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(e aim of this article is to present a chaotic fruit fly algorithm (CFFA) as an optimization approach for solving engineering design
problems (EDPs). In CFFA, the fruit fly algorithm (FFA), which is recognized for its durability and efficiency in addressing
optimization problems, was paired with the chaotic local search (CLS) method, which allows for local exploitation. CFFA will be
set up to work in two phases: in the first, FFA will be used to discover an approximate solution, and in the second, chaotic local
search (CLS) will be used to locate the optimal solution. As a result, CFFA can address difficulties associated with the basic FFA
such as falling into local optima, an imbalance between exploitation and exploration, and a lack of optimum solution acquisition
(i.e., overcoming the drawback of premature convergence and increasing the local exploitation capability). (e chaotic logistic
map is employed in the CLS because it has been demonstrated to be effective in improving the quality of solutions and giving the
best performance by many studies. (e proposed algorithm is tested by the set of CEC’2005 special sessions on real parameter
optimization and many EDPs from the most recent test suite CEC’2020. (e results have demonstrated the superiority of the
proposed approach to finding the global optimal solution. Finally, CFFA′s results were compared to those of earlier research, and
statistical analysis using Friedman and Wilcoxon’s tests revealed its superiority and capacity to tackle this type of problem.

1. Introduction

(e engineering design problems (EDPs) are extremely sig-
nificant from both the manufacturing and scientific perspec-
tive, where it is a very important and challenging area,
especially in the field of engineering for getting designs that
have efficient form and are more accurate. Generally, these
problems are treated as nonlinear constrained optimization
problems (NCOPs). NCOPs are very difficult, and the problem
feasible region may be a thin subset of the search domain [1].

Traditionally, NCOPs are solved by some efficient methods
such as recursive quadratic programming, projection method,
generalized reduced gradient method, penalty method, and a
multiplier method [2]. (ese methods are not efficient since
they may only compute local optima, and it is very hard to
apply these methods to problems as its feasible region is not
convex or the objective function is not differentiable [3].

Because of the drawbacks of traditional optimization
approaches, the meta-heuristic optimization algorithm for
tackling NCOPs emerged. Meta-heuristic algorithms are
considered the best optimization algorithms, where they
have several advantages such as resilience, performance
reliability, simplicity, ease of implementation, and so on.
Meta-heuristic algorithms are divided into several cate-
gories, including:

(1) Evolutionary-based algorithms:(ese algorithms are
based on evolutionary theory.

(2) Swarm-based algorithms: (ese algorithms mimic
the social behavior and collective decision-making
of different social groups. (e reason for achieving
a specific goal in these algorithms is typically based
on bio-community intelligence and collective
action.
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(3) (e rules of natural physics have been used for the
emergence of physics-based algorithms.

(4) Algorithms influenced by human social behavior:
Recently, optimization algorithms inspired by hu-
man social behavior have been suggested in the
literature.

Table 1 contains examples of several classifications of-
fered in the literature.

Swarm intelligence-based algorithms are regarded as one
of the most essential types of meta-heuristic algorithms.
(ese algorithms emulated the behavior and features of
swarms’ systems, for which Gerardo Beni and Jing Wang
coined the term “swarm intelligence” (SI) in 1989 [62], the
notion of which is critical in computer science and artificial
intelligence. As a result, they have been dubbed swarm
intelligence algorithms (SIAs). Swarm intelligence algo-
rithms (SIAs) are connected to the study of swarms, or
colonies of social creatures, where studies of social behavior
in swarms of organisms influenced the development of many
effective optimization algorithms. (e simulation of bird
flocks, for example, resulted in the particle swarm optimi-
zation (PSO) method, while studies of ant behavior in the
construction of the ant colony optimization (ACO) algo-
rithm [62]. SIAs, on the other hand, are simple in concepts,
have a low probability to fall into local optima, and require
simple information about the optimization problem without
requiring that the objective function or the constraints are
derivable or continuous [63]. Due to the drawbacks of
traditional approaches, SIAs were commonly employed to
solve engineering design problems (EDPs).

Many SIAs are presented today to tackle complex op-
timization problems. Although they can find promising
solutions to optimization problems, they frequently become
caught in local optima when the problem is complicated and
contains several local optima. Creating hybrid SIAs has the
potential to dramatically improve this issue. Most of the
time, hybrid SIAs are more resilient and efficient than the
basic versions since they may benefit from the advantages of
different algorithms that are used in hybrid SIAs [64, 65].
Many researchers sought to design hybrid SIAs to produce
more efficient global optimization algorithms. (e most
popular hybrid SIAs are hybrid cultural-trajectory-based
search [66], hybrid of the ant colony and firefly algorithms
(HAFA) [67], hybrid harmony search-cuckoo search (HS/
CS) algorithm [68], hybrid particle swarm optimization-
genetic algorithm (PSO/GA) [69], hybrid krill herd-bioge-
ography-based optimization (KHBBO) algorithm [70], hy-
brid cat swarm optimization (CSO) [71], hybrid tissue
membrane systems (TMS) and the evolution strategy with
covariance matrix adaptation (CMA-ES) [72], hybrid
grasshopper optimization algorithm-local search (GOA/LS)
[73], krill herd-differential evolution (KHDE) [74], hybrid
grasshopper optimization algorithm-genetic algorithm
(GOA/GA) [75], hybrid bat algorithm with harmony search
(BHS) [76], etc.

Recently, hybrid SIAs have become the most widely used
method for solving EDPs such as a penalty-guided artificial
bee colony (ABC) algorithm [77], hybrid Nelder–Mead

simplex search and particle swarm optimization [78],
Gaussian quantum-behaved particle swarm optimization
[79], hybrid Lévy flight-chaotic local search-whale optimi-
zation algorithm (LF-CLS-WOA) [80], self-adaptive strat-
egy-based firefly algorithm [81], hybrid genetic algorithm-
particle swarm optimization-sequential quadratic pro-
gramming (GA-PSO-SQP) [82], sine-cosine grey wolf op-
timizer [83], and improved moth-flame optimization
algorithm (IMFO) [84]. It is now obvious that engineering
design problems are a significant problem that scholars are
focusing on to offer new hybrid methods for solving it and
determining the best solutions.

