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Product configuration is a key enabling technology for mass customization production. Previous studies mainly focus on the
solving technologies for obtaining a feasible configuration or optimal configuration but ignore environmental factors like CO2
emissions, especially the environmental regulations from international organizations. In this article, we address product con-
figuration optimization problems considering both carbon cap and carbon tax regulations. A two-stage approach that combines
both Particle Swarm Optimization (PSO) and a greedy algorithm is presented to solve the product configuration problems with
carbon emission concerns. A case study of a configurable ranger-drilling machine is illustrated to demonstrate the effectiveness of
the presented approach.(e impacts of carbon cap and carbon tax regulations on configuration results are compared. Further, the
models are extended to analyze the effects of single-sourcing and multisourcing on product configuration.(e analysis shows that
multisourcing in combination with carbon tax regulation can facilitate a manufacturer to provide more green and low-carbon
customized products for customers. Numerical experiments are conducted to validate the effectiveness of the model and the
efficiency of the proposed solution method.

1. Introduction

With the fierce market competition, modern enterprises
have been striving to improve their product design to meet
the personalized needs of customers. Module-based product
design has proved to be an effective means to balance
production efficiency and individual needs of customers and
thus acts as a foundation for implementing mass custom-
ization [1–3]. By selecting components from a predefined
component catalog with both configuration rules and cus-
tomer requirements satisfied, a customized product can be
configured [4, 5]. Consequently, the product configuration is
an enabling technology for mass customization and per-
sonalization production [6]. For example, Dell offers cus-
tomers an online computer configuration system to select
options according to their personalized requirements. For
the past several decades, product configuration has attracted
much attention from both academia and industry. For

representing structure relations between components, var-
ious representation methods have been proposed, such as
objected-oriented modeling [7] and ontology-based
knowledge modeling [8]. Further, substantial achievements
have been made in developing the solution methods for
obtaining a feasible configuration such that configuration
rules owing to both market and technical considerations are
observed. Main solution methods for obtaining a valid
configuration include logic-based approach [9], rule-based
reasoning [10], case-based reasoning [11], and constraint
satisfaction problem (CSP) [12, 13]. Moreover, in the case
that numerous valid configurations exist for a configuration
problem, some researchers apply optimization algorithms to
find the optimal configuration in accordance with some
objective such as minimal configuration cost.(e algorithms
contain mathematical programming [14] and metaheuristic
methods [15–17], such as the Genetic Algorithm (GA). With
the study extending to the supply chain domain, product
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configuration decision is closely connected with supply
chain network design and thus entails joint optimization of
both product configuration decisions and supply chain
decisions [18]. However, the aforementioned studies do not
take the environmental impact into account during product
configuration processes.

With an increasing awareness of global climate change,
almost all countries around the world agree to reduce their
amount of greenhouse gases such as CO2. As a consequence,
carbon emission regulations or policies are drawn up by
international agreements such as the UNFCCC (United
Nations Framework Convention on Climate Change) and
the Kyoto Protocol [19]. Typical carbon emission regulations
include carbon cap, carbon tax, carbon cap and trade, and
carbon offset [20]. For carbon cap, a manufacturer is allo-
cated a permitted amount of carbon emissions which re-
stricts its total amount of carbon emissions during
production activities. For carbon tax, an extra fee must be
paid according to a given tax rate based on howmuch carbon
a manufacturer emits. Under carbon cap-and-trade regu-
lation, the insufficient amount of carbon emissions can be
purchased from the carbon-trading market if the needed
amount of carbon emissions exceeds the permitted limita-
tion (cap), and the excessive amount can be sold in the
market if the total amount of carbon emissions is less than
the limitation. Similar to the carbon cap and trade, in the
carbon offset regulation, the excessive amount cannot be
sold in the carbon market. Although carbon emissions have
been considered in inventory control [21], vehicle routing
problems [22], port scheduling [23], low-carbon product
structure design [24], and product remanufacturing [25],
only limited studies considered carbon emissions during the
configuration processes. Tang et al. [26] investigated a
multiobjective product configuration problem where one of
the objectives is to minimize the amount of carbon emis-
sions in a configured product. However, carbon emission
regulations such as carbon cap and carbon tax are not
handled in their study. In our previous study, the impacts of
carbon regulations on product configuration are analyzed
[27]. Nevertheless, suppliers for providing modules of a
product are not taken into account in the previous research.
To take the previous study further, in this article, we address
the product configuration problem with multisourcing
supplier selections under carbon regulations. (e mathe-
matical models under both carbon emission regulations are
built considering configuration rules, customer require-
ments, and carbon emission constraints simultaneously. Our
contributions in this article are twofold. On the one hand, a
multisourcing strategy for module purchase is proposed in
product configuration to avoid the disruption risk of the
supply chain. On the other hand, combining the multi-
sourcing strategy and the carbon tax regulation can help a
manufacturer reduce its carbon emissions and offer a more
green-friendly customized product for customers. (is ar-
ticle is organized as follows. Related work is reviewed in
Section 2. In Section 3, the product configuration problem
under carbon emission regulations is described. (e opti-
mization model for the configuration problem is formulated
in Section 4. In Section 5, a two-stage solution algorithm

combining PSO and the greedy algorithm is presented to
solve the configuration optimization model. A case study of
a configurable ranger-drilling machine is illustrated in
Section 6. (e effects of both carbon cap and carbon tax rate
on the configuration results are analyzed. Further analysis is
performed by comparing single-source vs. multisourcing
strategies. In Section 7, numerical experiments are carried
out to validate the effectiveness and efficiencies of the
proposed two-stage algorithms. Conclusions and future
research are summarized in Section 8.

2. Literature Review

(is study is related to both product configuration problems
and carbon emissions in productions and operations. Below
we first addressed the studies regarding the product con-
figuration problems. (en, the literature about carbon
emissions in productions and operations is described.

