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The connected and acyclic components contained in a network are identified by the computation of its complexity, where
complexity of a network refers to the total number of spanning trees present within. The article in hand deals with the enumeration
of the complexity of various networks” operations such as sum (K, , + W3, K, + nK,, K, +,), product (K,,®K,, K,, XK,
K, x K,, K,®K,), difference (K,,eK,), and the conjunction of S, with K,. All our computations have been concluded by
implementation of the methods of linear algebra and matrix theory. Our derivations will also be highlighted with the assistance of

3D plots at the end of this article.

1. Introduction

Only simple network G = (V (G), E (G)) shall be dealt with
throughout the paper. One of the most useful algebraic
invariants is the complexity, i.e., number of spanning trees in
a network admitting roots in combinatorics, algebraic graph
theory, and networking. It is prominently linked with
network engineering and particular branches of computer
sciences that deal in the security designs specifically. Real-
istically, concreteness and precision in a network are based
on the number of spanning trees it possesses. This indicates
that complexity is an identifier for the quality of a network.
Certain applications of complexity in different fields of
mathematics and physics can be observed in [1-4]. For in-
stance, we are living in an era of networking. The tools similar
to complexity ensure the robustness and accuracy in a network
so that one can obtain interruption free signals, since the
complexity is an identifier of the number of connected and
acyclic pathways present in a network, where every such
pathway contains all junctions or vertices present in a network.
So, this invariant helps in the enhancement of robustness of
wireless sensor networks (WSNs) and other similar mobile

networks by relating the total number of spanning trees present
within. Another application of complexity can be observed in
the security design of a sensitive area of a building. Say there are
several secured chambers, and there are legitimate passages
only to reach to those chambers. One legitimate passage can be
identified by a unique pathway. That is, no cyclic pathway is
allowed from one chamber to another. A programming-based
software application will ensure if a visitor follows a legitimate
passage or not through acyclic pathway mechanism, whereas
such unique acyclic pathway is termed as complexity of the
network.

1.1. Definitions and Preliminaries. The following lemma is a
direct derivation of Temperley’s equation mentioned
previously.

Lemma 1 (see [5]). Let G be o order network; then,
1 — _
7(G) :gdet(QI—D(G)+A(G)), (1)

where G = G.
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2 Complexity

The above expression is more useful as it represents the ()Veo=4, m=3, det[B, ()] =2(¢p+m—-3)/p—
complexity of G as the determinant of a particular matrix, 3(T,, (¢ —1/2) — 1], where
rather than involving its eigenvalues. The eigenvalues based

process is relatively difficult and complex. ¢ 0 11 Lo
The solution of the following iterative expression defines 0 ¢ 0 1 I 1 11
the first kind of Chebyshev polynomials. 10 ¢ 0 111 1
Touy (%) = 2xT, (x) + Ty y () = 0; T (%) = 1, T, (x) = x. 1 10 ¢ ...1 1 11
2) Bo(@=| ¢ ¢ 1 ¢ i ()
The standard solution of (2) gives 1 1 11 ¢ 0 1 1
1
T, == [(x+ Va2 =1)* +(x - Va2 -1)* i 021.  (3) L1l 0 ¢ 01
2 111 1 10 ¢ 0
The soluti.on of the following iterativg expression defines 01 1 1 110 ¢
the second kind of Chebyshev polynomials.
Upar () = 2xU, (x) + Uy, (x) = 0;Up (%) = 1,U; (x) = x. (i) Ym, ¢, det[C,, ($)] = (¢ = DU,,_; (¢ + 1/2), where
(4) ¢ -1 0 0 ... 0 0 0 0
-1 ¢+1 -1 0 0 0 0 0
The standard solution of (4) gives
0 -1 ¢+1 -1 ... 0 0 0 0
Um(z)=2\/%[(z+ 2 1) (2~ z2—1)“’“];921‘ (5) o 0 9 -1 g1 0 ? 0 ?