Fruit fly algorithm (FFA) is a novel SI approach based on
the foraging behaviors of fruit flies that competes with
current swarm algorithms like particle swarm optimization
(PSO). However, the FFA still has certain drawbacks, such as
its necessitating long CPU times, which are impractical from
an engineering standpoint, and limited convergence accu-
racy, which makes it easy to get stuck at a local optimal value
during the evolution process [85]. As a result, the application
of chaos theory to overcome these shortcomings is being
researched. In recent years, the chaos theory has been ap-
plied to several fields of optimization science. As a new
method of global optimization, chaos algorithms have
garnered a lot of attention. (e characteristics inherent in
chaos can enhance algorithms of optimization by avoiding
local solutions and enhancing convergence to reach a global
solution.

Many researchers [86–97] proposed merging chaos
theory and optimization algorithms to overcome these
limitations, increase solution quality, and reach the ideal
solution. For example, in [86], the chaos algorithm was
included in the evolutionary process of the fundamental FFA
to tackle the difficulties of poor convergence accuracy and
quickly relapsing into the local extremum in the funda-
mental FFA. (at is, in the case of local convergence, the
chaos algorithm was used to search for the global optimum
in the convergent area’s outer space, leap out of the local
extremum, and continue to optimize. Also, in [88], the
conventional FFA was improved by including a new pa-
rameter that was integrated by chaotic to solve global op-
timization; overall study findings reveal that FFA with
Chebyshev map outperforms FFA without Chebyshev map
in terms of global optimality reliability and algorithm
success rate. In addition, a novel version of FFA with
Gaussian mutation operator and chaotic local search
strategy (MCFFA) was proposed in [90]. To avoid premature
convergence and enhance the algorithm’s exploitative ten-
dencies, the Gaussian mutation operator was first included
in the basic FFA (MFFA). (e chaotic local search approach
was then used to improve the swarm of agents′ capacity to
search locally (CFFA). MCFFA was used to handle issues
involving benchmark functions with various properties and
feature selection. MCFFA effectively increased FFA’s per-
formance and achieves optimal classification accuracy,
according to the findings. Furthermore, chaotic fruit fly
optimization [92] was presented as a novel learning tech-
nique for early detection and effective evaluation of sepsis,
where two new mechanisms, chaotic population initiation
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and chaotic local search strategy, were added to the original
FFA. (e positive results showed that the approach devel-
oped may be a valuable diagnostic tool for clinical decision
assistance. A novel support vector machine (SVM) opti-
mization approach, on the other hand, was given in [95], that
is based on an upgraded chaotic fruit fly algorithm (FFA)

with a mutation strategy to execute SVM parameter setting
turning and feature selection simultaneously. (e chaotic
particle in the enhanced FFA initializes the fruit fly swarm
location and substitutes the distance expression for the fruit
fly to find the food source. (is strategy has been proved to
be more resilient and successful than other well-known

Table 1: Meta-heuristic algorithms classification [4].

Category Algorithm name References

Evolutionary-based algorithms [5–8]
Genetic algorithm (GA) [5, 6]

Differential evolution (DE) [7]
Evolutionary strategy (ES) [8]

Swarm-based algorithms [9–41]

Particle swarm optimization (PSO) [9–11]
Ant colony optimization (ACO) [12]

Fruit fly algorithm (FFA) [13]
Bacterial foraging (BF) [14]

Glowworm swarm optimization (GSO) [15]
Grey wolf optimizer (GWO) [16]

Whale optimization algorithm (WOA) [17]
Firefly algorithm (FA) [18]

Moth-flame optimization (MFO) [19]
Salp swarm optimization (SSA) [20]

Grasshopper optimization algorithm (Goa) [21]
Artificial bee colony algorithm (ABCA) [22]

Bat algorithm (BA) [23]
Monkey algorithm (MA) [24]

Cuckoo search algorithm (CSA) [25]
Spherical search algorithm (SSA) [26]
Social spider optimization (SSO) [27]

Marine predators algorithm (MPA) [28]
Crow search algorithm (CSA) [29]
Krill herd algorithm (KHA) [30]

Chimp optimization algorithm (COA) [31]
Squirrel search algorithm (SCA) [32]

Flower pollination algorithm (FPA) [33]
Manta ray foraging optimization (MRFO) [34]

Sailfish optimizer (SO) [35]
Emperor penguin optimizer (EPO) [36]
Spotted hyena optimizer (SHO) [37]
Slime mould algorithm (SMA) [38]
Coyote optimization algorithm [39]

Harris hawks optimization (HHO) [40]
Colony predation algorithm (CPA) [41]

Human behavior-based algorithms [42–48]

Group teaching optimization (GTO) [42]
Imperialist competitive algorithm (ICA) [43]

Teaching-learning based optimization (TLBO) [44]
League champion algorithm (LCA) [45]

Political optimizer (PO) [46]
Poor and rich optimization (PRO) [47]

Hunger games search (HGS) [48]

Physics-based algorithms [49–61]

Gravitational search algorithm (GSA) [49]
Simulated annealing (SA) [50]

Artificial electric field optimization (AEFO) [51]
Sine-cosine algorithm (SCA) [52, 53]

Magnetic optimization algorithm (MOA) [54]
Turbulent flow of water-based optimization (TFWBO) [55]

Henry gas solubility optimization (HGSO) [56]
Archimedes optimization algorithm (AOA) [57]

Fireworks algorithm (FA) [58]
Mine blast algorithm (MBA) [59]

weIghted meaN oF vectOrs (INFO) [60]
RUNge Kutta optimizer (RUN) [61]
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optimization methods, especially when it comes to tackling
medical diagnosis and credit card problems. Finally, in [97],
a new method for parameter identification of a bidirectional
inductive power transfer (BIPT) system was proposed uti-
lizing a chaotic-enhanced FFA, which used a chaotic se-
quence to improve the original FFA′s global optimization
capabilities. Simulations demonstrated that the suggested
approach is efficient for measuring noise and changes in
operating conditions, making it ideal for practical use.

From the above, it is clear that introducing chaos to
improve FFA has received wide attention from many re-
searchers. From this motivation, this paper proposed a
chaotic fruit fly algorithm (CFFA). CFFA combines the fruit
fly algorithm (FFA) with a chaotic local search (CLS)
method to expedite optimum seeking and find the optimal
solution. In addition, combining FFA global search and
procedures of CLS offers the benefits of both methods of
optimization, while compensating for their disadvantages to
ensure the proposed algorithm’s robustness. (e main
contributions to this paper are:

(1) For solving EDPs, a new algorithm called chaotic
fruit fly algorithm (CFFA) is presented and tested.

