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In order to build high-quality concrete, it is imperative to know the rawmaterials in advance. It is possible to accurately predict the
quality of concrete and the amount of raw materials used using machine learning-enhanced methods. An automated process
based on machine learning strategies is proposed in this paper for predicting the compressive strength of concrete. Fusion-
learning-based optimization is used in the proposed approach to generate a strong learner by pooling support vector regression
models. *e SVR technique proposes an optimization method for finding the kernel radial basis function (RBF) parameters based
on improving the innovative gunner algorithm (AIG). As a result of AIG’s diverse solutions, local optima are effectively avoided.
*erefore, the novelty of our research is that, in solving the uncertainty of predicted outputs based on integrated models, we use
fusion-learning-based optimization to improve regression discrimination. We also collected a standard dataset to analyze the
proposed algorithm, and subsequently, the dataset was designed from concrete laboratory tests on 244 samples, seven features,
and three outputs. Different regression intensities are determined by correlation analysis of responses. Regression fusion is
sufficiently accurate to estimate the number of desired outcomes examined based on the appropriate input data sample. *e best
quality concrete can be achieved with an error rate of less than 5%.

1. Introduction

*e structural materials of concrete and the reaction be-
tween these materials play a critical and decisive role in
explaining high-strength concrete’s mechanical properties.
*erefore, concrete designers and engineers seek to gain an
accurate and thorough understanding of the relationship
between the appropriate choice of type and amount of
materials for concrete construction [1]. Concrete is a mix-
ture of water, cement, and other materials, and from a
chemical perspective, the strength of this material depends
more than anything on cement and water [2]. High-strength
concrete must exhibit resistance and flexibility against
various forces and environmental factors. Hence, the proper
mixture of raw materials can enhance the strength and
quality of the concrete.*e compressive strength of concrete

depends on various factors, including mixing properties,
mixing methods, mixing conditions, transport, and concrete
[3]. Sometimes the concrete design engineer knows the
initial composition and the estimated percentage of material
mixing; however, the importance of an accurate estimate
cannot be overestimated. *erefore, the concrete quality can
only be assessed after making efficient concrete, and the
elapse of a specific period, often a long interval (usually one
month) using special tests [4]. Consequently, making quality
concrete is conducted based on resembles a trial and error
approach and may lead to extensive raw materials loss. By
observing the falling slope in concrete, helpful information
about the concrete performance can be obtained [5].

In addition, due to the great importance of concrete in
structures and the significant growth of urbanization, the
increase in demand for high-quality concrete is substantial
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[6]. In many developing countries, such as China, the ready-
mixed concrete, prepared by mixing concrete, dominates the
entire concrete market [7]. As an advanced industry, the
ready-mixed concrete trade is of utmost importance in
significant sectors of industry and construction, trans-
portation, and after-sales service. However, the current
concrete industry management is still at the fundamental
information management level because the knowledge
generated during the management process is too complex to
be used [8]. A goal-oriented and efficient way to address this
problem is knowledge management and the adoption of
artificial intelligence technology [9].

In recent decades, due to the proliferation of con-
struction globally, a significant body of research has
attempted to optimize the quality of concrete. *erefore,
artificial intelligence (AI) has received growing attention as
an analyzer of information in this field.*emain application
of soft computing-based methods is to determine concrete
strength [10–18]. Most researchers focus on accurate esti-
mation of raw materials based on artificial neural networks
(ANNs) ability to estimate correct regression outputs
[19–21]. Some researchers have also used ANN and clus-
tering methods such as adaptive neuro-fuzzy inference
system (ANFIS) [22]. In other studies, rapid learning and its
combination with Cascade-forward neural network (CfNN)
have been highlighted, which has led to the decreased
processing time of concrete ingredients and achievement of
the desired output [23]. Some investigations have utilized a
combination of neural networks and evolutionary algo-
rithms or metaheuristic (MH) to improve the precision of
obtaining desired outcome [24, 25]. Combination with
evolutionary algorithms (EA) is typically intended to amend
inherent defects of ANN or other regression-based esti-
mation methods. *ese algorithms are extensively used in
ANN training for accurate error estimation. *ese include
the genetic algorithm (GA) [26, 27], particle swarm opti-
mization (PSO) [28], or simulated annealing (SA) [29]. *e
genetic algorithm can find global and local optimums and
may be even trapped in local optimums, but it has rapid
convergence [26, 27]. A growing number of studies have
recently adopted ANN [27, 28, 30] and SVR [29] as a model
for regression network estimation. *e utilization of
methods such as deep learning to estimate the quality of
concrete has drawn considerable attention, urging re-
searchers to adopt different deep learningmodels to improve
the quality of concrete [31–33]. Sadrossadat and others. [34]
have developed an evolutionary-based prediction model of
the 28-day compressive strength of high-performance
concrete containing cementitious materials.