Identity (4) is valid Vz € C excluding z = + 1 [6]. The

. Y 00 0 0 p+1 -1 0 0
determinants are closely related to both 1* and 2" kind 0 o 0 0 et 1 o
Chebyshev Polynomials.where H, and H, are non-singular ¢
matrices. 0 0 0 0 0 -1 ¢+1 -1

00 0 0 0 0 -1 ¢
Lemma 2 (see [7, 8]). (8)

(i) V¢ =3, det[A,, ($)] = 2[T,,(¢/2) — 1], where
(i) V¢=2, m=3, det[D,, ($)] = (m+¢—-2)U,,_, (¢/2),

¢ -1 0 0 ...0 0 0 -1 whore
-1 ¢ -10..020 00
¢ 0 1 1 1111
0 -1 ¢ -1...0 0 0 0 0 ¢+1 0 1 111 1
1 0 ¢+1 0 ... 1 1 1 1
0 0 -1 ¢ . 0 0 0 0 1 1 0 ¢+1 ... 1 1 1 1
D,(¢)=| : : oo : o (9)
A= + + 1 or b L (6) bbbt g+l 011
1111 0 ¢+1 0 1
0 0 0 O . ¢ -1 0 0 11 1 1 1 0 ¢+10
11 11 1 1 0 ¢
00 0 0 -1 ¢ -1 0
0000 ..0-1¢ -1 Lemma 3 (see [9]). V¢ and m, det[W,, ($)] = (¢ +m —1)
(¢ = 1), whereW,, (¢)is anm x mcirculant matrix given

-10 0 0 ...0 0 -1 ¢ as
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¢ 1 1 1 1 1 1 1 Lemma 4 (see [10]). Let H,, H,, H;, andH be the block
1 ¢ 1 1 11 1 1 matrices of ordersd x 0, 0 x 9, 9x 0, andd x 9, respectively.
11 ¢ 1 11 1 1 Then,
H, H
L1 1le... 1111 det( b ) = det(H, - HyH,"H, ) x det(H,)
W, ()= + + + + i | (10) H, H, (11)
R ¢ 1 11 = det(H, - H,H, " H;) x det(H,),
1 1 1 1 1 ¢ 1 1
1 1 1 1 1 1 ¢ 1 Lemma 5 (see [11]). For ¢ =5, let us consider a circulant
1 1 1 1 11 1 ¢ matrix given as
oy 10 0 0 1
n ¢ on o1 000
1 7 n 000
0 1 74 .0 0 0
Ey = > (12)
0000 ...¢ 1
000 O0...p ¢ gy
1000 ..117 ¢
7100 ...0 1 g "
24
2 27 ani\1?
[(2 + 4((_ ;72 + 1)] H [(+ 2n COS(T) +2 cos(?>j| :  foreven ¢;
i=1
T(E¢) = 4 (13)

—

|

¢
2

=1

We shall also provide a few definitions [12, 13] in Section
3 before a certain result, where necessary. Throughout the
article, G represents the complement of the network G.

1.2. Main Contributions. In the present article, we will
mainly compute the closed formulae for the complexity of
various generalized operations on graphs such as sum
(Ky, +W;3, K,,+nK,, K,+8,), product (K,,&K,,
K,,xK,, K, x K,, K,&®K,), difference (K,,©K},), and the
conjunction of S, with K,. Furthermore, all our computa-
tions have been concluded by implementation of the
methods of linear algebra and matrix theory.

1.3. Main Structure. The main structure of this article is as
follows:

1. Section 1 comprises the introduction and prelimi-
naries of our main work.

) N 12
[(+2(n+1)] H [(+217 cos(%) +2 cos(%)] :

for odd ¢.

2. Section 2 contains the salient work related to our
derivations.

3. Section 3 consists of the main derivations we have
obtained in the form of the complexities of various
networks’ operations.

4. Section 4 contains a brief summary and graphical
illustrations of our work.

5. Section 5 gives the conclusion and also tells about the
future work related to this paper.

2. Related Work

If we talk about the closed formulae for the complexity of an
infinite family of networks, we shall not be able to locate any
such generalized result. Although it is still possible to derive
the new closed formulae of the complexity of classes of
networks having order m, where m is sufficiently large, it is



useful to obtain this invariant for the networks of finite order
for the values as we increase the order of a network. If we
look into the historical development of this concept, the
calculation of the complexity of the complete network as
T(K ﬁ) = ﬁﬁ’z is the foremost concept that appeared in [14].
The second prominent result in this regard is the complexity
of the complete bipartite network which is again derived by
Cayley [14] as 7(K ,,) = 4"~ 1y#=1 In [15], the closed formula
for the complexity of Mobius ladder has been obtained as
T(M,) = x/2[(2+ V3 ) + (2= yx ) + 2] for x>2 in [15].