(2) Demonstrating that combining the fruit fly algo-
rithm (FFA) with a chaotic local search (CLS)
strategy in CFFA accelerates optimum seeking and
finds the EDPs’ best solutions.

(3) Testing the robustness and reliability of CFFA and
the ability for finding global solutions by using the
test suite (CEC’2005) and many EDPs from the most
recent test suite (CEC’2020).

(4) Validating by the numerical analysis results that the
proposed algorithm has high performance and prove
that statistically.

(e following is how this paper is structured: the for-
mulation of the nonlinear constrained optimization problem
is discussed in Section 2. (e proposed methodology is
presented in Section 3. (e computational experiment is
shown in Section 4. Finally, the conclusion is provided in
Section 5.

2. Nonlinear Constrained
Optimization Problem

Mathematically, the generic nonlinear constrained optimi-
zation problem (NCOP) is expressed as:

Minimize/maximize: f(x).
Subject to:

gj ≤ 0 for j � 1, . . . , m,

he ≤ 0 for e � 1, . . . , l,
(1)

where f, g1, . . . , gj, h1, . . . , he are functions defined onRn, x
is a subset of Rn, and is a vector of n components x1, . . . , xn.
(e above problem must be solved for the values of the
variables x1, . . . , xn that satisfy the restrictions andminimize
or maximize the function f. (e function f is the objective
function or criterion function. An unconstrained problem is

one in which there are no constraints. If there are con-
straints, the problem is called a constrained problem, and
each of the constraints gj ≤ 0 ∀ j � 1, . . . , m is called an
inequality constraint, and each of the constraints
he ≤ 0 ∀ e � 1, . . . , l is called equality constrain [98].

At solving the optimization problem, we are looking for
a global solution and not stock on a local solution. An
optimal solution (either maximum or minimum) within a
neighboring set of candidate solutions is referred to as a local
solution of an optimization problem. A global optimum
solution is the best solution among all feasible solutions, not
simply those within a neighboring set of candidate solutions
[98]. Definition 1 introduces the difference between a local
solution and a global solution. Figure 1 illustrates this
definition.

Definition 1. Let x � (x1, x2, . . . , xn) be a feasible solution
to a minimization problem with objective function f(x)

[98]. (en, x is:

(i) A global minimum if f(X)≤f(Y) for every feasible
point y � (y1, y2, . . . , yn).

(ii) A local minimum if f(X)≤f(Y) for all feasible
points y � (y1, y2, . . . , yn) sufficiently close to x.

3. The Proposed Methodology

In this section, we provide a brief overview of both the fruit
fly algorithm (FFA) and the chaos theory. (e proposed
algorithm is then thoroughly described.

3.1. Fruit fly Algorithm. (e FFA [99] is a fruit fly-inspired
swarm-based intelligence approach that mimics the fruit
fly′s foraging behavior. Fruit flies use their keen sense of
smell and eyesight to locate food sources. During foraging,
fruit flies can detect the aromas of food sources from a long
distance away, and swarms fly towards the food source with
the highest concentration of the scent.When the fruit fly gets
near enough to the food source, it may use its better vision to
pinpoint the exact position of the food supply.

(e procedure of foraging is emulated in the FFA by
exploring the solution space iteratively.(e search technique
is divided into two parts: smell-based search and vision-
based search. (e FFA technique may be characterized as
follows, according to the fruit fly′s characteristics:

Step 1:(e algorithm′s parameters are set, as well as the
swarms′ center position.
Step 2: Smell-based search.

Step 2.1: Determine a suitable position for the food
supply towards the center of the swarms at random for
each fruit fly.
Step 2.2: (e concentration of smell at each site of the
fruit fly is determined.

Step 3: Search-based vision.

Step 3.1: With the greatest concentration of smell, the
most likely location is determined.
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Step 3.2:(e fruit fly swarms flock to this location, and
the location of the swarm centers is updated.

Step 4: (e algorithm is terminated if the stopping
condition is fulfilled; otherwise, repeat steps 2 and 3.

3.2. Chaos 0eory. By employing extremely unpredictable
chaotical sequences, chaos theory (CS) enhances swarm
intelligence algorithms [100] and increases convergence and
variety of solutions. CS is seen as irregular behavior in
nonlinear systems. (ese maps are meant to represent
particles moving in a restricted range of nonlinear dynamic
systems, with no knowledge of how the particles move.

To improve solution quality, many researchers proposed
combining the CS and optimization algorithms, such as
hybrid chaos-PSO [101, 102], chaotic genetic algorithm
[103], the combined evolutionary algorithm with chaos
[104], chaotic differential bee colony optimization algorithm
[105], chaotic DE algorithm [106], chaotic WOA [107],
chaotic artificial bee colony (ABC) [108], chaotic harmony
search algorithm [109], and chaotic artificial neural net-
works [110]. (ere are many well-known chaotic maps, such
as the sinusoidal map, Chebyshev map, singer map, tent
map, sine map, circle map, Gauss map, logistic map, to be
found in the literature [94].

3.3. Chaotic Fruit fly Algorithm. In this section, the chaotic
fruit fly algorithm (CFFA) is proposed, which is an inte-
gration between the fruit fly algorithm (FFA) and chaos local
search (CLS) strategy. (e suggested approach is divided
into two parts. In the first, FFA is used to discover an ap-
proximate solution.(en, in the second stage, CLS is used to
speed up convergence, increase solution quality, and reach
the optimal solution. (e description of the essential idea of
the suggested method is as follows:

3.3.1. Phase I: FFA.

Step 1 (Initialization). Define the fly group population
size i � 1, . . . , N, the iteration termination condition
Tmax, and the starting fruit fly swarm center position
(Xaxis, Yaxis).
Step 2 (Determination of individual locations). (e
position of each fruit fly (Xi, Yi) is assigned at random
as:

Xi � Xaxis + RandomValue,

Yi � Yaxis + RandomValue.
(2)

Step 3. (e judgment value of smell concentration Si is
set as the reciprocal of the distance between the fruit fly
and the origin (Disti):

Si �
1

Disti

�
1

�������

X
2
i + Y

2
i

 ,

(3)

Step 4 (Repairing infeasible solutions). A repair ap-
proach [111] will be used to deal with the constraint
violation at each generation and before the solutions
Si∀i � 1, . . . , N are assessed, which will segregate and
repair any infeasible solution in the population. (e
proposed algorithm′s repairing procedure provides a
new feasible solution y instead of an infeasible one q on
a segment defined by two points: an initial feasible
reference point R and any infeasible solution q. A user-
specified parameter μ ∈ [0, 1] can be used to expand
this segment equally on both sides. (erefore, the new
feasible solution is produced as:

y1 � cq +(1 − c)R. (4)