Estimating the concrete performance is an essential
process in ensuring the quality of various concrete com-
ponents. Concrete testing is a method that measures near-
performance parameters and provides valuable information
about these parameters. *e methods currently used in the
world measure the stability of concrete in the laboratory or
on-site. In some experiments, a kind of failure is estimated
by measuring the reduction in the upper surface of freshly
crushed concrete. Low accuracy, uncertainty, computational
complexity, and the lack of a generalized method in the

automatic determination of concrete raw materials in pre-
vious strategies have led us to look for more appropriate and
accurate solutions.

Given that specific percentages of materials need to be
combined to produce concrete of varying grades, this
process is usually based on personal experience, and trial and
error deems necessary to avoid wasting materials. For this to
happen, an automated method is required for the analysis of
raw materials. *e importance of research becomes more
apparent, knowing that a significant portion of its constit-
uents include water, cement, and sand and are among finite
resources that are rapidly depleted. *erefore, either one
must possess exceptional skills and expertise, or a solution
must be found to estimate the precise percentage of in-
gredients. *us, the previous automated models are highly
dependent on the optimized regression-learning model and
the input components selection. Concrete design decisions
on the component level must be correlated to operational
cost and emissions on the supply chain level to evaluate
commercial and environmental influence [35]. *e main
difficulty is finding a qualified approach to produce proper
outputs on concrete designing in the real world. Fitting
outputs are achieved by relying on appropriate learning
methods. Recently, the relevant studies have considered
optimization algorithms based on support vector models for
high-quality concrete design [36–40].

Although both SVR and ANN models can map input
data to a higher dimensional space to determine the decision
boundary, NNs require numerous data input than SVR to
better training. In addition, SVRs need minimal or more
negligible processing of input data, which saves a lot of time.
Besides, the ANN model usually necessitates much more
modification, cleaning, data processing, etc. Typically the
ANNs involve batch conversion to numbers, feature scaling,
etc.

In the current study, we present an effective prediction
design of concrete structure based on the proper fusion
model of Support Vector Regression (SVR) learner and
innovative gunner algorithm (AIG). Also, the AIG algorithm
is described by a significant search space exploration, owing
to solution vectors, typical for swarming techniques. *us,
the AIG algorithm achieves diverse solutions, which pro-
vides it high efficiency in avoiding local optima [41]. Besides,
it can be utilized successfully to determine target functions of
different shapes and with multiple optima and multidi-
mensional functions.

*e proposed method can remarkably reduce the clas-
sification error in regression mode to design lightweight and
high-performance concrete. Our model has produced de-
sirable results for predicting 28-day compressive strength
and helps save the raw materials for concrete production.
*e method has been applied to a set of laboratory data
collected by the authors. Similarly, attempts have been made
for innovation to generate actual data in the laboratory
within three months and fabricate different concrete types
with varying qualities.

*e remainder of this paper is organized as follows: the
method components are described in Section 3. Section 4
introduces the proposed model, including the used
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optimization algorithm and the regression learner. Section 5
presents the results and interpretations of the classification
under various conditions. Finally, the paper is concluded by
summarizing the key points in Section 6.

2. Contribution and Learning Structure

In this section, the components we utilized to optimize the
concrete quality prediction based on learning process are
described. As shown in Figure 1, the significant contribu-
tions of designing lightweight and high-performance con-
crete have been related to data development, automated
analysis of outputs (i.e., effective design), and best learning
to discriminate concrete quality.

2.1. Regression Learning. Assuming that one training data is
available, if each input has D attributes (i.e., belongs to the
D-dimensional space), and each point is assumed to have Y
corresponding special, a function can be found that relates
the input to the output [42]:

f(x, w) � w
T
x + b. (1)

To obtain the function f, the values of w and b in the
following equation must be minimized:
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where C1 is a constant value, the value of which is set by the
user. *e C1 value is intended to create balance and change
the weights of the penalty due to the omission of the variable
ε and, at the same time, maximize the margin for dis-
crimination. Accordingly, function Lε is introduced
according to

|y − f(x, w)|ε �
0, |y − f(x, w)|≤ ε,

|y − f(x, w)| − ε, otherwise.