2.1. Product Configuration. Product configuration research
can be dated to the early 1980s, where the configuration
system R1 was developed to configure a computer system
using rule-based reasoning [10]. Since then, a great deal of
effort has been devoted to developing the methods for rep-
resenting and solving product configuration problems. To
obtain a feasible configuration, various problem-solving
technologies such as rule-based reasoning [10], case-based
reasoning [11], logic-based reasoning [9], and constraint
satisfaction problem (CSP) [12, 13] are employed to infer a
configuration solution such that both configuration rules and
customer requirements are met. For example, Tseng et al. [11]
applied the CBR in obtaining a valid configuration by con-
sidering the similarity between previous configuration cases
and current configuration requirements. Stumptner et al.[12]
and Aldanondo and Vareilles [13] employed CSP to infer a
valid configuration by transforming configuration concepts
such as attributes, modules, and rules into the elements like
variables and domains in the CSP. To enable the reuse of the
configuration knowledge, on the other hand, object-oriented
modeling such as UML (unified modeling language) [7] and
ontology-based knowledge modeling [8] is utilized to for-
mally represent the structural relations among modules,
components, and products. Furthermore, some researchers
explored the problem of product configuration optimization
where a considerable number of feasible solutions exist. For
instance, Frutos et al. [14] proposed an integer linear pro-
gramming model for product configuration optimization
problem and solved the model using LINGO solver. Hong
et al. [15] utilized the Genetic Algorithm to obtain optimal
configuration given the AND-OR graph for representing a
configurable product. Some recent studies concentrated on
eliciting customer preferences by using the KANO approach
[28], concurrent product and process configuration [29], and
configuring products using online review data [30].

2.2. Carbon Emissions in Production and Manufacturing.
(e importance of carbon emissions in production and
manufacturing has been gradually recognized recently.
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Firstly, some researchers focus on how to measure the
amount of carbon emissions in a product. Song and Lee [31]
presented an approach to estimating the GHG (greenhouse
gas) emissions of a product by identifying the bill of material
(BOM) of the product [17]. Zhang et al. [24] developed a
method of calculating the carbon footprint of a product by
analyzing the connection characteristics between compo-
nents. Further, reducing carbon emissions is handled in the
studies related to the manufacturing processes of a product.
Yi et al. [32] explored the optimization of process parameters
to minimize carbon emissions during the machining pro-
cesses for low-carbon manufacturing. Kwak and Kim [25]
built a green-profit model with a target of environmental-
impact savings as a constraint for a line of new and
remanufactured products. Additionally, carbon emissions
are also dealt with in the logistics of products, like inventory
control [21], vehicle routing problems [22], and port
scheduling [23].

Only a few studies regarding product family and product
configuration considered the environmental impacts. Kwak
and Kim [33] developed an optimization model for product
family design from an end-of-life perspective and the en-
vironmental impacts; i.e., the recovery rate of materials is
considered in the model. Tang et al. [26] addressed the
product configuration problem with the objective of re-
ducing carbon emissions. However, they do not deal with the
carbon emission regulations proposed by UNFCCC and the
Kyoto Protocol, among which carbon cap and carbon tax are
two types of mainly applied regulations. Yang et al. [27]
analyzed the effects of carbon emissions on product con-
figuration decisions and carbon purchasing decisions.
However, the supply strategies of modules are not dealt with
in the studies of both Tang et al. [26] and Yang et al. [27]. By
contrast, our main contribution is to investigate product
configuration problems with a multisourcing strategy under
carbon regulations. As a result, the risk of the supply chain
may be avoided by adopting the strategy.

3. Problem Statement

A manufacturer that adopts assembly-to-order (ATO)
production offers customized products for customers with
modular product designs. Namely, its product has a modular
structure where modules consist of common module, var-
iant module, and optional modules. Common modules that
act as a common product platform exist in all product
variants, whereas a variant module has several candidate
module instances representing differential performances or
characteristics of products. Optional modules provide ad-
ditional functions or features of products for customers. It is
assumed that all module instances are purchased from
suppliers and only assembling the modules into a product is
carried out by the manufacturer under the ATO paradigm.
Figure 1 depicts a generic product structure model from
which multiple customer orders are configured. As shown in
this figure, a configurable product consists of common
modules Mc and various modules M1, M2, · · · , MJ , which
implement different functions of products. For a variant
module Mj(j � 1..J), there exist candidate module

instances (i.e., components) aj1, aj2, . . . , ajL representing
differential performances or characteristics of products and
the candidate module instances are exclusively selected in a
configuration, namely, XOR relations. Generally, there exist
configure rules restricting possible combinations of module
instances due to economic, technical and lawful consider-
ations. Two types of configuration rules are considered in
this study. One is the selective rule, which specifies that the
selection of a module instance must select another module
instance in the same configuration. Another is the incom-
patible rule, which enforces that two module instances
cannot exist in the same configuration since they are in-
compatible. For example, a selective rule says that the in-
stance a21 of module M2 must be selected if the instance a11
of module M1 is selected, as shown in Figure 1. Moreover,
the instance a1L1

of moduleM1 and the instance
aj1 of moduleMj cannot be simultaneously selected in one
configuration, as indicated by a compatible rule in this
figure.

Due to the fact that all module instances (i.e., compo-
nents) are purchased from suppliers, it is crucial to consider
the disruption risk of the supply chain when making de-
cisions on component purchasing for a product configu-
ration [34]. A supply chain can suffer from disruption by
unexpected natural or man-made disasters such as fires,
earthquakes, label strikes, and terrorist attacks [35]. Mul-
tisourcing, which means that the same components can be
purchased from several suppliers, has proved to be an ef-
fective strategy for reducing the risk of supply disruption
[36]. Consequently, the multisourcing strategy is adopted in
this study to select module suppliers to protect against the
risk of the supply chain.