If y1 is infeasible, the feasible individual is produced by:

y2 � cR +(1 − c)q. (5)

where c � (1 + 2μ)δ − μ and δ ∈ [0, 1] is a random
number. Figure 2 depicts a schematic representation of
a probable sample location for the produced solution.
Step 5 (Evaluation). (e judgment function of smell
concentration (fitness function) of the corresponding
position is determined by substituting Si in the ob-
jective function as:

Smelli � function Si( . (6)

Step 6 (Determine the best). Calculate the minimal
concentration of smell and its corresponding location
as follows:

[best Smell, best Index] � min(Smell) ∀i. (7)

Step 7(Update swarm center location). (e swarm
center position is replaced with the minimum smell
location:

Smell best � best Smell,

Xaxis � X(best Index),

Yaxis � Y(best Index).

(8)

Step 8. Do optimization by repeating Steps 2–6 to
determine if the current smell concentration is better

Local minimum
Global minimum

Figure 1: Global minimum and local minimum.
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than the previous smell concentration; if so, go to Step
7. Otherwise, proceed to Step 2 and iterate again.
Step 9. If the stopping criteria are met, the proposed
algorithm is stopped. Otherwise, do optimization, and
repeat Steps 2 to 8.

For either of the following two conditions, the proposed
algorithm is stopped:

(i) Reaching the full predetermined number of gener-
ations Tmax.

(ii) When the individuals of the population converge,
i.e., when solutions in the population are identical.

3.3.2. Phase II: Chaotic Local Search. Optimization by using
the above-formulated FFA yields an approximate solution
x∗ � (x∗1 , x∗2 , . . . , x∗n ). To discover the optimal solution,
chaotic local search (CLS) can disturb and explore the local
region of the solution x∗. (e following is a more extensive
description of CLS:

Step 1 (Determine the boundary range of CLS). (e
range of CLS [ad, bd], d � 1, 2, . . . , n for x∗ is deter-
mined by x∗d − ε< ad, x∗d + ε> bd ∀d � 1, . . . , n,

where ε is a specified radius of CLS and set m � 1,

where m is the CLS iterations m � 1, 2, . . . , M.
Step 2. Create chaotic variables: A chaotic number σm

is generated by the logistic map as:

σm
� 4 × σm− 1

× 1 − σm− 1
 , σ0 ∈ (0, 1), σ0 ∉ 0, 0.25, 0.5, 0.75, 1{ }. (9)

According to the findings in [94], the logistic map
increases the quality of solutions and delivers the best
performance. (erefore, it was employed in this study.
Step 3. Generate a new solution: By using the chaos
variable σm and the variance range [ad, bd], the new
solution is generated as:

x
∗
d( 

m
� ad + bd − ad( σm ∀d � 1, . . . , n. (10)

Step 4. Check feasibility: If the new solution (x∗)m is
feasible, update the approximate solution x∗ as follows:
if f(x∗)m <f(x∗) , then set x∗ � (x∗)m, otherwise, set
m � m + 1 and go to Step 2.
Step 5. Stopping CLS: If m � M, stop the CLS and
put out x∗ as the optimal solution. Otherwise, go to
Step 2. Figure 3 depicts the suggested algorithm’s
flowchart.

4. Computational Experiment

In this section, CFFA is evaluated by the set of CEC’2005
special sessions on real parameter optimization to evaluate the
performance of the proposed method for global optimization
[112]. In addition, the CFFA′s applicability in real-world ap-
plications is evaluated in this section using three constrained
engineering design problems from the most current test suite
CEC’2020 [113]. (ese problems are common challenges that
have been explored by other researchers. (e suggested ap-
proach is compared to current meta-heuristic algorithms such
as simulated annealing (SA) [114], continuous genetic algo-
rithm (CGA) [115], grey wolf optimizer (GWO) [116], moth-
flame optimization (MFO) [19], whale optimization algorithm
(WOA) [117], Lévy-flight moth-flame optimization (LMFO)
[118], water-cycle moth-flame optimization (WCMFO) [119],
chimp optimization algorithm (ChOA) [31], arithmetic

Reference point
(R)

Infeasible point
(q)

μ.d d μ.d

Figure 2: Probable sample location for the produced solution by repairing infeasible solutions.
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optimization algorithm (AOA) [120], sine-cosine moth-flame
optimization (SMFO) [121], and improved moth-flame opti-
mization (IMFO) [122].

(e suggested method was coded in MATLAB (R2012b)
and tested on a PC with an Intel(R) Core(TM) i7-6600U
processor running at 2.60GHz, 16GB of RAM, and a
Windows 10 operating system. Table 2 shows the parameter
settings of comparing algorithms as they were in their
original articles. (e algorithms were running 20 times with
the population size (N) 20 and maximum iterations Tmax �

(D × 104)/N to ensure a fair comparison. (e nonpara-
metric Friedman test, on the other hand, is used to analyze
the results statistically. Also, the Wilcoxon signed-rank test
is employed to ensure that valid comparisons between all
algorithms are made.

4.1.ComputationalExperiment forCEC’2005. In this part, 25
unconstrained test problems of dimension 10 from the
CEC’2005 special session on real parameter optimization are
used to evaluate CFFA. (e following are the specifics of
these functions:

(i) 5 unimodal functions:

F1 : Shifted sphere, F2 : Shifted Schwefel’s, F3 :
Shifted rotated high conditioned elliptic, F4 :
Shifted Schwefel’s with noise in fitness, and F5 :
Schwefel’s with global optimum on bounds.

(ii) 20 multimodal functions:

7 basic functions ⟶ F6 : Shifted Rosenbrock’s,
F7 : Shifted rotated Griewank without bounds, F8 :
Shifted rotated Ackley’s with global optimum on
bounds, F9 : Shifted Rastrigin’s, F10 : Shifted rotated
Rastrigin’s, F11 : Shifted rotated Weierstrass, and
F12 : Schwefel’s.
2 expanded functions ⟶ F13 : Expanded ex-
tended Griewank’s plus Rosenbrock’s (F8F2) and
F14 : Shifted rotated expanded Scaffers F6.
11 hybrid functions. Each one (F15 to F25) is created
by combining ten of the fourteen preceding
functions (different in each case).