(3)

*e equation is rewritten as a maximum of the following
equation [43]:
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where conditions are defined based on
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By solving the above equations, the SVR function, i.e., f
in (1), can be obtained using the kernel function:

f(x, w) � w
T
0 x + b � 

l
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∗
i( x

T
i x + b. (6)

2.2. Innovative Gunner Algorithm (AIG). According to
Newton’s law, a projectile’s motion can be directed vertically
in a homogeneous gravitational field where the initial ve-
locity in the horizontal direction is not zero [41]. A projectile
is thrown with the initial velocity v0 at an angle δ, and its
horizontal surface is assumed to be perpendicular to the
direction of gravity. It has a parabolic motion in a frame with
dimensions d and h. *is equation is defined according to
(7), where g denotes the acceleration caused by the gravi-
tational force:

h � tan δ.d −
g.d

2

2.v
2
0. cos

2 δ
. (7)

Computations will be more complicated if drag forces
are involved. For the simplest model, where the tensile force
is assumed to be proportional to the velocity of the projectile,
(7) will be significantly complicated because [41]

h � tan δ +
g

k.v0. cos δ
 .d +

g

k
2 . ln 1 −

d.k

v0. cos δ
 , (8)

where k is defined as drag coefficient (unit 1/s), and its value
depends on weight and air resistance. Several analytical and
experimental methods have been proposed to ensure the
accuracy of the projectiles equations based on ballistics.
Figure 2 shows the bullet motion curve for three different
angles.

However, it should be noted that the actual projectile
curve can be expressed as

h � tan δ +
g

k.v0. cos δ
 .d +

g

k
2. ln 1 −

d.k

v0. cos δ
  + fh(ξ),

(9)

where fh(ξ) is a function influenced by interfering factors,
including changes in air resistance, temperature, wind,
shape, and motion of the Earth. In this case, the angle δ can
be assumed as a decision variable for the optimization
process, whose objective function is as follows:

Fobj(δ) � |h(δ)|↦min . (10)

Given the complex form of equation (10) and the un-
certainty of the function fh (ξ), a metaheuristic method could
be used to calculate the value of angle and firing.

3. Proposed Method

Figure 3 shows the overall steps for the suggested imple-
mentation of concrete designing.
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3.1. Preprocessing. First, as shown in Figure 4, we shuffled
the data in the preprocessing step to prevent overtraining of
the automatic classification procedure. Although the sam-
ples are randomly mixed, the label’s position changes reg-
ularly according to the classes of each received sample. We
are applying such a method to prevent overfitting, leading to
a considerable increase in classification accuracy. Because
each data’s concrete is intrinsically highly distributed and

uses numerous diverse samples in a wide range, they must be
normalized in the next step of the preprocessing step.
Normalization of samples reduces the processing cost and
positively affects the optimization of concrete quality pre-
diction [44].

Ynorm �
Ys − Ysmin

Ysmax
− Ysmin

. (11)
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Figure 1: A general schematic of the main contributions in concrete quality prediction.

0 2 4 6 8 10 12 14
Range [m]

2
0

4
6
8

10
12
14

H
ei

gh
t [

m
]

 = 10°
 = 15°
 = 20°
 = 25°
 = 30°

 = 35°
 = 40°
 = 45°
 = 50°
 = 55°

 = 60°
 = 65°
 = 70°

Figure 2: Bullet motion curve for three different angles.

Pre-
processing

Normalization
Data shuffling

Initializing

Regression
fitting

First
evaluation

Optimization

Regulation 
the SVR 

parameters

Outputs

Final 
evaluation

Raw material of
concrete

Analysis of produced
concrete

Figure 3: *is diagram shows the overall design for the proposed implementation method.
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Ynorm is considered the normalized value, and the
variables Ysmin and YSmax

are the minimum and maximum
values, respectively. Besides, Ys is the current value of the
concrete sample under study.

3.2. FusionRegression. In the first step, data normalization is
performed. *is process is conducted using the Min-Max
method to reduce excessive dispersion of data.*emain goal
of support vector machines is to find an optimal hyper-plane
as a decision-making level that maximizes the margin be-
tween two classes. *e data are moved to a considerably
larger space by the Φ kernel function to classify highly
complex data. *e kernel function maps data from the input
space on a space with higher dimensions, so that it is possible
to separate the data in that space linearly. In the first part, the
SVR regression learning pool as regression fusion model is
used by applying training data. *e general diagram is
shown in Figure 5 and depicts the general learning frame-
work. *e initialization of c and s for each regression
classifier is initially randomized. *e change interval for
these two parameters varies from zero to 20. By applying the
training data, the structure with the lowest mean square
error (MSE) is selected, and its parameters ? and s are given
to input to the AIG algorithm. In this way, convergence
towards the optimal response is faster and more accurate.
*e regression fusion of pool structure is evaluated by five
repetitions, averaging accuracy, and finding the best cor-
responding parameters. *e best matching parameter is a
grid with the highest accuracy rate. In addition, finding the
best RBF kernel values facilitates the search for the global
optimum in the modified AIG algorithm.