The determination of the total spanning trees of a
network has recently reappeared as an active topic.
Kirchhoff’s matrix tree theorem [16] is a prominent result in
this regard. It represents the complexity of a network as the
determinant of a random cofactor of its Kirchhoff’s matrix,
where, say for a network G, K(G) = degree matrixof G —
adjacency matrix of G indicates its Kirchhoft’s matrix.

A combinatorial method for computing the complexity
of a network is with the use of contraction-deletion theorem.
As an iterative process for an edge uv € E(G), the com-
plexity of G is the sum of 7 (G|uv) and 7(G — uv). Here, Gluv
is the network derived as the result of contraction of uv in G
repeatedly until the end points u and v coincide [17].

In [18], the self-adapted task scheduling strategies in the
wireless sensor networks have been designed and analyzed.
Wang et al. [19] discussed the ant colony optimization-based
location-aware routing for wireless sensor networks. In [20],
a pedestrian detection method has been designed and

1 -
T(KZ,n + W3) = mdet[(i’l + 6)I -D+ A]

n+6 0 0 0 0
0 n+6 0 0 0
0 0 n+6 0 0
0 0 0 n+6 O
0 0 0 0 n+5
0 0 0 0 1
0 0 0 0 0

:ﬁdet 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Complexity

examined based on the genetic algorithm for optimizing
XGBoost training parameters. For wireless sensor networks,
Wan and Xiong designed and assessed an energy-efficient
sleep scheduling mechanism with similarity measure [21].
Lu et al. in [22] explored a finger vein-based personal au-
thentication mechanism for Internet-related security. Fur-
thermore, in [23, 24], some latest work on the enumeration
of the complexity of networks can be observed.

3. Main Results

In networking, the characteristic of developing new struc-
tures from the existing ones through network operations and
studying their various properties always remains active. The
present section addresses our main derivations consisting of
the closed formulae of the complexity of various networks
obtained as the result of network operations.

Theorem 1. For all n, the complexity of the network K, +
W is given by

(K, + W3) = 6" (n+4)(n+6)". (14)

Proof. Consider  the  network K, +W,;  with
[V(K,,+W3)|=n+6 and |E(K,, +W;)| =6n+14 (see
the general formation in Figure 1).

Applying Lemma 1, we have

0 000 0 0000
0 0000 0000
0 0000 0000
0 0000 0000
1 00 0 0 0000
n+50 0 0 0 0000
0 7 1 1 1 1111 (15)
0 17 11 111 1
0 11 7 1 111 1
0 1 1 17 ..1111
0 1 11 1..7 111
0 1 1 1 1 17 11
0 1 1 1 1 11 7 1
0 1 1 1 1 111 7

(n+6)x(n+6)
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FiGure 1: The network K, + W.

Now on the above determinant, we perform the fol- (iii) Subtracting C, from all columns.
lowing operations simultaneously: (iv) Expanding along R,.
(i) Adding all columns to C;. This yields

(ii) From C1, we take the number n+5 as common.

n+5 -1 -1 -1 -1 -1 -1-1-1 -1 -1 -1 -1
-1 n+5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 n+5 -1 -1 -1-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 n+4 0 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 0 n+4 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 6 0 0 O 0 0 0 O
-1 -1 -1 -1 -1 0 6 0 O 0 0 0 O
= det >
-1 -1 -1 -1 -1 0 0 6 O 0 0 0 O
(16)
-1 -1 -1 -1 -1 0 0 0 6 0 0 0 O
-1 -1 -1 -1 -1 0 0 0 O 6 0 0 O
-1 -1 -1 -1 -1 0 0 0 O 0 6 0 0
-1 -1 -1 -1 -1 0 0 0 O 0 0 6 O
-1 -1 -1 -1 -1 0 0 0 O 0 0 0 6

(n+5)x(n+5)

Pss Q
:>T(K2,n + W3) = det( ve e > .
(n+5)x(n+5)

Rn><5 Snxn

By using Lemma 4, we get



(K, + W) = det(S).det(P - QS™'R)
~51-30
n+6
n+6

- 6”(%)5 (-1)°det

n+6

n+6

Evaluating and simplifying, we obtain 7(K,, +W;) =
6" (n+4)(n+6)" 0
Theorem 2. For all n, the complexity of the strong product
K, ,®K, is given by

1(K,,8K, ) = (24)"(2(r’ + 2n* + n)). (18)

Complexity

n+6 n+6 n+6 n+6
-5n-30 n+6 n+6 n+6
(17)
n+6 -5n-30 n+6 n+6
n+6 n+6 -5n-24 n
n+6 n+6 n —5n—-24

Proof. Consider the network K, ) K, with [V (K, ) K,)| =
2n+4and|E(K,, ) K,)| = 9n + 2 (see the general formation
in Figure 2).