All functions are displaced to guarantee that their op-
timum is never discovered in the search space′s center.
Furthermore, the optima cannot be identified inside the
initialization range in two functions, and the search scope is
not limited.

(ese test functions are solved by PSO [123], IPOP-
CMA-ES [124], CHC [125], SSGA [126], SS-BLX [127], SS-
Arit [128], DE-Bin [129], DE-Exp [129], SaDE [130], and the
proposed algorithm CFFA. For each test function, all of the
algorithms were performed 50 times. Each run ends when
the obtained error is less than 10−8 or at the maximum
number of evaluations (10−5), whichever comes first. Table 3
presents a comparison of the average error achieved by
CFFA and 9 continuous optimization techniques. Table 3
confirms that, on average, CFFA produces better solutions
than all nine continuous optimization techniques.

Start

Initialization

DEtermine the distance from the fruit fly to the
origin: (Dist)

Set the smell concentration judgment value: Si

Repairing infeasible solutions Si i = 1,...,N

Evaluation: Smelli = function (Si)

Determine the best solution

Exit condition?
Yes

Determinie the range of CLS

Generate chaotic numbers

Generate new solution

Is the new
solution
feasible?

Stopping
CLS?

No

No

YesUpdate the
Approximate
solution x*

Yes

End Optimal solution

Approximate
solution x*

No
Replace the swarm center location by

the minimun smell location
Xaxix = X (bestIndex)
Yaxix = Y (bestIndex)

Individual location assignment:
Xi = Xaxix + Random Value
Yi = Yaxix + Random Value

Figure 3: (e suggested algorithm′s flowchart.
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4.1.1. 0e Nonparametric Friedman Test for CEC′2005
Results. (e Friedman test is used to statistically rank the
significance of algorithms [131]. Table 4 summarizes the
outcomes obtained by this test. According to this statistical
analysis, the CFFA ranks top, and because the obtained P

value is less than 0.05 (α � 0.000), there are substantial
variations in the performances of the CFFA and the other
algorithms tested. Figure 4 includes the chart that depicts the
ranking of the CFFA and competitor algorithms. (e
smallest bar on the graph represents the best algorithm,
while the largest represents the worst. (e chart reveals that
the CFFA obtained the shortest bar with a mean rank equal
to 2.12, while PSO obtained the largest bar with a mean rank
equal to 7.76. As a result, the chart reveals that the CFFA
beats other algorithms by obtaining the first rank (shortest
bar).

4.1.2. 0e Nonparametric Wilcoxon Signed-Rank Test for
CEC’2005 Results. To demonstrate the substantial differ-
ences between the CFFA and the other algorithms, the
Wilcoxon signed-rank test is performed [132]. (e Wil-
coxon signed-rank test results are shown in Table 5. R+ is the
sum of positive ranks, whereas R− is the sum of negative
ranks. Table 5 shows that CFFA beats other algorithms by
achieving R+ values larger than R− values in all compari-
sons. As a consequence, we may conclude that the suggested
CFFA is a significant algorithm that outperforms the others.

4.2. Computational Experiment for Engineering Design
Problems. (e proposed method and rival algorithms
compete in this evaluation to solve three different problems:
a gas transmission compressor design problem, a three-bar

Table 2: (e CFFA and other competing algorithms′ parameter settings.

Parameter Settings for Algorithms
SA T0 � 10.

CGA IPMut � 0.9, PXcross � 0.5.

GWO (e parameter a is linearly decreased from 2 to 0.
MFO b� 1, a is decreased linearly from −1 to −2.
WOA α variable decreases linearly from 2 to 0, b � 1.
LMFO β � 1.5, µ and v are normal distributions, Γ is the gamma function
WCMFO (e number of rivers and sea � 4.
ChOA f decreases linearly from 2 to 0.
AOA µ� 0.5, α� 5.
SMFO r4 � random number between interval (0, 1).
I-MFO δ1 � 2.02, δ2 � 1.08, NF � random number between 1 and D.
CFFA (e specified radius ε is 0.1, σ0 � 0.001, and M � 100

Table 3: (e average error of the 25 CEC’2005 benchmark functions as determined by CFFA and comparing algorithms.

Function PSO IPOP-CMA-ES CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp SaDE CFFA
F1 1.234E-4 0 2.464 8.420E-9 34.02 1.064 7.716E-9 8.260E-9 8.416E-9 0
F2 0.02595 0 0.0118 8.719E-5 1.730 5.282 8.342E-9 8.181E-9 8.208E-9 0
F3 51740 0 269900 79480 184400 253500 42.33 99.35 6560 20.8036
F4 2.488 2932 91.9 2.585E-3 6.228 5.755 7.686E-9 8.350E-9 8.087E-9 0
F5 409.5 8.104E-10 264.1 134.3 2.185 14.43 8.608E-9 8.514E-9 8.640E-9 2.600E-5
F6 731 0 1416000 6.171 114.5 494.5 7.956E-9 8.391E-9 0.01612 0.635
F7 26.78 1267 1269 1271 1966 1908 1266 1265 1263 4.831
F8 20.43 20.01 20.34 20.37 20.35 20.36 20.33 20.38 20.32 14.54
F9 14.38 28.41 5.886 7.286E-9 4.195 5.960 4.546 8.151E-9 8.330E-9 0.000
F10 14.04 23.27 7.123 17.12 12.39 21.79 12.28 11.18 15.48 4.541
F11 5.590 1.343 1.599 3.255 2.929 2.858 2.434 2.067 6.796 3.094
F12 636.2 212.7 706.2 279.4 150.6 241.1 106.1 63.09 56.34 5.732
F13 1.503 1.134 82.97 67.13 32.45 54.79 1.573 64.03 70.70 1.052
F14 3.304 3.775 2.073 2.264 2.796 2.970 3.073 3.158 3.415 2.501
F15 339.8 193.4 275.1 292 113.6 128.8 372.2 294 84.23 0
F16 133.3 117 97.29 105.3 104.1 113.4 111.7 112.5 122.7 83.85
F17 149.7 338.9 104.5 118.5 118.3 127.9 142.1 131.2 138.7 107.3
F18 851.2 557 879.9 806.3 766.8 657.8 509.7 448.2 532 479.2
F19 849.7 529.2 879.8 889.9 755.5 701 501.2 434.1 519.5 458.1
F20 850.9 526.4 896 889.3 746.3 641.1 492.8 418.8 476.7 335.1
F21 913.8 442 815.8 852.2 485.1 500.5 524 542 514 394.5
F22 807.1 764.7 774.2 751.9 682.8 694.1 771.5 772 765.5 632.7
F23 1028 853.9 1075 1004 574 582.8 633.7 582.4 650.9 594.7
F24 412 610.1 295900 236 251.3 201.1 206 202 200 210.5
F25 509.9 1818 1764 1747 1794 1804 1744 1742 1738 274.3
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truss design problem, and a tension/compression spring
design problem.