Furthermore, with an increasing concern for environ-
mental protection, the manufacturer decides to comply with
the environmental regulations such as carbon tax and
carbon cap put forwards by international agreements like
UNCC and the Tokyo protocol. As a result, it is imperative to
consider CO2 emissions when configuring customized
products for customers. (erefore, the task of product
configuration under environmental regulations is to de-
termine the selection of module instances and the purchased
amount of the module instances to minimize the total cost
subject to both configuration rules and carbon emission
regulations. Moreover, two types of carbon emission reg-
ulations, i.e., carbon tax and carbon cap, are considered in
this study.

4. Optimization Model

Based on the generic product structure, two mathematical
models for optimizing the product configuration problem
are constructed by considering carbon cap and carbon tax
regulations, respectively. (e notations, including sets,
parameters, and decision variables, are shown in Table 1.
In both models, the decision variables are binary variables
xijl, representing whether lth instance of module j is
configured for order i and continuous variables ykjl,
denoting the amount of lth instance of module j pur-
chased from supplier k.
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Figure 1: A general configurable product structure.

Table 1: Notations.

Index and sets
I Index of product, i ∈ 1, 2, . . . , I{ }

j, j’ Index of module, j, j’ ∈ 1, 2, . . . , J{ }

l , l’ Index of instance, l , l′ ∈ 1, 2, . . . , Lj􏽮 􏽯. k index of supplier, k ∈ 1, 2, . . . , K{ }

SEL Set of selection pair (jl, j′l′) representing that selection of instance l of module j requires instance l′ of module j′ in the same
configuration

INC Set of incompatible pair (jl, j′l′) representing that instance l of module j and instance l′ of module j′ cannot exist together in the
same configuration

REQI Set of pair (i, j, l) representing that a customer needs instance l of module j in product i
REQN Set of pair (i, j, l) representing that a customer does not need instance l of module j in product i

Parameters
di Annual demand of product i
fijl Configuration cost of instance l of module j in product i
uijl Number of instances l of module j contained in product i (from bill of material)
hkjl Per unit purchased cost of instance l of module j from supplier k
ecap Maximum carbon emission cap
eass

jl Carbon emissions of instance l of module j during the assembly process
eraw

kjl Carbon emissions of instance l of module j during manufacturing process
α Carbon tax rate
qkjl Supply capacity of instance l of module j from supplier k

Decision variables
xijl Binary decision variable, xijl � 1 indicating where instance l of module j exists in a configuration of product i; otherwise xijl � 0
ykjl Purchase amount of instance l of module j from supplier k
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4.1. Mathematical Model for Carbon Cap Regulation.
Under carbon cap regulation, a company is allocated a
carbon allowance and the total amount of CO2 emitted by
production activities must be lower or equal to the permitted
carbon allowance. If the amount of carbon emissions ex-
ceeds the allowance, the production operations of the
company will be prevented and correspondingly and the
company will be subject to legal punishment. (e product
configuration problem under the carbon cap can be for-
mulated as a MIP model [PC-CAP].

4.1.1. [PC-CAP].

min􏽘
I

i�1
􏽘

J

j�1
􏽘

Lj

l�1
xijlfijluijl + 􏽘

K

k�1
􏽘

J

j�1
􏽘

Lj

l�1
ykjlhkjl ,

s.t.

(1)

􏽘

Lj

l�1
xijl � 1∀i∀j, (2)

xijl ≤xij′l′∀i∀ jl, j
’
l′􏼐 􏼑 ∈ SEL, (3)

xijl + xij′l′ ≤ 1∀i∀ jl, j
’
l′􏼐 􏼑 ∈ INC, (4)

xijl � 1∀(i, j, l) ∈ REQI, (5)

xijl � 0∀(i, j, l) ∈ REQN, (6)

􏽘

I

i�1
diuijlxijl ≤ 􏽘

K

k�1
ykjl∀j ∀l, (7)

ykjl ≤ qkjl∀k∀j∀l, (8)

􏽘

K

k�1
􏽘

J

j�1
􏽘

Lj

l�1
ykjle

ass
jl + ykjle

raw
kjl􏼐 􏼑≤ e

cap
, (9)

xijl ∈ 0, 1{ }∀i∀j∀l, (10)

ykjl ≥ 0∀k∀j∀l. (11)

(e objective (1) is to minimize the total cost, including
the cost for configuring and assembling modules and the
cost for purchasing module instances from suppliers.
Constraints (2) ensure that candidate module instances of a
module are exclusively selected, namely, XOR structural
restriction. Constraints (3) and (4) enforce selective rules
and incompatible rules between modules, respectively.
Customer requirements are specified on module instances
by mapping functional requirements into module require-
ments since a function of a product may be implemented by
one or several modules. (e customer requirements for
module instances are denoted by constraints (5) and (6),
respectively. Constraints (7) impose that the required
amount of module instances should be less than or equal to

that amount purchased from suppliers.(e supply capacities
of suppliers are ensured by constraints (8). Constraint (9)
denotes the carbon cap regulation, namely, that the total
amount of CO2 emissions generated in the assembly pro-
cesses cannot exceeds the allocated carbon allowance.
Constraints (10) and (11) restrict decision variables.

4.2. Mathematical Model for Carbon Tax Regulation. In
addition to carbon cap regulation, the carbon tax is further
considered in this study. (e carbon tax regulation means
that an extra fee must be paid for the amount of CO2
emission without any restriction on the amount. With the
tax rate given as α, the product configuration problem under
carbon tax regulation can be formulated as a MIP model
[PC-TAX].

4.2.1. [PC-TAX].

min􏽘
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K
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􏽘

J
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raw
kjl􏼐 􏼑,

s.t.