Applying Lemma 1, we have

1(K,,RK,) = mdet [(2n+4) - D + A]

nt6 0 0 0O O 0 0 00 O0..0 00O
0 n+6 0 0 0O O 00 0 0 ...0 0 0 0
0 0 n+6 0 0 0O 0 0 0 0 ...0 0 0 0
0 0 0 n+6 0 0 0 0 0 0 ...0 0 0 0
0 0 0 0 n+5 1 0 0 0 0 00 0 0
0 0 0 0 n+5 0 0 0 0 00 0 O
o 0 o0 ©0 0 0 7 1 11 1 1 1 1

1

=mdet0000001711 1 1 1 1
o 0 o0 ©0 0 0 1 1 7 1 1 1 1 1
o 0 o o0 o0 0 1 117 ..1111
o 0 o0 ©0 0 0 1 1 11 71 1 1
o 0 o0 ©0 0 0 1 1 11 1 7 1 1
o 0 o0 ©0 0 0 1 1 11 11 7 1
o 0 o0 ©0 0 0 1 1 11 1 11 7

(n+6)x(n+6)
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F1GURE 2: The strong product K, ,KK,.
n+5 -1 -1 -1 -1 -1-1-1-1...-1-1-1-1
-1 n+5 -1 -1 -1 -1-1-1-1...-1-1-1-1
-1 -1 n+5 -1 -1 -1-1-1-1...-1-1-1-1
-1 -1 -1 n+4 0 -1-1-1-1...-1-1-1 -1
-1 -1 -1 0 n+4-1-1-1-1...-1-1-1-1
-1 -1 -1 -1 -1 6 0 0 O ... 0 O 0 O
-1 -1 -1 -1 -1 0 6 0 O 0 0 0 O
= det )
-1 -1 -1 -1 -1 0 0 6 O ... 0 0O 0 O
-1 -1 -1 -1 -1 0 0 0 6 0 0 0 O
-1 -1 -1 -1 -1 0 0 O O ... 6 0 0 O
-1 -1 -1 -1 -1 0 0 0 O 0 6 0 O
-1 -1 -1 -1 -1 0 0 0 O 0 0 6 0
-1 -1 -1 -1 -1 0 0 0 0 ... 0 0 0 6/ usmms
=1(K,,&K,) :det< Foo QM") . (19)
Ronxs Sanxan / (an3)x(2n+3)

By using Lemma 4, we get
1(K,,8K,) = det(S).det(P - QS 'R)

3n+2 -n -n-2

(20)

24\" - 2 -
-5(T) der| Tt R

Evaluating the above determinant, we obtain finally
=71(K,,8K,) = (24)" (2(n’ + 2n* + n)). O

Theorem 3. For all n, the complexity of the homomorphic
product K, ,xK, = K, , x K, is given by

1(K,,xK,) = 8" '(n’ + 61’ + 8n). (21)

Proof. Consider the network K, ,xK, with |V (K, ,xK,)| =
2n + 4 and |E (K, ,xK,)| = 51 + 2 (see the general formation
in Figure 3).

Applying Lemma 1, we have
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7(K,,xK,) = mdet [(2n+4) - D + 4]
n+5 -1 -1 -1 -1 -1-1-1-1...-1-1-1-1
-1 n+5 -1 -1 -1 -1-1-1-1...-1-1-1-1
-1 -1 n+5 -1 -1 -1-1-1-1...-1-1-1-1
-1 -1 -1 n+4 0 -1-1-1-1...-1-1-1 -1
-1 -1 -1 0O n+4-1-1-1-1...-1-1-1-1
-1 -1 -1 -1 -1 6 0 0 O 0 0 0 O
-1 -1 -1 -1 -1 0 6 0 O 0 0 0 O
= det
-1 -1 -1 -1 -1 0 0 6 O 0 0 0 O
-1 -1 -1 -1 -1 0 0 0 6 0 0 0 O
(22)
-1 -1 -1 -1 -1 0 0 0 O 6 0 0 O
-1 -1 -1 -1 -1 0 0 0 O 0 6 0 O
-1 -1 -1 -1 -1 0 0 0 O 0 0 6 0
1 -1 -1 -1 -1 0 0 0 0 ... 0 0 0 6/ sms
-5n-30 n+6 n+6 n+6 n+6
n+6 -5n-30 n+6 n+6 n+6
=6"<é>5(—1)5det n+6 n+6 -51-30 n+6 n+6 |,
n+6 n+6 n+6 —5n-24 n
n+6 n+6 n+6 n —5n-24
Pz Qaxan
:>T(K2,n < imeus) = det( > .
Rouxs Sanxan / (ane3)x(an+3)
By using Lemma 4, we get Theorem 4. For all n, the complexity of the mirror network
7(K,,xK,) = det(S).det(P - QS"'R) Kop+ 1K, is given as
5n+8 -n -n-8 1(K,, +nK,) = 4n(n+1) (n+2)"">. (24)