(1) P1: Design of gas transmission compressor problem.
(e basic purpose of the gas transmission compressor design
challenge is to minimize the objective function utilizing four
design variables which are length between compressor
stations L � x1, compression ratio that denotes the inlet
pressure to the compressor r � x2, and inner diameter of the
pipe D � x3. Figure 5 and (11) depict and formulate this
problem.

Minf(x) � 8.61 × 105x0.5
1 x2x

−2/3
3 x

−0.5
4 + 3.69 × 104x3 +

7.72 × 108x0.219
2

x1
−
765.43 × 106

x1
,

Subject to: x4x
−2
2 + x

−2
2 − 1≤ 0, 20≤ x1 ≤ 50, 1≤x2 ≤ 10, 20≤x3 ≤ 45, 0.1≤ x4 ≤ 60.

(11)

(2) P2: 0ree-bar truss problem. (e three-bar truss
design is an engineering optimization problem to evaluate
the optimal cross-sectional areas A1 � A3 � x1 and A2 � x2
such that the volume of the statically loaded truss structure
f(x) is minimized while stress constraints σ are taken into

consideration. (e mathematical model of this problem is
formulated using three constraints and two variables. Fig-
ure 6 and (12) show the formulation and schematic of this
problem.

Minf(x) � H x2 + 2
�
2

√
x1( ,

Subject to:
x2

2x1x2 +
�
2

√
x
2
1

P − σ ≤ 0,
x2 +

�
2

√
x1

2x1x2 +
�
2

√
x
2
1

P − σ ≤ 0,
1

x1 +
�
2

√
x2

P − σ ≤ 0,

H � 100cm, P �
2KN

cm
2 , σ �

2KN

cm
2 , 0≤ x1, x2 ≤ 1.

(12)

(3) P3: Tension/compression spring design problem. (e
tension/compression spring design challenge′s purpose is to
lower the tension/compression spring′s weight by consid-
ering three variables and four constraints. Wire diameter

(d � x1), mean coil diameter (D � x2), and the
number of active coils (N � x3) are the variables (as indi-
cated in Figure 7). (13) describes the problem and its
constraints.

Table 4: Friedman test results for the 25 CEC′2005 benchmark
functions.

Test Statistics
N 25
Chi-square 66.126
df 9
Asymp. Sig. 0.000

Ranks
Algorithm Mean rank
PSO 7.76
IPOP-CMA-ES 5.36
CHC 7.20
SSGA 6.60
SS-BLX 5.80
SS-Arit 6.40
DE-Bin 4.60
DE-Exp 4.28
SaDE 4.88
CFFA 2.12
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Table 5: (e results of Wilcoxon′s signed-rank test for the 25 CEC′2005 benchmark functions.

Test Statistics Ranks
N Mean Rank Sum of Ranks

SaDE – CFFA R− 3a 7.00 21.00 a. SaDE<CFFA
Z −3.807ab R+ 22b 13.82 304.00 b. SaDE>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0c c. SaDE�CFFA
ab. Based on negative ranks. Total 25
DE-Exp - CFFA R− 7d 10.29 72.00 d. DE-Exp<CFFA
Z −2.435ab R+ 18e 14.06 253.00 e. DE-Exp>CFFA
Asymp. Sig. (2-Tailed) 0.015 Ties 0f f. DE-Exp�CFFA
ab. Based on negative ranks. Total 25
DE-Bin - CFFA R− 4g 7.00 28.00 g. DE-Bin<CFFA
Z −3.619ab R+ 21h 14.14 h. DE-Bin>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0i i. DE-Bin�CFFA
ab. Based on negative ranks. Total 25
SS-Arit - CFFA R− 3j 6.00 18.00 j. SS-Arit<CFFA
Z −3.888ab R+ 22k 13.95 307.00 k. SS-Arit>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0l l. SS-Arit�CFFA
ab. Based on negative ranks. Total 25
SS-BLX - CFFA R− 2m 6.00 12.00 m. SS-BLX<CFFA
Z −4.049ab R+ 23n 13.61 313.00 n. SS-BLX>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 00 o. SS-BLX � CFFA
ab. Based on negative ranks. Total 25
SSGA - CFFA R− 1p 6.00 6.00 p. SSGA<CFFA
Z −4.211ab R+ 24q 13.29 319.00 q. SSGA>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0r r. SSGA � CFFA
ab. Based on negative ranks. Total 25
CHC - CFFA R− 3s 3.67 11.00 s. CHC<CFFA
Z −4.076ab R+ 22t 14.27 314.00 t. CHC>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0u u. CHC � CFFA
ab. Based on negative ranks. Total 25
IPOP-CMA-ES - CFFA R− 4v 4.25 17.00 v. IPOP-CMA-ES<CFFA
Z −3.680ab R+ 19w 13.63 259.00 w. IPOP-CMA-ES>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 2x x. IPOP-CMA-ES�CFFA
ab. Based on negative ranks. Total 25
PSO - CFFA R− 0y 0.00 0.00 y. PSO<CFFA
Z −4.372ab R+ 25z 13.00 325.00 z. PSO>CFFA
Asymp. Sig. (2-Tailed) 0.000 Ties 0aa aa. PSO � CFFA
ab. Based on negative ranks. Total 25
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Figure 4: (e Friedman test′s mean -ranking on CFFA and its 9 competitors.
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Subject to: 1 −
x
3
2x3

71785x
4
1
≤ 0

4x
2
2 − x1x2

12566 x
3
1x2 − x

4
1 

+
1

5108x
2
1

− 1≤ 01 −
140.45x1

x
2
2x3
≤ 0,

x1 + x2

1.5
− 1≤ 0,

0.05≤ x1 ≤ 2, 0.25≤x2 ≤ 1.3, 2≤x3 ≤ 15.