3.3. Improving the Best Model. In order to optimize the
model parameters, various methods can be used. *e space
networked with RBF kernel was identified as the best kernel
for the data [45, 46]. *is kernel can be expressed for two
variables and b:

K(a, b) � exp −c‖a − b‖
2

  � exp −
‖a − b‖

2

2σ2
 , (12)

where the parameter c corresponds to the square of the
width of Gaussian kernel. By finding the initial values c and
C in the classification pool, the modified AIG algorithm is
used by accounting for air resistant. *is constraint is
considered more than other constraints for fh(ξ) because
other constraints do not always exist in real conditions, but
air resistance is present under almost any condition.

*e most typical case of air resistance, for Reynolds
numbers above 1000, is Newton drag with a drag force
proportional to the speed squared, Fair � -kv2. In air, which

has a kinematic viscosity around 0.15 cm2/s, this means that
the product of speed and diameter must be greater than
about 0.015m2/s. Unfortunately, the equations of motion
cannot be easily solved analytically for this case. *erefore, a
numerical solution will be examined.

FD � −
1
2

c ρA v V, (13)

where FD, c, ρ and A are defined as drag force, drag coef-
ficient, air density, and cross sectional area of the projectile,
respectively, and μ is defined according to

μ �
k

m
�

cρA

(2m)
. (14)

In light of these limitations and initialization in the
previous step, the fitness function is defined in the meta-
heuristic algorithm, according to MSE. *e termination
condition of the algorithm is based on calculating the
minimum error of MSE. Suppose that the algorithm is not
realized in a certain number of iterations. In that case, the
parameters matching the best regression network are se-
lected, which produce a more significant effect on regression
learning than other SVR structures do. On the other hand,
considering the drag conditions and air resistance, the shot
angle widens, and the best angle is set between 30 and 80°.
According to the calculations, the best shot angle is 45°, but
in changing the initial velocity of the bullet, the optimal
angle is altered considering air resistance.

4. Experimental Results

*e proposed method was implemented by MATLAB
R2019b in Windows 10 operating system. *e hardware
platform used for simulation was an Intel® Core ™ i5-8500
system with 8GB of RAM, plus 16GB of SSD RAM. Other
complementary software such as SPSS was also used. *e
input data were incorporated into an integrated algorithm,
and the inputs were normalized in the first step.Mean square
error (MSE) and mean absolute percentage error (MAPE)
are expressed in (15) and (16), respectively. *ey were tested
using adaptive algorithms in input analysis.

MAPE �
1
N



N

i�1

Ti − Pi




Ti

. (15)

MSE �
1
N



N

i�1
Ti − P( 

2
. (16)

In these equations, Ti, Pi, and N are the actual output
values, the values predicted by the algorithm, and all
specimens. In addition to the MSE and MAPE calculation,
the maximum andminimum errors were also estimated, and
the results of the K-fold cross-validation were calculated for
each test.

4.1. Dataset. Data were obtained from the concrete testing
laboratory at Imam Khomeini University of Sabzevar, Iran,
over six months.*e data consists of seven inputs and three

1 2Data shuffling 3 4 1 2 3 4

4 3 2 2 1 4 3 1

Figure 4: Data shuffling in preprocessing step.
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outputs, including cement, slag, fly ash, water, super-
plasticizers, coarse aggregate, and fine aggregate. All of
these inputs are in component kg in one M3 concrete.
Besides, the outputs of this dataset are SLUMP (cm),
FLOW (cm), and 28-day Compressive Strength (Mpa). *e
number of constructed specimens is higher than the first
data samples (243 specimens), and the number of feature
inputs and outputs is equal. *e necessary information of
this dataset is shown in Table 1.

4.2. Assessments. As presented in Table 2, regression
predictions for datasets are a combination of different

algorithms at the time of testing by selection K value equal
to 5. Changing the values of RBF parameters and pre-
venting overfitting in many repetitions, the SVRs pool as
regression fusion was used to find the lowest amount of
MSE among the five structures in each pool.