(12)

Constraints (2)–(8).
Constraints (10)-(11).
Objective (12) is to minimize the total cost, including

module configuration cost, purchase cost, and carbon tax
cost. μ is a penalty factor with the aim of avoiding purchasing
too much carbon emissions from the market. (e con-
straints are the same as those in the model [PC-CAP] except
that constraints (9) are excluded.

Both models [PC-CAP] and [PC-TAX] belong to
combinatorial optimization problems; thus, the models are
NP-hard problems. Exact algorithms, such as branch-and-
bound only, can solve small- or medium-sized problems and
cannot solve large-sized one. Metaheuristic algorithms like
Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) are effective approaches to solving combinatorial
optimization problems. (erefore, a two-stage algorithm
that combines gPSO [37] and the greedy algorithm is
employed in this study to solve both models [PC-CAP] and
[PC-TAX]. In the first stage, gPSO (“g” stands for “GA”),
which incorporates the crossover operator in GA into PSO
to solve binary optimization problems, is utilized to select
the combination of module instances and thus obtain a valid
configuration. In the second stage, the greedy algorithm is
designed to obtain the optimal purchase amount of the
selected modules from suppliers. (e presented two-stage
algorithm is elaborated as follows.

5. Solution Algorithm

To solve both the models [PC-CAP] and [PC-TAX] in
Section 4, we present a two-stage approach where module
selection decisions are solved in the first stage using the
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gPSO algorithm, and in the second, the purchase decisions
of modules are solved by using the greedy algorithm. In the
following, we first address gPSO and then the greedy al-
gorithm is described.

5.1. gPSO. PSO as a swarm-based algorithm mimics the
behaviors of bird flocks [38]. In PSO, the problem space is
searched by moving a group of particles, representing so-
lutions to the concerned problem.(e position and speed of
a particle are determined by considering the current posi-
tion, personal best position (pbest), and global best position
(gbest) simultaneously, as shown in equations (13) and (14).
In these equations, vt and xt represent the speed and po-
sition of a particle in the tth generation, respectively,
whereas w, c1, c2 are constant parameters and ran d is the
random number in [0, 1]. (e processes in which particles
are moved through the search space according to the
equations are iterated until some stop criteria, such as the
maximal number of iterations, are met. (en, the optimal
solution corresponding to the best particle with the optimal
objective is derived for the interested problem:

v
t+1

� w∗ v
t

+ c1 ∗ rand∗ pbest − x
t

􏼐 􏼑

+ c2 ∗ rand∗ gbest − x
t

􏼐 􏼑,
(13)

x
t+1

� x
t

+ v
t+1

. (14)

Since (14) is only suitable for handling continuous
variables, Kennedy and Eberhart [39] further presented
Binary Particle Swarm Optimization (BPSO) algorithm to
handle the binary discrete optimization problems. In BPSO,
a transformation function, for example, the logistic function,
is used to transform a continuous value derived according to
(13) into a binary value using the following rule regarding
the position update of particles:

x
t+1

�

1
1

1 + e
− t ≥ rnd

0 otherwise

.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

where rnd is a random number from a uniform distribution
in [0, 1].

However, the indirect transformation makes the selec-
tion of the transformation functions problematic since the
function is independent of the concrete problem; thus, it
may crucially affect the solution quality. By incorporating
the crossover operators in GA into PSO, Ozsoydan and
Baykasoglu [37] developed gPSO (“g ” means GA) that takes
full advantage of both GA and PSO and makes the direct
transformation from a continuous value to a binary value
possible. More importantly, one can design the crossover
operator, which is problem-related and thus can make full
use of domain knowledge. Instead of using equations (13)
and (14), gPSO updates the position of a particle using a
uniform-based crossover operator in GA. (e position of a
new particle in gPSO is uniformly determined from the
current position, particle best position, and global best

position according to a probability scale, as shown in the
following equation:

x
t+1

�

x
t

r<p1

pbest
t

p1 ≤ r<p2

gbest
t

r≥ p2

.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

Here, p1 ∈ [0, 1] and p2 ∈ [0, 1] are the parameters set
by the decision-maker and r ∈ [0, 1] is a uniform random
number. If the generated random number r is less than p1,
the new particle takes the value of the current particle. If r is
greater than or equal to p1 and is less than p2, the new
particle takes the value of the personal best particle (pbest).
If r is greater than or equal to p2, the new particle takes the
value of the global best particle (gbest).

To avoid premature convergence in PSO, the mutation
operation in GA is further adopted by gPSO after the new
particles are obtained according to equation (16). Randomly
chosen bits in a particle are changed either from 0 to 1 or
from 1 to 0 in this mutation operation.

5.2. Particle Representation. In gPSO, each particle corre-
sponds to a candidate solution of the concerned problem.(us,
each particle in this study represents both module selection
decisions and purchase decisions using a vector representation.
An integer-based approach, not binary encoding, is employed
to represent module selection decision in a particle to ensure
that only one candidate instance of a module is selected, i.e.,
XOR structural restriction, whereas the real number is utilized
to represent the purchase decisions for the selected modules.
Figure 2 shows an illustrative example for a particle. For
module selection decisions, there are two products (orders)
needed to be configured; i.e., i � 1, 2, each of which consists of
three modules j ∈ [1, 3]. It is assumed that there exist five
candidate module instances for each module; i.e., l ∈ [1, 5].
(erefore, the value of corresponding bits for module selection
takes an integer between 1 and 5; i.e., xijl ∈ [1, 5]. From this
figure, it can be seen that for product 1, the first module in-
stance is selected for module 1, the fourth instance selected for
module 2, and the fifth instance for module 3. For product 2,
the second instance is selected for module 1, the first instance
for module 2, and the fourth instance for module 3. For
purchase decisions, modules are purchased from two suppliers
(k � 1, 2). (e optimal purchase amounts can be obtained
using the greedy algorithm, which will be described later.