(13)

4.2.1. Engineering Design Problems Results. (e suggested
CFFA and comparative algorithms are compared. (e re-
sults of these experiments are summarized in Table 6, which
demonstrates that the CFFA technique outperforms other

algorithms in obtaining a good approximation to the best
values for low-weight variables.

Figures 8–10 also illustrate the convergence curves of the
best function values obtained by CFFA before and after CLS
for the gas transmission compressor design problem, the
three-bar truss design problem, and the tension/compres-
sion spring design problem, respectively. Figures 8–10 show

••• •••

r (X2): Compression ratio denoting inlet
Pressure to the compressor

D (X3): Pipe inside diameter

L (X1): Length between compressor stations

Compressor
station

Compressor
station

Figure 5: Gas transmission compressor problem design.

H

H H

P

A1

A2

A1 = A3

Figure 6: (ree-bar truss problem design.

d

N

D

Figure 7: Design of tension/compression spring problem.
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Table 6: Results of the engineering design problems.

Algorithms
Gas transmission compressor: Tmax � 2000 (ree-bar truss problem:

Tmax � 1000 Tension/compression spring: Tmax � 1500

Optimal values Optimal
weight

Optimal values Optimal
weight

Optimal values Optimal
weightx1 x2 x3 x4 x1 x2 d D N

SA 46.76 1.62 25.79 0.55 4390311 0.768630 0.474232 264.82456 0.075935 0.993094 3.879891 0.033670
CGA 49.97 20.01 31.47 49.83 17350230 0.792428 0.397752 263.90770 0.071031 1.019975 1.726076 0.019749
GWO 20.00 7.81 20.00 60.00 2964974 0.787771 0.410872 263.89619 0.051231 0.345699 11.970135 0.012676
MFO 50.00 1.18 24.57 0.39 2964902 0.789186 0.406806 263.89603 0.053064 0.390718 9.542437 0.012699
WOA 50.00 1.18 24.86 0.39 2965002 0.787713 0.410977 263.89653 0.050451 0.327675 13.219341 0.012694
LMFO 49.46 1.18 24.64 0.39 2965456 0.791713 0.399909 263.92114 0.050000 0.317154 14.107156 0.012771
WCMFO 50.00 1.18 24.61 0.39 2964897 0.788472 0.408822 263.89589 0.051509 0.352411 11.545969 0.012666
ChOA 50.00 1.19 24.24 0.41 2966828 0.787802 0.410724 263.89653 0.051069 0.341746 12.251078 0.012702
AOA 50.00 1.23 20.00 0.51 3014615 0.792789 0.396906 263.92526 0.050000 0.310475 15.000000 0.013195
SMFO 23.66 1.09 23.66 0.19 3052254 0.792044 0.398859 263.90973 0.050000 0.314692 14.696505 0.013136
I-MFO 50.00 1.18 24.60 0.39 2964896 0.788792 0.407919 263.89585 0.051710 0.357217 11.259785 0.012665
FFA 49.8660 1.1832 23.5344 0.3999 2966272 0.779348 0.435289 263.96190 0.0538558 0.405526 10.106720 0.014240
CFFA 49.9999 1.1782 24.5936 0.3882 2964895 0.788661 0.408286 263.89584 0.051813 0.359726 11.114753 0.012665

x 106

x 106
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Figure 8: CFFA′s convergence curve of gas transmission compressor design problem before and after CLS.
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Figure 9: CFFA′s convergence curve of the three-bar truss design problem before and after CLS.
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how the basic FFA (before CLS/blue line) stuck in the local
minimum for a long time. Figures, on the other hand, show
how CLS disturbs and explore the local region of the ap-
proximate solution obtained by FFA and how it accelerates
convergence, enhances solution quality, and finds the op-
timal solution (after CLS/red line). So, we can conclude that
the convergence curves showed the importance of the in-
troduction of the chaotic local search (CLS) on fruit fly
algorithm (FFA) which improves the FFA results of FFA and
help it to exit from the local optimal solution (blue line) and
access to the globally optimal solution (red line).

(1) 0e nonparametric (Friedman & Wilcoxon signed-rank)
tests for engineering design problems results. (e findings of
the Friedman test for engineering design problems are
displayed in Table 7. (e CFFA ranks top in this statistical
study, and because the calculated p -value is less than 0.05
(α � 0.001), there are significant differences between the
CFFA and the other comparing algorithms. Figure 11 also
shows a chart that shows the CFFA and rival algorithms’
rankings. As previously stated, the best algorithm is rep-
resented by the shortest bar on the graph, while the poorest
is represented by the biggest bar. (e CFFA has the smallest
bar, with a mean rank of 1.17, while SA has the largest bar,
with a mean rank of 11.67.(e basic FFA, on the other hand,
obtains the 10th rank among all algorithms. As a conse-
quence, the chart shows that the CFFA outperforms other
algorithms by having the first rank (shortest bar).

(e Wilcoxon signed-rank test findings for engineering
design problems, on the other hand, are presented in Table 8. In
all comparisons, CFFA outperforms other algorithms, as
shown in Table 8, by reaching R+ values greater than R− values.
We can see that the statistical results of engineering design
problems do not differ from the results of problems CEC’2005,
as the presented method CFFA outperformed the rest of the
other algorithms. As a consequence, we may conclude that the
suggestedCEGA is a significant algorithm that outperforms the
others in the computational experiment.

4.3. Discussions. Table 3 displayed the average error for all
algorithms for the CEC′2005 benchmark functions, whereas
Table 6 showed the best solution for all algorithms for the
engineering design issues. Tables 3 and 6 indicated that
CFFA beat other algorithms in terms of producing better
results. Statistically, the Fridman test, as shown in Tables 4
and 7, demonstrated that the Asymp. Sig. (P value) is less
than 0.05, suggesting that there are differences in the results
obtained by all algorithms. Furthermore, as demonstrated in
Tables 4 and 7 and Figures 4 and 11, CFFA beat the other
algorithms by obtaining the lower mean rank. Tables 5 and 8,
on the other hand, presented the Wilcoxon signed-rank test
findings to investigate the major differences between the
comparison methods.(ey proved that CFFA outperformed
other algorithms by achievingmore positive rank values (R+)
than negative rank values (R−) in each of CEC’2005
benchmark functions and engineering design problems. (e
convergence curves also showed the importance of the
proposed method, as the introduction of the chaotic local
search (CLS) on fruit fly algorithm (FFA) proved its im-
portance and the ability of the CLS to improve the results of

500 1000 15000
Iteration

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

Fu
nc

tio
n 

va
lu

es

FFA
CLS

Figure 10: CFFA’s convergence curve of tension/compression spring design problem before and after CLS.