= 8”(§> det|] -n 5n+8 -3nm
Proof. Consider  the  network K,,+nK;,  with
IV (K,, +nK,)| =2n+2and |E(K,, + nK,)| = n* + 4n (see

Evaluating the above determinant and simplifying, we ~ Figure 4)-.
obtain finally =7(K,,xK,) = 8" (n® + 61 + 8n). O Applying Lemma 1, we have

-n—-8 -3n 5n+38
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F1GURE 3: The homomorphic product K, ,xK,.

1

T(Kz,n +”K1) = sdet[(2n+2)I - D + A]

(n+2)
1
T @n+2y
2mn+1 1 0 0 0 ... 0 0 0 0
I 2n+1 0 0 0 ... 0 0 0 0
0 0 n+3 1 1 1 1 1 0
0 0 1 n+3 1 1 1 1 0
0 0 1 1 n+3 1 1 1 0
0 0 11 1 .n+3 1 1 0
0 0 1 1 1 1 n+3 1 0
det
o o 1 1 1 11 n+3 0
o 0 0 0 0 0 0 0 n+3
0 0 0 0 0 0 0 0 1
0 o 0 0 0 o 0 0 1
0 o 0 0 0 o 0 0 1
o 0o 0o 0 0 0o 0 0 1
0 0 0 0 0 0 0 0 1
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2n -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1n+2 0 0 0 0 0 -1 -1 -1 -1 -1 -1
-1 0 n+2 0 0 0 0 -1 -1 -1 -1 -1 -1
-1 0 0 n+2 0 0 0 -1 -1 -1 -1 -1 -1
-1 0 0 0 n+2 0 0 -1 -1 -1 -1 -1 -1
-1 0 0 0 0 n+2 0 -1 -1 -1 -1 -1 -1
=det| -1 0 0 o ... 0 o n+2 -1 -1 -1 ... -1 -1 -1 ,
-1 -1 -1 -1 -1 -1 -1 n+2 0 0 0 0 0
-1 -1 -1 -1 -1 -1 -1 0 n+2 0 0 0 0
-1 -1 -1 -1 -1 -1 -1 0 0 n+2 0 0 0
-1 -1 -1 -1 -1 -1 -1 0 0 0 n+2 0 0
-1 -1 -1 -1 -1 -1 -1 0 0 0 0 n+2 0
-1 -1 -1 -1 ... -1 -1 -1 0 0 0 ... 0 0 n+2/ g
P Quan
:>T(K2m + nKl) = det< > . (25)
Rouxt Sanxan / (2n1)xans1)

By using Lemma 4, we have
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T(Kz,n + nKl) = det (S).det(P -QS 1R)

2n+3 -n
3 3 (26)
=3" x det
-n 2n+3
33
Simplification finally gives 7(K,, +nK,) =
ann+1)(n+2)" 2% O

7(K, xK,) = ﬁdet [(2n)I =D + A]

n+l 0 0 0 0

0 n+l 0 0 0

0 0 n+l... 0 0

0 0 0 n+l 0

o 0 0 0 n+l

) 0 0 0 0 0
= 5 det

(2n) o 1 1 ... 1 1

1 0 1 11

1 1 0 11

11 1 0o 1

1 1 1 ... 1 0

1 1 1 ... 1 1

1 l)nxn (gnxn
=7(K, xK;) = ——det .
(21’1) Rnxn Snxn 2nx2n

By using Lemma 4, we have

11

Theorem 5. For alln, the complexity of the cartesian product
K, x K, is given as

(K, xK,) =n""*(n+2)"". (27)

Proof. Consider thenetwork K, x K, with |V (K, x K,)| =
2n and |E (K, x K,)| = n* (see Figure 5).
Applying Lemma 1, we have