If the MSE is less than 5% of the total error in the sample
data in this structure, the corresponding SVR is selected as
the base network. Otherwise, the minimum MSE and the
corresponding network structure should be chosen. Figure 6
shows the results of the RMSE convergence and corre-
sponding Loss function of the algorithm set to reach the
minimum value. When the algorithm tries to achieve the
optimal value in the training step, more satisfactory outputs

Xn X1X2X3

. . .

. . .

. . . Pooling of SVRs:
Regression fusion 

MSE evaluation

SVR (m) SVR (3) SVR (2) SVR (1)

MSE (m) MSE (3) MSE (2) MSE (1)

Figure 5: Regression fusion based on pooling the SVRs models.

Table 1: Practical data collected from the concrete laboratory of Imam Khomeini University of Sabzevar.

Data Components Max Min Average Standard deviation Variance (×10−3)

Input (Kg in M3)

Cement 383 142 240.40 79.02 6.24
Water 199 0 73.14 60.52 3.66
Fly ash 287 3.5 152.47 85.55 7.32

Fine aggregate 244.35 176 200.83 20.35 0.423
Coarse aggregate 25 3.12 12.92 3.73 0.134
Superplasticizers 1118 631 887.13 88.37 7.839

Slag 943 543.12 744.08 63.98 4.12

Output
FLOW (cm) 34.87 0 22.43 9.124 0.0831
SLUMP (cm) 96 21 54.514 17.82 0.317

28-day compressive (Mpa) 66.34 18.56 40.82 8.233 0.678

Table 2: Calculation of MSE, MAPE average, minimum, and maximum error for predicting high-strength lightweight concrete by the
proposed regression fusion based on pool of SVRs and modified AIG algorithm. In this table, the K value in K-fold CV is considered to be
equal to 5.

K-fold
Minimum error Maximum error MSE MAPE

Output 1 Output 2 Output 3 Output 1 Output 2 Output 3 Output 1 Output 2 Output 3 Output 1 Output 2 Output 3
5-Fold (1) 0.273 0.383 0.317 14.31 21.18 9.53 1.73 4.59 1.24 0.965 1.53 0.894
5-Fold (2) 0.206 0.412 0.237 12.73 14.31 13.12 1.39 5.03 1.08 0.524 0.823 0.776
5-Fold (3) 0.229 0.374 0.365 10.33 28.73 14.43 1.58 4.87 1.44 0.947 1.34 0.739
5-Fold (4) 0.441 0.480 0.594 16.43 19.17 11.29 2.65 6.27 1.57 0.731 1.13 0.947
5-Fold (5) 0.202 0.711 0.254 15.45 29.83 16.56 2.61 9.07 0.794 0.575 0.767 0.722
5-Fold (6) 0.503 0.308 0.408 15.32 11.43 0.08 1.14 8.24 0.647 0.995 1.42 18.1
5-Fold (7) 0.153 0.494 0.211 17.40 15.87 9.86 1.09 9.01 0.733 0.673 0.865 0.712
5-Fold (8) 0.328 0.487 0.264 17.73 28.65 7.22 1.76 7.11 0.851 0.801 0.915 0.834
5-Fold (9) 0.162 0.374 0.183 16.56 26.73 13.25 2.11 8.14 0.578 0.787 1.27 0.912
5-Fold
(10) 0.258 0.448 0.379 16.30 34.19 9.45 1.39 8.76 0.476 0.413 0.873 0.748

Avg. 0.347 16.248 3.262 1.4576

6 Complexity



can be obtained in the experimental section by increasing the
number of search alterations of the AIG algorithm or in-
creasing the number of SVRs.

*e change in evaluation criteria is not significant due to
the change in K, and thus, Table 3 shows that a slight im-
provement in K accompanies the experiment.

However, although the training phase results are done
offline, due to the numerous repetitions in finding the best
SVR structure of the learning pool and the time-consuming
AIG optimization algorithm, computational complexity is
observed, especially in the training step. A similar

implementation for random data in convergence to the
optimal value for four validation data is shown in Figure 7.
In these plots, a limited number of repetitions are seen, and
the level of error originates from the training stage.

On average, for each run of the algorithm, the average
value of correlation is greater than 0.9 and, in some cases,
reaches as high as 0.98. Assuming that, in the prediction of
concrete quality regression, yt and xt are static variables in
the detection or estimation of parameters and T and F tests,
the results were used by increasing the sample size, and
sample variance to population variance was used to
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Figure 6: RMSE convergence and corresponding Loss function in training step.