5.3. Particle Position Update and Mutation. gPSO in this
study updates the position of a particle by incorporating the
crossover operator in GA according to equation (16). To avoid
premature convergence and trap in local optimum, the
mutation is employed in gPSO after a particle has been
updated. Figure 3 shows the mutation operation for the
particle in Figure 2. As shown in the figure, the fourth instance
of module 2 in product 1 is changed to the second instance,
namely, that value 4 is replaced by value 2 for this module. For
module 1 in product 2, the selected instance is changed from 2
to 5. However, the fragment for purchase decisions in this
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particle is not mutated. (e values for purchase decisions are
obtained using the developed greedy algorithm.

5.4. Greedy Algorithm for Module Purchase Decisions. (e
presented two-stage algorithm integrates the gPSO for
module selections and the greedy algorithm for purchase
decisions. (e purchase decisions in the product configu-
ration problem belong to order assignment problems [40].
To speed up the computation time, a greedy algorithm is
developed to obtain optimal-near decisions on module
purchases. A pseudoutility ratio ckjl is introduced in this
algorithm and is defined as the inverse of multiplication of
purchase prices and carbon emissions, i.e., 1/(hkjl × eraw

kjl ).
(e greater the ration, the higher the chance that a supplier
may be selected for offering the module. Consequently, the
suppliers that have lower cost or/and lower carbon emissions
are preferred to be selected according to the ratio. (is
greedy algorithm runs as follows.

Step 1. For the selected module instance, its suppliers are
sorted in descending order according to the pseudoutility
ratio ckjl.

Step 2. Decode the fragment of a particle representation for
module decisions to obtain a configuration solution. Cal-
culate the total amount of the selected module instances
according to equation (7), i.e., ξjl � 􏽐

I
i�1 diuijlxijl.

Step 3. For each selected instance, the assignment of pur-
chase orders to suppliers is carried out in accordance with
the sorted values mentioned in Step 1. If the amount δ of a
module instance that has been assigned is less than the
requirement ξjl, the size of the next order to be assigned is
min qk, ξ − δ􏼈 􏼉, where qk is the capacity for the module in-
stance of supplier k. (e process for order assignment re-
peats until δ is equal to or greater than ξjl.

Step 4. After all the required module instances have been
assigned to suppliers, the values, i.e., sizes of orders, are the
encoding values in the fragment of a particle representation
for purchase decisions.

5.5. Fitness Evaluation and Constraint Handling. Each
particle is assigned a fitness value indicating the survival
capability of this particle such that the swarm evolution is
guided by both the global best particle and personal best
particles. (e objective value of the product configuration
problem is used to evaluate the fitness value of a feasible
particle. However, not all derived particles during the
iteration process satisfy the constraints in the models
[PC-CAP] and [PC-TAX] due to the mutation operation
in the first-stage algorithm, i.e., gPSO. As a result,
constraint violation might occur and thus must be
handled. (ere exist two kinds of constraint handling
approaches in the metaheuristic algorithm [41]. One is

1

1

2 3

4 5 2 1 4 0 50 30 …

Module j =1-3
1 2 3 1,1,1 2,1,1 1,1,2 kij

xijl= ykij
Module 
selection

Module selection decisions Purchase decisions

Product i=1

Product i=2

Supplier, module,
instance

1 4 5

Figure 2: Example of a particle.

Mutation bits

Before 
mutation

A�er 
mutation

1

1 2 3 1 2 3 kij

1 2 5 5 1 4

4 5 2 1 4 0 50 30 …

…………

Figure 3: Mutation of a particle.
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the repair approach, where the violated particle is
transformed to a feasible one according to the repair
rules. (e other is the penalty approach, where a penalty
term is added to the objective function to avoid invalid
particles entering into swarm evolution. (e penalty
approach is employed in this study due to its simplicity
and easy implementation. Based on the penalty approach,
we design a penalty function for an infeasible particle as
follows:

Gj(x) �
max 0, |hj(x)|􏼐 􏼑

max 0, lj(x)􏼐 􏼑
.

⎧⎪⎨

⎪⎩
(17)

In the function, hj(x) represents the left-hand expres-
sion of the equality constraint of the form “hj(x) � 0”. lj(x)

denotes the left-hand expression of the inequality con-
straints with the form “≤0”. It is assumed that all constraints
in the models [PC-CAP] and [PC-TAX] are transformed
into the standard forms of the constraints with “� 0” or “≤0.”
(erefore, the fitness value of a particle is evaluated
according to the following equation:

fitness � f(x) + M 􏽘
S

j

Gj(x). (18)

Here, f(x) represents the objective value of the model
[PC-CAP] or [PC-TAX] in Sections 4.1 and 4.2. M is a
penalty coefficient and S is the number of the constraints in
this model.

5.6. Two-Stage Solution Algorithm. With the mechanisms
for particle update, mutation, and constraint handling, our
presented two-stage algorithm combining g-PSO with the
greedy algorithm can be summarized in Figure 4. (is
algorithm begins with the initialization of some parameters
such as swarm size (nPop), maximal number of iteration
(T), and mutation probability. (e initial swarm of par-
ticles is randomly generated and the personal best particles
(pbest) and global best particle (gbest) in this swarm are
derived according to their fitness values. (en, the position
of a new particle is determined in accordance with equation
(16). (e newly generated particles for the module decision
fragments are mutated in the given probability. Further, the
fragment of purchase decisions in a particle is determined
by using the greedy algorithm. If all constraints are not
satisfied by the mutated particles, the penalty-based ap-
proach will be adopted to evaluate their fitness values
according to equation (18). After the fitness values of all
particles in the swarm have been evaluated, the personal
best particles and global best particles can be obtained in
terms of the sorting of the fitness values of particles in the
swarm. (e processes are repeated until the stop condition
is met; namely, the maximal number of iterations is
reached. Finally, the algorithm ends with an output of both
the optimal configuration of modules and the purchase
amount of modules.