0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 0 1 1
0 1 1 1 1 0 1
n+l 1 1 1 1 1 0
1 n+1 O 0 0 0 0 L8
1 0 n+1 O 0 0 0
1 0 0 n+1 0 0 0
1 0 0 0 n+l 0 0
1 0 0 0 0 n+1 O
0 0 0 0 0 0 n+l

2nx2n



12

(K, x K,) = ﬁdet(S).det(P -QSs'R)

W n+2
2-n

P +n+2
2-n

1
:deet 1

W n+2
2-n
(29)

Simplifying, we get 7(K, xK,) =n"2(n+2)"'. O

Corollary 1. For all n , the complexity of the symmetric
difference KK, is given as

7(K,®K,) = ﬁdet(@n)l -D+A)

2n 0 0 ... O
0 2n 0 ... 0
0 0 2n ... 0
0 0 0 . 2n
0 0 0 0
1 0 0 O 0
= 5 det
(2n) 000 ..0
0 0 0 0
0 0 0 0
0 0 O 0
0O 0 0 ... 0
0O 0 0 ... 0
1 ann Onxn
=7(K,&K,) = ——det
(21/1) Onxn Snxn 2nx2n
=7(K,&K,) = L any
n 2 (21’1)2

Simplifying, we get 7(K,&K,) = (2n)*"2. O

Complexity

1(K,eK,) =n" 2 (n+2)"". (30)
Proof. Since K,xK,=K,0K, (see Figure 6),
(K, eK,) =" 2(n+2)"' = 7(K, x K,). O

Theorem 6. For all n, the complexity of the strong product
K,®K, = K, + K,, is given as

7(K,®K,) = (2n)"" 2. (31)

Proof. Consider the network K, KK, with |V (K,xK,)| = 2n
and |E(K,RK,)| = n(2n— 1) (see Figure 7).
Applying Lemma 1, we have

00 0 0 O 0 0 O
0 0 0 0 O 0 0 O
0 0 0 0 O 0 0 O
0 0 0 0 O 0 0 O
2n 0 0 0 0 ... 0 0 O
0220 0 0 ... 0 0 O
0 02n 0 O ... 0 O O ’
(32)
0 0 020 ... 0 O O
00 0 02n...0 0 O
0 0 0 0 O 2n 0 0
0 0 0 0 O 0 2n O
0 0 0 0 O 0 0 2n
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13

FiGure 5: The Cartesian product K, x K,.

Theorem 7. For all n , the complexity of the symmetric
difference K, 0K, is given by

1(K,,0K,) = (n+2)"". (33)

Proof. Consider the network K, ,eK, with |V (K, ,eK,)| =
2n+4 and |E(K,,0K,)|=n*+4n+4 (see the general
formation in Figure 8).

Applying Lemma 1, we have

(K,,0K,) = mdet((ﬂz +4)-D +A)
2n 0 0 00 0 0 00 0 0 0
0 2n 0 00 0 0 00 0 0 0
0 0212...0 0 0 0 0 0 0 0 0
000 ..220 0 0 0 0 0 0 0
0 0 0 0220 0 0 0 0 0 0
1 0 0 0 0 0210 0 0 0 0 0
= ——det s
(2n) 0 0 0 0 0 02120 0 0 0 0
0 0 0 00 0 0210 0 0 0 (34)
0 0 0 00 0 0 0 2n 0 0 0
0 0 0 0000 0O0..2100 0
0 0 0 000 0 00 0 2n 0
0 0 0 0 0 0 0 0 0 0 2n/50m
:>T(KnIZIK2)=12det<ann Onxn) ,
(2n) Ouen Suxcn / amean
P3><3Q3><2n

=1(K,,0K,) = det
R2n><3 SZn><2n

By using Lemma 4, we get

1(K,,©6K,) = det(P).det(S - RP™'Q)

3n+4 n-2 n-2
(n+2)"! n+2 (35)
= 5 X det| -n-2 3n+4 -n
4(n +3n+2) in+4
-n—-2 -n 3n+4

) (2n+3)x(2n+3)

Evaluating the determinant and simplifying, we obtain
finally =7(K,,eK,) = (n+ 2)22, O

Theorem 8. For all n, the complexity of the network K,, + S,,
is given by

(K, +S,) =2n+1)" (n+1)"". (36)
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Proof. Consider the network K, +S, with [V (K, +S,)| =
2n+1and |[E(K, +S,)| = 3n/2(n + 1). Applying Lemma 1,
we have