Table 3: Calculation of MSE, MAPE average, minimum, and maximum error for predicting high-strength lightweight concrete by the
proposed regression fusion based on pool of SVRs and modified AIG algorithm. In this table, the K value in K-fold CV is considered to be
equal to 10.

K-fold
Minimum error Maximum error MSE MAPE

Output
1

Output
2

Output
3

Output
1

Output
2

Output
3

Output
1

Output
2

Output
3

Output
1

Output
2

Output
3

10-Fold (1) 0.254 0.418 0.339 13.74 20.23 10.65 1.80 4.53 1.28 0.932 1.41 0.844
10-Fold (2) 0.211 0.467 0.166 11.53 13.56 7.83 1.64 5.17 1.12 0.556 0.794 0.760
10-Fold (3) 0.287 0.456 0.373 11.76 27.31 5.22 1.48 4.75 0.98 0.971 1.11 0.734
10-Fold (4) 0.411 0.434 0.622 16.05 17.37 10.09 2.23 6.31 1.01 0.754 1.32 0.978
10-Fold (5) 0.228 0.773 0.267 14.37 24.13 5.76 2.42 8.94 0.765 0.543 0.732 0.651
10-Fold (6) 0.537 0.491 0.418 16.29 19.29 8.53 1.06 8.07 0.678 0.986 1.20 1.12
10-Fold (7) 0.243 0.565 0.467 15.81 13.91 11.51 1.12 9.12 0.743 0.640 0.876 0.793
10-Fold (8) 0.375 0.437 0.241 16.29 26.44 8.97 1.43 6.88 0.876 0.813 0.967 0.867
10-Fold (9) 0.291 0.414 0.212 18.16 29.23 6.13 2.08 7.95 0.561 0.804 1.13 0.946
10-Fold
(10) 0.243 0.473 0.356 15.27 30.89 7.38 1.51 8.37 0.441 0.587 0.663 0.331

Avg. 0.382 12.387 3.148 0.8637
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demonstrate minimal normal consistency. Estimating the
MES for an estimate of the predicted time sequence with
dynamic properties may suggest that the variance has not
been well defined. *erefore, this value will not fluctuate
around a specific mean. To further explain the variables yt
and xt, it was assumed that the regression trend was defined
as the quality prediction trend in a random step:

yt � yt−1 + ε1t (t � 1, . . . , N),

xt � xt−1 + ε2t (t � 1, . . . , N),
(17)

where ε1t and ε2t had independent distribution functions,
and the relationship between the variables yt and xt was not
justifiable.

To perform a regression analysis, we first assumed a
relationship between the two variables selected from the
seven input variables. Based on the assumption that there is a
linear relationship between the two variables, quantitative
data was collected from both variables, and the data were
plotted as points on a two-dimensional map. As shown in
Figure 8, the difference between the main and predicted
outputs is small, and the variances between them are neg-
ligible. Table 4 shows the calculated variances of ten ex-
periments. Variances indicate great independence of the
features selected by SPSS software. *erefore, using the
output quality, a small portion of the low-impact features
can be distinguished from the others.

As noted earlier, concrete strength is defined in terms of
its ingredients, weight, and specific properties. Data were
obtained under laboratory conditions based on real con-
ditions. Other factors such as data collection, mixing, and
other parameters affecting concrete strength are also

included in this section. Although the laboratory data
presented in some studies offer valuable information on this
subject, there were essential details, the absence of which
could significantly predict performance in many cases.

5. Discussion

In concrete preparation by learning-based methods, the
most crucial design issue is the lack of significant differences
between the predicted outputs and the actual output. Hence,
the R-Squared is considered as one of the most specific
criteria for comparison between methods, where y, y, and y

are the main, mean, and predicted values, respectively. *e
R-Squared is expressed as (19):

R
2
(y, y) � 1 −


n
i�1 yi − y( 

2


n
i�1 yi − y( 

2. (18)

In these experiments, different test conditions are
investigated:

(1) When SVR is used alone in estimating outputs
(Model 1).

(2) When fusion between SVRs is used in estimation
(Model 2).

(3) When the fusion between SVRs is combined with the
genetic algorithm in the analysis (Model 3).

(4) When the fusion between SVRs is combined with the
PSO algorithm in the estimation (Model 4).

(5) When the fusion between SVRs is combined with the
AIG algorithm in the estimate (Model 5).
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Figure 7: Algorithm convergence to minimum error for four random validation data with limited number of iterations.
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Figure 8: Difference between the main and predicted outputs of test step is small, and the variances between them are negligible.
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(6) When the fusion between SVRs is combined with the
modified AIG algorithm in the estimation (Model 6).