6. Case Study

6.1. Case Description. A manufacturer offers a configurable
ranger-drilling machine family with a modular product
structure for customers. (e structure of this product is
depicted in Figure 5 and it consists of two common modules
and seven variant modules: extra fuel pump module (M4),
drilling attachment module (M7), rock driller module (M6),
track module (M10), tank module (M2), air conditioner
module (M3), and engine module (M1). Each variant
module is composed of several alternative module instances,
which have the same or similar functions and differ in the
levels of performance or characteristics of products. For
example, the extra fuel pump module has two alternative
instances: high-capacity pump (HP) and normal-capacity
pump (NP). (e rock driller module has three types of
instances to be selected, i.e., HL500, HL600, and HL700,
which differ in the size of drilled holes. (e configuration
rules restricting the possible combination of module in-
stances are shown in Table 2. (e manufacturer adopts the
ATO paradigm, which means that all modules are purchased
from suppliers and only assembly activities are performed by
the manufacturer.(emultisourcing strategy is employed in
this case to avoid the risk of supply disruption; namely, the
module instance can be purchased from multiple suppliers.

Now it is assumed that three customized orders are
received and the size of each order is the same, i.e., 100.
Table 3 shows the customer requirements for these orders.

Initialization:
nPop, T

Randomly generate
Initial swarm

Particle position update
Eq. (15)

Mutation

Greedy algorithm for
purchase decisions

satisfied?

Penalty-based approach
Fitness evaluation

Eq.(17)

Output optimal configuration

N

Y

t=t+1

Y

N

Update pbest, gbest

t ≤ T

Figure 4: (e two-stage algorithm for product configuration.
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For simplicity, the functional requirements of customers in
the orders are directly transformed into the requirements for
module instances in this table. For instance, customer 1
needs the type HP of extra fuel pump and does not need
HL500 of the rock drill. Here, the symbol“� ” represents the
selection of a module, whereas “∼� ” denotes that one does
not select a module in the configuration. Each module in-
stance is offered by two suppliers and the supply capacity of
each module for each supplier is 150, except that the supply

capacity of the track module is 200. Table 4 lists the con-
figuration input data, including module purchase costs from
the suppliers, purchase lead-time of modules, CO2 emissions
generated in both manufacturing and assembly activities,
and the assembly cost for assembling modules into subas-
sembly or products. It is assumed that the amount of CO2
emitted in the assembly process for each candidate instance
of a module is the same.

6.2. Configuration Results. (e presented two-stage algo-
rithm for solving product configuration models is pro-
grammed in Matlab 2014b and the parameter setting for the
algorithm is as follows. (e crossover probability is 0.8, the
mutation probability 0.2, the population size 30, and the
number of maximal iterations 50. (e optimal configuration
results for both models [PC-CAP] and [PC-TAX] when the
total carbon cap is 90000 kgCO2e and carbon tax rate is $10

Extra fuel
pump

rock
drill

drill 
attachment winch cabintrack tank air 

conditioning engine

HP NP

LDA HDA

HL_500

HL_600

HL_700

H

T USA

AUS

EURO AC5 AC6 S

W

R

range-drilling
machine 

AND

XOR

Incompatible rule 
Selection rule 

Product

Variant module

Component

Figure 5: Structure of a configurable ranger-drilling machine.

Table 2: Configuration rules.

Configuration
rule Rule type Module

instances Meaning

1 Selective rule HL600, EURO (e selection of HL600 rock drill requires the selection of EURO tank in the same
configuration

2 Selective rule HP, AC5 (e selection of HP extra fuel pump requires the selection of AC5 air conditioner
in the same configuration

3 Selective rule H, W (e selection of H track requires the selection of W engine in the same
configuration

4 Incompatible rule T, EURO T track And EURO engine cannot exist in the same configuration
5 Incompatible rule HP,T HP extra fuel pump and T track cannot exist in the same configuration

6 Carbon cap
regulation All instances Carbon emission amount for configured products is smaller or equal to

90000 kgCO2 (for carbon cap model only)

Table 3: Customer requirements.

No. of customer orders Customer requirements

1 Extra fuel pump module�HP
Rock driller module ∼�HL500

2 Tank module�USA drilling attachment
Module∼�HDA

3 Engine module∼�R

Complexity 9



per ton of CO2e are shown in Table 5, respectively. Obvi-
ously, due to strict restrictions for carbon emissions, the
model [PC-CAP] based on carbon cap regulation has fewer
carbon emissions but higher cost, compared with the model
[PC-TAX]. However, the opposite situation can occur if we
relax the carbon cap (limits) or the carbon tax rate increases.

6.3. Impact of Carbon Emission Regulations

6.3.1. Impact of Carbon Cap. (e effects of carbon caps on
the model [PC-CAP] are further analyzed using the case of
the ranger-drilling machine. Figure 6 shows the effect of
different carbon caps on both configuration cost and total
carbon emissions. As shown in this figure, total configu-
ration cost increases with a decrease in the carbon cap,
namely, when the carbon cap becomes stringent. However,
the total amount of CO2 emissions decreases in the case of
more strict carbon caps. It indicates that the adoption of a
more strict carbon cap regulation will lead to an increase in
production cost for customizing products and a reduction in
total CO2 emissions. Moreover, it tends to select the module
instances with low-carbon emissions but high costs when
carbon restriction is strict. Nevertheless, when the carbon
cap is lower than 76380 kgCO2-e (i.e., 7.63∗104), the model
becomes infeasible and any feasible configuration cannot be
found since any combination of module instances exceeds
the permitted carbon cap. On the other hand, when carbon
cap is larger than 113500 kgCO2-e (i.e., 11.35∗104), both the
total configuration cost and total carbon emissions do not
change because the carbon restriction is too loose such that
any configuration of module combination satisfies the cap.
Consequently, setting a reasonable carbon cap for product
configuration under the carbon cap model is crucial for
decision-makers to make a trade-off between configuration
cost and the reduction of CO2 emissions.

