundated by flood,
the affected people and economic losses can be estimated,
and scientific decisions can be made for evacuation and
rescue work.

6. Conclusions

Floods cause great damage to the infrastructure and
property, resulting in huge economic losses. Due to the lack
of technologies that could automatically detect the flood
affected at the object level, recovery services sometimes
cannot be provided on time. Traditional remote-sensing
satellites have demonstrated delayed response due to orbital
period. At present, the UAV system has been widely used
in the fields of natural disasters due to ideal for acquiring

high-resolution images in a short period. *e pertinent
literature shows that UAV and deep learning techniques
have been used for flood simulation model, but are rare and
not well experimented with flooded object detection.

In this study, we introduce the deployed UAV remote-
sensing system, deep learning method, and procedures for
flood detection. *e case study is adopted where the flood-
prone area of Poyang Lake. We use YOLOv3 algorithm as a
deep learningmodel on aerial images to detect the inundated
buildings and vegetation. Experimental results show that
flooded buildings and vegetation can be detected from the
images with 88% and 85% accuracy, respectively. And then,
we can estimate the inundated buildings area through the
relationship among the UAV flight parameters. *e ex-
periment results have proved the feasibility and effectiveness
of applying the UAV system for flooded region detection.
Such timely flood inundation detection can provide visual
disaster information in time and is crucial to efficiently
rescue activities. For areas with severe floods, the rescue
department will allocate resources according to the flooded
buildings to ensure the safety of people’s lives and property.

Nevertheless, there are still some items for improvement.
For instance, we were unable to acquire more information
such as the depth of floodwater and the destroyed degree of
the buildings. For future work, we may employ UAV oblique
photography or Light Detection and Ranging (LiDAR)
equipment which could generate the three-dimensional
(3D) model. More effort should be made to perform in-
depth analyses by expanding the 3D image dataset using the
UAV system. Considering the disaster scene, we would use
lightweight algorithms such as YOLOv3_tiny and Mobile-
Net to carry out future work. And furthermore, we try to
integrate lightweight algorithms into the UAV flight control
board for real-time target detection instead of data post-
processing. *is may improve the efficiency of the flooded
objects detection and provide timely information for disaster
emergency response and rescue.

Table 3: Objects’ recognition rate.

Class name Number Recognition number Recognition rate (%) Recognition speed
Building 120 106 88 2-4s
Vegetation 230 195 85 2-4s

Figure 12: Example of flooded building area estimation.
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the geomorphic effects of flooding using UAV photogram-
metry,” Pure and Applied Geophysics, vol. 175, no. 9,
pp. 3223–3245, 2018.

[18] Q. Feng, J. Liu, and J. Gong, “Urban flood mapping based on
unmanned aerial vehicle remote sensing and random forest
classifier-A case of yuyao, China,” Water, vol. 7, no. 12,
pp. 1437–1455, 2015.

[19] S. Li, W. Yuan, and H. Gong, “*e application of UAV remote
sensing system in disaster loss assessment,” Science Surveying
and Mapping, vol. 38, no. 6, pp. 76–78+81, 2013.

[20] M. J Chang, H. K Chang, Y. C Chen, G. F Lin, and P.-A Chen,
“A support vector machine forecasting model for typhoon
flood inundation mapping and early flood warning systems,”
Water, vol. 10, no. 12, p. 1734, 2018.

[21] I. Colomina and P. Molina, “Unmanned aerial systems for
photogrammetry and remote sensing: a review,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 92,
pp. 79–97, 2014.

[22] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” Ad-
vances in Neural Information Processing Systems, vol. 25, 2012.

[23] L. C Chang, M. Amin, S. N Yang, and F. J Chang, “Building
ANN-based regional multi-step-ahead flood inundation
forecast models,” Water, vol. 10, no. 9, p. 1283, 2018.

[24] J. Abbot and J. Marohasy, “Input selection and optimisation
for monthly rainfall forecasting in Queensland, Australia,
using artificial neural networks,” Atmospheric Research,
vol. 138, pp. 166–178, 2014.
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