Experimental representations for five different and
random types of data are shown in Figure 9 separately for
each of the six models. *e p-value in the proposed algo-
rithm indicated a significant relationship between the
proposed algorithm’s output and regression values. For this
reason, we rounded the outputs (p< 0.05), which manifest
the significance of outputs. *e comparison with other
similar outputs and methods provides a valid justification
for rejecting the null hypothesis (H0). *is is because the test
result was not in the acceptable range of H0 and thus H0 was
not confirmed (α� 0.05) and therefore -Zα-1 is equal to -1.65.
*is meant that the confidence interval was greater than 95%
and the outputs more accurately resembled reality, as in-
dicated by the studied samples and K-equal validation. To
test the claims regarding the correlation of concrete prop-
erties, aside from selection by the genetic algorithms, SPSS
software was used to analyze the correlation factor between
the measured properties. *e results were significantly
identical and except for the fifth feature (which had a lower
correlation compared to other coefficients), features with
100% correlation were selected correctly.

However, as noted in Abrams’ law, in real weather
conditions, other factors may also affect the mixture of
substances. *is rule, which predicts concrete performance
based on a combination of water-cement mixture, indicated
a slight error for the coefficient of determination. *is could
be attributed to water interference in the hydration process
of cement, which can cause changes in the molecular
structure of cement material and thus affect the process of
achieving optimal concrete performance.

We know that concreting at a temperature of less than 5
°C slows down the hydration process, and the process of
obtaining concrete strength practically stops. As the tem-
perature of concrete decreases, its hardening and achieving
strength decreases, and at the temperature below freezing
point, the chemical process of hardening of concrete stops.
In general, at low temperatures, the rate of gain of concrete
strength decreases. Experiments were performed after
producing the concrete, which was considered for the built

concretes according to the regional conditions and the
occurrence of frost.

In the experiments, the decrease of temperature and
change of each of the outputs is considered noise, and the
algorithm’s resistance to change of each of the concrete
components is investigated. *e effect of freezing is mea-
sured, and the temperature drop is considered as the fourth
output. It was found that, among the primary materials,
changes in some of them can significantly prevent concrete
from freezing. In general, for a given degree of hydration, the
higher the water-to-cement ratio, or for an offered water-to-
cement rate, the lower the degree of hydration, and the larger
the pore volume in the hydrated cement paste. Since freezing
water settles quickly in large pores, it can be hypothesized
that the amount of freezing water for water-to-cement ratios
is higher and, in the early processing times at a given freezing
temperature, will be more. By performing the above software
tests on typical weight concretes exposed to freezing and
thawing in wet conditions, the maximum water-to-cement
ratio should be considered for tabulations, water ducts, and
guardrails, or parts thereof equal to 0.45 and equal to 0.5 for
the remaining pieces. It is clear that these water limits to
cement ratio are based on the assumption of sufficient
hydration of cement. In other words, the amount of water
that can freeze in concrete with a specific rate of water to
cement increases with decreasing temperature, and the
amount of water that freezes at a particular temperature
increases with an increasing ratio of water to cement. Based
on this, it was concluded that as the temperature decreases,
the water-to-cement rate should be considered, and the
combination of some slags should be used more sensitively.

High error, computational complexity, and uncertainty
challenges in algorithms are common problems in quality
recognition optimization methods. Table 5 presents the
analytical comparison between the former techniques and
the proposed approach. *ey also tried to predict the
compressive strength of lightweight structural concrete.

Future designs should incorporate deep learning models
that are transferable, such as transfer learning structures
[55, 56]. Optimization algorithms as well as deep learning
based on neural networks have a major impact on the clas-
sification process. Except for the optimization method

Table 4: Computed variances in 10 experiments: blue arrows indicate that the final variance between the main outputs and the forecast is
small compared to experts’ opinions. Red arrows also denote higher variance compared to experts’ opinions.