6.3.2. Impact of Carbon Tax. (e effect of different carbon
tax policies on the model [PC-TAX] is shown in Figure 7.
As shown in this figure, the configuration cost increases
and total carbon emission reduces when the carbon tax
rate increases. (is indicates that carbon tax policy has a
significant impact on production costs and a higher
carbon tax rate can facilitate the reduction of CO2
emissions. Moreover, an increase in the carbon tax rate
will not lead to an infeasible solution, in contrast to the
carbon cap regulation. (erefore, the carbon tax is more
flexible and acceptable for a manufacturer to manage its
customization production.

6.4. Comparisons between Single-Sourcing and Multisourcing
Strategies. For the model [PC-CAP] in Section 4, the
multisourcing strategy is adopted in the model to combat
against the risk of supply disruption, namely, that a
module instance can be offered by several suppliers. In
the following, we will modify this model to accommodate
the single-sourcing strategy, namely, that a module in-
stance is only provided by one supplier. (erefore, the
effect of two types of purchase strategies on configuration
results can be compared. Based on the model [PC-CAP],
a binary decision variable zkjl is introduced to represent
whether supplier k is selected to offer the instance l of
module j (�1, selected; � 0, not selected). (e resulting
model considering the single-sourcing strategy is for-
mulated as follows.

ykjl ≤Mzkjl∀k∀j∀l, (19)

􏽘
K
k�1zkjl ≤ 1∀j∀l, (20)

zkjl ∈ 0，1{ }∀k∀j∀l. (21)

Table 4: Configuration data about module instances.

Module Instance
Purchase cost LD time Em#1

Em#2 Asm# cost
S1 S2 S1 S2 S1 S2

Extra fuel pump HP 139.6 120.8 11 19 17.4 18 10.5 7.5
NP 51.2 22.5 6 24 25.2 39 3.2

Drilling attachment LDA 131.4 45.4 13 14 46.2 51 14.6 8.2
HDA 144.6 91.4 10 11 28.2 33.6 8.3

Rock driller
HL500 144 110.8 14 15 6.6 21

18
1.3

HL600 129.6 73.9 14 18 10.8 27 10.3
HL700 119.3 45.6 19 20 49.2 51.6 10.9

Track module N 41.3 32.6 11 12 10.8 21.6 16.6 8.3
T 147.4 87.3 8 18 3.6 3.6 12.3

Tank module
USA 97.5 70.4 7 15 10.8 20.4

13.6
3

AUS 76.9 29.8 12 24 20.4 40.2 0.6
EURO 60.2 19.9 9 17 31.8 54 0.7

Air conditioner AC5 145 107.2 10 22 7.2 12.6 9.9 1.8
AC6 137.2 93.3 15 19 54.6 59.4 2.7

Engine
S 102 44.1 23 24 55.2 60

12.8
4.1

W 145.5 89.3 8 16 28.2 32.4 7.1
R 119 77.9 8 10 40.8 42.6 1.8

Note: (1) “S1” and “S2” represent supplier 1 and supplier 2, respectively. (2) “Em#1” and “Em#2” denote CO2 amount emitted in manufacturing and assembly
activities, respectively. (3) “LD time” and “Asm# cost” mean purchase lead-time and assembly cost, respectively.
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Constraints (19) enforce that a module instance can only be
purchased from a supplier when the supplier is selected.
Constraints (20) guarantee the single-sourcing strategy, namely,
that a module instance can only be purchased from one sup-
plier. Constraints (21) restrict the decision variables zkjl .

(e configuration results based on single-sourcing and
multisourcing models under the carbon cap regulation are
compared in terms of module selection and purchase

amount, as shown in Figure 8. As shown in Figure 8(a), a
module instance is supplied by only one supplier if it is
selected. For example, 300 units of the module instance
LDA are purchased from supplier S2. By comparison, for
the multisourcing model, 50 and 150 units of the instance
HDA are purchased from suppliers S1 and S2, respec-
tively, as shown in Figure 8(b). (e reason is that the
single-sourcing model prefers the supplier offering the

Table 5: Configuration results.

Module Instance

Configuration (carbon cap) Configuration (carbon tax)

Module selection Purchase
amount Module selection Purchase

amount
P1 P2 P3 S1 S2 P1 P2 P3 S1 S2

Extra fuel pump HP + 0 100 + 0 100
NP + + 51 149 + + 50 150

Drill attachment LDA + 0 100 + + 50 150
HDA + + 50 150 + 0 100

Rock drill
HL500 + 0 100 + 0 100
HL600 + 0 100 + 0 100
HL700 + 0 100 + 0 100

Track module N + + 200 200 + + 200 200
T + 0 200 + 0 200

Tank
USA + 0 100 + 0 100
EURO + 0 100 + 0 100
AUS + 61 39 + 0 100

Air conditioner AC5 + + + 150 150 + + + 150 150
AC6 0 0 0 0

Engine
S 0 0 + 0 100
W + + 50 150 + + 50 150
R + 0 100 0 0

Total configuration cost ($) 179696.7 170871.9
Carbon emission amount (kgCO2-e) 94992 99870
Note: (1) “P1,” “P2,” and “P3” represent the configured products for order 1, order 2, and order 3, respectively. (2) “S1” and “S2” represent supplier 1 and
supplier 2, respectively. (3) (e symbol “+” denotes the selection of a module instance in a configuration.
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instances with low costs such as LDA, whereas under
multisourcing strategy, a part of the purchase amount may
be provided by the suppliers with a relatively high cost,
such as HDA, due to the restriction of purchase amount
from each supplier.