(K, +S,) :ﬁdet[(2ﬂ+ I -D + A]
1
2n+1 0 0 o ... 0 0 0 0 0 0 ... 0 0 0
0 n+2 1 1 1 1 1 0 0 0 0 0 0
0 1 n+2 1 1 1 1 0 0 0 0 0 0
0 1 1 n+2 1 1 1 0 0 0 0 0 0
0 1 1 1 n+2 1 1 0 0 0 0 0 0
0 1 1 1 1 n+2 1 0 0 0 0 0 0
det 0 1 1 1 ... 1 1 n+2 0 0 0 .0 0 0
0 0 0 0 0 0 0 2n+1 0 0 0 0 0
0 0 0 0 0 0 0 0 2n+1 0 0 0 0
0 0 0 0 0 0 0 0 0 2n+l 0 0 0
0 0 0 0 0 0 0 0 0 0 Lo 2n+1 0 0
0 0 0 0 0 0 0 0 0 0 0 2n+l 0
(37)
0 0 0 0 0 0 0 0 0 0 0 0 2n+1
n+l 0 0 0 0 0 -1-1-1 -1 -1 -1
0 n+l1 0 ... O 0 0 -1-1-1...-1-1-1
0 0 n+l 0 0 0 -1-1-1 -1 -1 -1
0 0 0 n+l 0 0 -1-1-1 -1 -1 -1
0 0 0 0 n+1 0 -1 -1-1 -1 -1 -1
0 0 o ... 0 0 n+l-1-1-1...-1-1-1
= det >
-1 -1 -1 -1 -1 -1 2n 0 O 0 0 0
-1 -1 -1 -1 -1 -1 0 2n 0 0 0 0
-1 -1 -1 -1 -1 -1 0 0 2n 0 0 O
-1 -1 -1 -1 -1 -1 0 0 O 2n 0 0
-1 -1 -1 -1 -1 -1 0 0 0 0 2n 0
-1 -1 -1 ... -1 -1 -1 0 0 0 ... 0 0 2n Jaxan
P Qun
=7(K,+S,) = det( )
Rixn Swxn / anxan

By using Lemma 4, we obtain
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FIGURE 6: The symmetric difference K, 0K,.

Figure 7: The strong product K, ®K,.

FiGure 9: The disjunction network S,AK,.

(K, +S,) = det(S).det(P - QS 'R)

-n 1
1 -n
1 1
1 1
2n+ 1\"
=(n+1)”><<— > det
n+1
1 1
1 1
1 1
1 1
Using Lemma 3 and simplifying, we get
=1(K,+S,) = 2n+1)"(n+1)"". O

Theorem 9. For all n , the complexity of the conjunction
S,AK, is given as

11 ... 1 1 1
11 11 1 1
-n 1 11 1 1
1 -n 11 1 1
(38)

11 1 1 1
11 1 -n 1 1
11 1 1 -n 1
11 11 1 -n/,,

T(S,AK,) = 4(n+1)° (n+2)" 2% (39)

Proof. Consider the network S,AK, with |V (S,AK,)| = 2n +
2 and |E(S,AK,)| = n* + 4n + 1 (see Figure 9).
Applying Lemma 1, we have



16 Complexity

7(S,AK,) = mdet[(h +2)I =D+ A]
1
" @nv2y?
2n+2 0 0 0 o ... 0 0 0 0 0 o ... 0 0 0
0 2n+2 0 0 0o ... 0 0 0 0 0 0o ... 0 0 0
0 0 n+3 1 1 1 1 1 0 0 0 0 0 0
0 0 1 n+3 1 1 1 1 0 0 0 0 0 0
0 0 1 1 n+3 1 1 1 0 0 0 0 0 0
0 0 1 1 1 n+3 1 1 0 0 0 0 0 0
0 0 1 1 1 1 n+3 1 0 0 0 0 0 0
det
0 0 1 1 1 1 1 n+3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 n+3 1 1 1 1 1
0 0 0 0 0 0 0 0 1 n+3 1 1 1 1
0 0 0 0 0 0 0 0 1 1 n+3 1 1 1
0 0 0 0 0 0 0 0 1 1 1 n+3 1 1
0 0 0 0 0 0 0 0 1 1 1 1 n+3 1
(40)
0 0 0 0 0 0 0 0 1 1 1 1 1 n+3
2n+1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 n+2 0 0 0 0 0 -1 -1 -1 -1 -1 -1
-1 0 n+2 0 0 0 0 -1 -1 -1 -1 -1 -1
-1 0 0 n+2 0 0 0 -1 -1 -1 -1 -1 -1
-1 0 0 0 n+2 0 0 -1 -1 -1 -1 -1 -1
-1 0 0 0 0 n+2 0 -1 -1 -1 -1 -1 -1
= det -1 0 0 o ... 0 0 n+2 -1 -1 -1 ... -1 -1 -1 >
-1 -1 -1 -1 -1 -1 -1 n+2 0 0 0 0 0
-1 -1 -1 -1 -1 -1 -1 0 n+2 0 0 0 0
-1 -1 -1 -1 -1 -1 -1 0 0 n+2 0 0 0
-1 -1 -1 -1 -1 -1 -1 0 0 0 n+2 0 0
-1 -1 -1 -1 -1 -1 -1 0 0 0 0 n+2 0
-1 -1 -1 -1 ... -1 -1 -1 0 0 o ... 0 0 n+2 /] @ur)x@n+l)