Experiments Expert 1 Expert 2 Simple
SVR

Fusion-SVRs
(linear)

Fusion- SVRs
(RBF)

Fusion- SVRs (RBF)-
AIG Fusion-SVRs-(RBF)-mAIG

1 ±1.18 ±1.67 ±3.03 ±2.27 ±2.04 ±1.29 ±0.96 ↑
2 ±1.43 ±1.28 ±4.17 ±3.83 ±2.46 ±1.13 ±0.85 ↑
3 ±1.83 ±1.65 ±4.22 ±3.47 ±2.72 ±2.57 ±1.39 ↑
4 ±2.11 ±1.68 ±5.84 ±3.13 ±2.51 ±1.21 ±0.75 ↑
5 ±1.78 ±2.07 ±5.12 ±4.73 ±3.62 ±3.16 ±2.11 ↓
6 ±1.91 ±1.69 ±3.19 ±2.48 ±2.92 ±1.94 ±1.06 ↑
7 ±1.44 ±1.73 ±4.41 ±2.36 ±2.08 ±1.37 ±0.84 ↑
8 ±2.33 ±2.27 ±5.93 ±4.27 ±3.63 ±2.71 ±1.48 ↑
9 ±1.76 ±2.44 ±5.51 ±3.26 ±2.71 ±1.28 ±1.02 ↑
10 ±1.45 ±1.61 ±4.31 ±3.44 ±2.59 ±2.42 ±1.76 ↓
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employed in the paper, some of the most representative
computational intelligence algorithms can be utilized to solve
the challenges of high-quality concrete prediction. Some
recent optimization algorithms include monarch butterfly

optimization (MBO) [57], earthworm optimization algorithm
(EWA) [58], elephant herding optimization (EHO) [59],
moth search (MS) algorithm [60], Slime mould algorithm
(SMA) [61], and Harris hawks optimization (HHO) [62].
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Figure 9: R-Squared estimation in six different models for all three outputs in concrete production and display of experiments for 5 random
types of data.

Complexity 11



6. Conclusion

Predicting the quality of high-strength concrete is a critical
issue in the concrete industry. Our investigations in this paper
showed that using an improvedmodel, including the fusion of
multiple SVR networks and the modified AIG algorithm, can
produce satisfactory outcomes in predicting 28-day com-
pressive strength. Unlike previous methods, which only work
in fabricating concrete compositions, the estimator model
utilizes a fast yet efficient model and facilitates the regression
classification process. *e research results suggest that the
degree of complexity in the sample data can be reduced to
establish a correlation in a standard pattern between the
features. Accordingly, it can be concluded that employing the
proposed method as an automated method can facilitate the
analysis of concrete data and, therefore, offers an accurate
estimation of the quality of high-strength concrete. In the
future, the authors will use several statistical criteria and
various machine learning models for further and more ex-
tensive investigation. Furthermore, the use of fusion between
neural networks (considering the challenge of uncertainty)
and support vectors can be effective in mapping input data
and extracting the appropriate pattern.
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Table 5: Comparison of the proposed algorithm to similar approaches based on used assessments.

Method Optimization
technique Learning model Dataset Results

Atici [11] - Multivariate regression analysis
and artificial neural network Collected data Optimal accuracy in regression analysis

(90%)
Rahchamani
et al. [14] GBMO ANFIS regression learner UCI and collected

data
MSEs for testing step were 1.065 to 3.16

respectively
Sadowski et al.
[21] CCA Neural networks regression

analysis Collected data MSE in the training and testing were
0.157 and 0.024 respectively

Zarandi et al [22] - Fuzzy neural network regression
analysis Collected data

Correlation factor in training and
testing steps was 90% and 96%

respectively
Chandwani et al.
[26] GA Regression analysis of neural

network Collected data MAPE for training and testing was 4%
to 19% respectively

Nikoo et al. [27] GA Multilayer neural networks
regression analysis Collected data MSE for training and testing was 0.09 to

0.813 respectively
Sadowski et al.
[47] PCA and GA Neural Networks/Self-

Organizing maps (SOM) Collected data MSE in the training and testing were
0.006 and 0.007 respectively

Behnood et al.
[48]

Multi-objective
grey wolves

Neural networks regression
analysis Collected data Correlation coefficient is 0.96

Yaman et al [49] - Self-compacting concrete using
artificial neural network Collected data R2 is 0.65 to 1

Alshihri et al.
[50] - Neural network regression

analysis Collected data MAE for training and testing was 1%
and 3% respectively.

Tsai et al. [51] PSO Cascaded neural network
regression analysis Collected data Index values were not computed

Madandoust
et al. [52] GA Regression analysis of neural

network Collected data Maximum error in the training and
testing was 9% to 13% respectively

Yeh et al. [53] - Second-order neural network
regression analysis

UCI database [54]
(103 samples)

RMSE for training and testing was 5% to
10% respectively

Proposed Modified AIG Regression fusion based on pool
of SVRs Collected data MSEs for testing step were 0.7 to 3.2
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