Further, we compare the carbon emissions of configu-
ration results for both strategies under the carbon cap
regulation, as shown in Figure 9(a). (e total carbon
emission amount is 95000 kgCO2-e for three orders under
single-sourcing, while the total carbon emission amount

Minimize：Equation (1)
s.t.

Equations (2)–(7)
Equations (9)–(11)

ALGORITHM 1: [PC-CAP-S]
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Figure 8: Configuration results under both purchasing strategies: (a) purchase amount based on single-sourcing; (b) purchase amount
based on multisourcing.
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under multisourcing is 94992 kgCO2-e. Clearly, the total
carbon emissions under the two purchase strategies are
almost equal. (e reason is that under the carbon cap
regulation, a manufacturer will tend to select the models
with lower costs as long as the total emissions do not exceed
the carbon limitation, considering that the optimization
objective is to minimize the total cost.

On the other hand, we also investigate the effect of
carbon emissions for both strategies under the carbon tax
regulation, as shown in Figure 9(b).When the tax rate is 10$/
tonCO2-e, the total carbon emission amount under single-
sourcing is 105540 kgCO2-e, while the total carbon emission
amount under multi-sourcing is 99870 kgCO2-e. Obviously,
the configuration under multi-sourcing has much less
carbon emissions than that under single-sourcing. (e
reason is that under single-sourcing a manufacturer rather
purchases the components from only one supplier with
lower cost, but possibly with high carbon emissions. In
contrast, under multisourcing, a manufacturer tends to
purchase components from several suppliers, possibly with
high average cost and shorter average lead-time. (erefore,
multisourcing under carbon tax will be beneficial for mass
customization enterprises to provide green and low-carbon
customized products.

7. Numerical Experiments

To validate the efficiency of the presented two-stage al-
gorithm, numerical experiments are conducted to compare
it with the gPSO [37] and classical GA [42]. All experiments
are programmed in Matlab2016a running on a computer
with Intel(R) Core(TM) i3-6300 processor and 4G mem-
ory. (e problem instances are generated randomly with
case ID I-J-L-K, where I, J, L, and K represent the number of

orders, modules, module instances, and suppliers, re-
spectively. We assume that all modules have the same
number of module instances. (e purchase costs of
modules, carbon emissions in modules production, and
carbon emissions in module assembly are taken values
from the uniform distributions U[50, 500], U[20, 70], and
U[20, 50], respectively. Each problem instance runs 20
times and the best average values of the objective are
obtained based on the results of 20 runs. (e results are
shown in Table 6. (e column “two-stage algorithm”
represents the presented algorithm in this study. (e
column “classical GA” refers to the approach by Meena and
Sarmah [42]. (e next column labeled “gPSO” refers to the
algorithm by Ozsoydan and Baykasoglu [37]. (e best and
average objection values (Avg.) are reported and the best
average values for these three algorithms are highlighted.
(e computation times are given in CPU seconds. It clearly
indicates that the two-stage algorithm outperforms clas-
sical GA and gPSO in both qualities of solution and
computation times, especially in the case of large-scale
problem instances. In addition, the GA is superior to gPSO
in that the gPSO is only effective in handling discrete
variables and is incapable of dealing with continuous
variables. By comparison, the presented two-stage algo-
rithm combines the gPSO for handling discrete variables
such as module selections and the greedy algorithm for
continuous variables like the amount of module purchase.
In addition, Figure 10 illustrates the evolution of average
fitness values with the number of iterations for the case
instance 10-30-10-15. It can be seen that the two-stage
algorithm converges much faster than both GA and gPSO.
(erefore, the two-stage algorithm is effective in solving
larger-scale product configuration problems with supplier
selections and environment consideration.

Extra
fuel

pump

Drill
attachment

Rock
drill

Track
module

Tank Air
conditioner

Engine

Module

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
CO

2 
em

iss
io

ns
 (k

gC
O

2-
e)

×104

Single-sourcing strategy
Multi-sourcing strategy

(a)

Extra
fuel

pump

Drill
attachment

Rock
drill

Track
module

Tank Air
conditioner

Engine

Module

CO
2 

em
iss

io
ns

 (k
gC

O
2-

e)

×104

Single-sourcing strategy
Multi-sourcing strategy

0

0.5

1

1.5

2

2.5

(b)

Figure 9: Carbon emissions for single-sourcing and multisourcing strategies under carbon regulations: (a) carbon cap; (b) carbon tax.
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8. Conclusions

In this article, the product configuration problems with the
multisourcing strategy under carbon emissions regulations
are investigated. Mathematical models are built for both
carbon cap and carbon tax, and a two-stage algorithm is
presented to solve the models. Sensitivity analysis of the
carbon parameters indicates that both a strict carbon
emission cap and high carbon tax rate will enable a man-
ufacturer to purchase the components with higher costs and
lower carbon emissions. However, the carbon tax is much
more flexible for a manufacturer to manage its custom-
ization production. Moreover, in comparison with single-
sourcing, multisourcing under carbon tax regulation can
obtain configured products with lower carbon emissions and
ensure providing green and low-carbon customized prod-
ucts for customers. Under carbon cap, nevertheless, both

single-sourcing and multisourcing strategies make no sub-
stantial effects on configuration results.

(ere are a number of research directions that can be
considered useful extensions of this research. Although
carbon cap and carbon tax regulations are explored in this
study, other carbon regulations such as carbon cap-and-
trade and carbon offset strategies should also be investigated.
Further, taking the uncertainty in purchase costs into ac-
count should be an interesting subject. [43].
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