Pl x1 Ql x2n
=7(S,AK,) = det .
RZHXI SZnXZn (2n+1)x(2n+1)

By using Lemma 4, we have
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TaBLE 1: Synopsis of the results.

Network Parameters Complexity Planar V non-planar
Ky, +W; Vne N 6" (n+4)(n+6)* Non-planar
K,,®K, Vne N (24)" (2 (n® + 21% + n)) Non-planar
K,,xK, Vne N 8" L (n + 6n* + 8n) Non-planar
K,, +nK,; Vne N dn(n+1)(n+2)"? Non-planar
K, xK, Vne N w2 (n+2)" ! Non-planar
K,=K, Vne N (2n)*2 Non-planar
K,,ekK, Vne N (n+2)"? Non-planar
K,+S, VneN Cn+ 1) (n+1)"! Non-planar
S,AK, VneN 4(n+1)%(n+2)"? Non-planar

7(S,AK;) = det(S).det(P - QS™'R)

()"
T n+2
n”+3n+4
1 1 1 1 1 1
-n
W +3n+4
1 1 1 1 1 1 1
-n
n* +3n+4
1 1 1 1 1 1 1
-n
n +3n+4
1 1 1 1 1 1 1
-n
X det
n* +3n+4
1 1 1 1 L, — 1 1 1
-n
W +3n+4
1 1 1 1 1 1
-n
W +3n+4
1 1 1 1 1 1 1
-n
n*+3n+4
1 1 1 1 1 1 1
- nxn

x det([2n + 1] - [n]).
(41)

Lemma 3 and simplification finally give

T(S,AK,) = 4(n+ 1) (n+2)" 7% (42D)
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FiGure 10: Trends of the enumerated complexities of K, ,, + W53 — (T)), K,,&®K, — (T,), K, ,xK, — (T3), K,,, + nK;, — (T),
K, x K, — (Ts), K,®K, — (Ty), K, ,6K, — (T), K, + S, — (T}), and S,AK, — (Tj).

4. Synopsis and the Diagrammatic
Comparison of the Complexities of the
Networks Obtained

This section consists of a briefing and graphical plots and
juxtaposition of the values of complexities of the networks
enumerated in this note.

Table 1 indicates a synopsis of our results in the shape of
complexities of various networks and also categorically
recognizes it being planar or not.

Figure 10 shows the discrete graphical shapes of the values
of the complexity of networks obtained here, whereas Figure 11
addresses the relative comparison of the complexities of these
networks, revealing the red one to be the dominating layer.
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Ficure 11: Comparison of the trends of the enumerated
complexities.

5. Conclusion

One of the meaningful algebraic invariants in networking
nowadays is complexity. This invariant provides us the
information of the total number of acyclic networks present
within the base network, which ultimately ensures the re-
liability and accuracy in the network. We have enumerated
here the complexity of various operations on networks such
as K,,+W;, K,,®K,, K,,xK,, K,,+nK;, K,xK,,
K, ®K,, K, ,6K,, K, +S,, and S,AK,. The adopted methods
are mainly algebraic and feature Chebyshev polynomials and
the matrix theory in the calculations. As future work, we
encourage the researchers to obtain the complexities of
turther generalized operations on networks such as corona
product, zig zag product, homomorphic product, join,
shadow, conjunction, and disjunction of various classes of
networks.

Data Availability

The whole data are included within this article. However, the
reader may contact the corresponding author for more
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