Table 7: Friedman test′ results for the engineering design problems.

Test Statistics
N 3
Chi-square 31.25
df 11
Asymp. Sig. 0.001

Ranks
Method Mean rank Method Mean rank
SA 12.67 CGA 11.00
GWO 4.67 MFO 4.67
WOA 5.83 LMFO 8.33
WCMFO 3.00 ChOA 7.50
AOA 10.33 SMFO 9.67
I-MFO 1.83 FFA 10.33
CFFA 1.17

Complexity 13



Mean rank

SA FF
A

AO
A

CG
A

M
FO

CF
FA

W
O

A

G
W

O

Ch
O

A

SM
FO

LM
FO

I-
M

FO

W
CM

FO

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00

Figure 11: (e Friedman test′s mean-ranking on CFFA and its 11 competitors.

Table 8: (e results of Wilcoxon′s signed-rank test for the engineering design problems.

Test statistics Ranks
N Mean rank Sum of ranks

SA - CFFA R− 0a 0.00 0.00 a. SA<CFFA
Z −1.604ak R+ 3b 2.00 6.00 b. SA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0c c. SA � CFFA
ak. Based on negative ranks Total 3
CGA - CFFA R− 0d 0.00 0.00 d. CGA<CFFA
Z −1.604ak R+ 3e 2.00 6.00 e. CGA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0f f. CGA � CFFA
ak. Based on negative ranks Total 3
GWO - CFFA R− 0g 0.00 0.00 g. GWO<CFFA
Z −1.604ak R+ 3h 2.00 6.00 h. GWO>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0i i. GWO�CFFA
ak. Based on negative ranks Total 3
MFO - CFFA R− 0j 0.00 0.00 j. MFO<CFFA
Z −1.604ak R+ 3k 2.00 6.00
Asymp. Sig. (2-Tailed) 0.109 Ties 0l l. MFO�CFFA
ak. Based on negative ranks Total 3
WOA - CFFA R− 0m 0.00 0.00 m. WOA<CFFA
Z −1.604ak R+ 3n 2.00 6.00 n. WOA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0° o. WOA � CFFA
ak. Based on negative ranks Total 3
LMFO - CFFA R− 0p 0.00 0.00 p. LMFO<CFFA
Z −1.604ak R+ 3q 2.00 6.00 q. LMFO>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0r r. LMFO�CFFA
ak. Based on negative ranks Total 3
WCMFO - CFFA R− 0s 0.00 0.00 s. WCMFO<CFFA
Z −1.604ak R+ 3t 2.00 6.00 t. WCMFO>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0u u. WCMFO � CFFA
ak. Based on negative ranks Total 3
ChOA - CFFA R− 0v 0.00 0.00 v. ChOA<CFFA
Z −1.604ak R+ 3w 2.00 6.00 w. ChOA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties x. ChOA�CFFA
ak. Based on negative ranks Total 3
AOA - CFFA R− 0y 0.00 0.00 y. AOA<CFFA
Z −1.604ak R+ 3z 2.00 6.00 z. AOA>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0aa aa. AOA�CFFA
ak. Based on negative ranks Total 3
SMFO - CFFA R− 0ab 0.00 0.00 ab. SMFO<CFFA
Z −1.604ak R+ 3ac 2.00 6.00 ac. SMFO>CFFA
Asymp. Sig. (2-Tailed) 0.109 Ties 0ad ad. SMFO � CFFA
ak. Based on negative ranks Total 3
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FFA and help it to exit from the local optimal solution (blue
line) and access to the globally optimal solution (red line).

From the above, CFFA showed several advantages,
which we mention as follows:

(i) CFFA is a versatile and adaptable strategy for
solving a broad variety of optimization issues.

(ii) Due to the combination of the advantages of the
CLS and FFA, CFFA has a good solution quality.

(iii) Unlike traditional approaches, CFFA searches
across a population of points to find the globally
optimal solution.

(iv) Because CFFA only employs objective function
information, it can handle any realistic optimiza-
tion issue, including noncontinues, nonsmooth,
and nondifferentiable functions.

(v) Computational trials have demonstrated the su-
periority of CFFA above those published in the
literature where it outperforms other comparison
approaches substantially.

(vi) (e importance of the CFFA findings was dem-
onstrated using Wilcoxon and Friedman tests.

(vii) Finally, the results of the engineering design
problems show that the proposed CFFA is suitable
for addressing real-world issues such as problems of
cost-effective load transfer, resource allocation,
wind farm turbine optimization, unit commitment,
and real-time applications.

Finally, without prejudice, the proposed technique
CFFA, like previous meta-heuristics algorithms, has the
potential drawback of not ensuring an increase in computing
speed or accuracy when addressing any optimization
problem. Because meta-heuristics methods are random
approaches, the CFFA’s computational efficacy and solution
quality are dependent on the problem’s nature and
complexity.

5. Conclusion

A chaotic fruit fly algorithm (CFFA) to solve engineering
design problems (EDPs) was proposed in this paper. (e
fruit fly algorithm (FFA), recognized for its resilience and
efficacy in addressing optimization problems, was merged
with the chaotic local search (CLS) method, which is known
for its ability to identify the global optimal solution. CFFA

was used in two stages. In the first, FFA was used to get an
approximate solution. (e optimal solution was then found
using chaotic local search (CLS) in the second phase. (e
proposed approach was tested utilizing a set of CEC’2005
special sessions on actual parameter optimization as well as,
three restricted engineering design problems from the most
recent test suite, CEC’2020. (e experimental outcomes
demonstrated the superiority of the proposed technique to
finding the global optimal solution and reveal that the
suggested CFFA may be utilized to address real-world en-
gineering problems. Furthermore, the convergence curves of
the best function values obtained by CFFA before and after
CLS showed how CLS disturbed and explored the local
region of the approximate solution and how it was utilized to
speed convergence, improve solution quality, and find the
ideal solution. Finally, the statistical efficiency of the CFFA
was investigated by the Friedman test and Wilcoxon signed-
rank test, which revealed that the proposed CFFA out-
performed other algorithms.

A multi-objective version of CFFA can be developed in
future works to solve continuous multi-objective issues.
Furthermore, adapting CFFA to a discrete version for
handling discrete optimization challenges like the com-
munity discovery problem is a promising direction.
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