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Aiming at the interference of the delay term in continuous dynamics to the impulsive systems, we study the potential effects of
time delay on the stability of a class of impulsive neural networks (INNs) in this paper. Two cases of delay are considered. For the
case of small delay, a sufficient condition for the stability of delayed INNs is obtained by virtue of the average impulsive interval
(AII) method.(e derived results illustrate that within limits, the convergence rate of the system becomes larger with the increase
of time delay. For another case, a strict comparison principle is proposed to prove that the impulsive system still maintains the
original stability for any large but bounded delay under certain conditions. In particular, as an extension, the stability of delayed
INNs for hybrid impulses containing both stabilizing and destabilizing impulses is also discussed. Finally, three examples are
simulated to demonstrate the validity of the theoretical results.

1. Introduction

As a mathematical model of information processing, neural
network (NN) is one of the most active branches of com-
putational intelligence and machine learning. (ere are many
kinds of NNs, and as a special kind of NNs, impulsive neural
networks (INNs) have unique research value. INN was first
proposed by Alan Lloyd Hodgkin and Andrew Huxley in
1952.(e simulation of its neurons is closer to reality because
it characterizes the transient state mutation of neurons in
neural networks at a certain moment.(e impulsive system is
a mixture of continuous dynamic system and discrete-time
system, which is different from the pure continuous-time
dynamic system and pure discrete-time system. It is suitable
for studying a class of dynamic systems affected by sudden
change or instantaneous disturbance [1]. Furthermore, im-
pulsive phenomena exist in various fields such as secure
communication, automatic control, and mechanical system.
With the help of impulsive control, we can reduce a lot of
application costs. So far, many interesting results have been
obtained on INNs (see [2, 3] and their references).

Time delay is known to exist in many complex networks
and control systems due to the influence of some practical
situations. Over the past decades, time-delay systems have
been vigorously studied because of their wide applications in
NNs, sampling data control, biological modeling, and other
fields. Meanwhile, various types of delays are discussed in
NNs, such as distributed delay [4], time-varying delay [5],
and state-dependent delay [6]. However, in previous studies,
time delay is generally considered to be an important source
of poor system performance and system instability. Few
researchers have noticed that time delay may be beneficial to
system stability. (is is because our impression of time delay
is so rigid that we ignore the stabilizing effects of time delay.
Actually, we can also extract the stabilizing information of
time delay through some analysis methods. For instance, in
[7], the authors make a point that the increase of time delay
has a dual effect on the stability of the system, that is, it may
stabilize a previously unstable system or destabilize a pre-
viously stable system.

Combining the two points of time delay and impulsive
effects, many scholars have done a lot of work on INNs with
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delay [8–12]. For example, in [8], Chen et al. utilized an
auxiliary state variable to transform the impulsive delayed
system into an equivalent augmented model. On the basis of
this model, the stability criterion of the system was derived.
In [9], Zhang et al. firstly designed an impulsive controller
for the time-delay discrete system to guarantee that the
system can achieve stability. In [11], Jiang et al. investigated
the impacts of time delay in impulses on system stability
through average impulsive delay and average impulsive
interval (AII) methods. In [12], Li and Song focused on the
stabilization of time-delay systems under impulsive control,
and the results show that the delay term in impulses may be
conducive to the stabilization of the system. Obviously,
studying a system with both time delay and impulsive effects
is challenging because we need to consider the interaction of
the two on the system.

Furthermore, it can be observed that both references
[11, 12] have investigated the impacts of the delay term in
impulses on stability of the system, but few papers have
studied the latent effects of the delay term in continuous
dynamics on stability of the impulsive system. Knowing that
an impulsive system is a combination of continuous and
discrete subsystems, it is interesting to think about the
overall effects of the delay term in the continuous subsystem
and the impulsive effect in the discrete subsystem on the
system stability. In addition, looking back at the fact that
time delays may facilitate the stability of systems, a natural
problem emerges: under what conditions does the delay
term in continuous dynamics play a positive role in the
stability of systems?

In view of the above discussion, this paper mainly studies
the potential effects of delay term in continuous dynamics on
the stability of a class of INNs. Compared with some existing
results, this paper fully captures the information that time
delay can enhance stability. With regard to small delay and
large delay, the stability of INNs with delay is investigated by
using AII condition, and the hidden role that delay plays in
the stability of system is revealed. With regard to hybrid
impulses, the AII condition is replaced by the dwell-time
condition so as to deal with the impulsive parameters as a
whole, and the stability criterion of INNs is also derived. On
the whole, the main features of this paper can be generalized
as follows:

(1) (e time delay in two cases is considered. When the
delay is small, we capture the stabilizing information
of time delay by means of the impulsive delay in-
equality and then integrate it into the Lyapunov-
based function. Finally, with the help of the AII
condition, the stability criterion of a kind of general
INNs is derived. (e results show that in a certain
range, the system converges more quickly when the
delay value is larger.

(2) In order to handle the case of large delay, we adopt a
strict comparison principle which is different from
the comparison-like principle, and it is proved that
these kinds of INNs are robust to any large but
bounded delay.

(3) Considering the dual effects of impulses, we extend
the ideas of the first two points to the hybrid INNs
containing stabilizing and destabilizing impulses.

(is paper is organized as follows. In Section 2, a kind of
general INNs with delay is introduced, and some requisite
definitions and assumptions are presented. In Section 3, the
main theorem results of this paper are derived, which fully
illustrate the latent effects of delay term in continuous dy-
namics on stability of a kind of INNs. In Section 4, three
numerical examples are simulated to indicate the validity of
the derived results. Finally, Sections 5 gives a brief con-
clusion and prospects of the feasibility of the future research.

2. Preliminaries

2.1. Notations. Let R, R+, and Rn stand for the set of real
numbers, the set of nonnegative real numbers, and the set of
n− dimensional real-valued vectors, respectively. Denote Z+

and Z0
+ as the set of positive integer numbers and non-

negative integer numbers, respectively. For vector
x � (x1, x2, . . . , xn)T ∈ Rn, let ‖x‖ � 􏽐

n
i�1 |xi|. Denote

PC([− τ, 0],Rn) as the set of piecewise right continuous
function ϕ: [− τ, 0]⟶ Rn, where ‖ϕ‖τ ≜ sup− τ≤θ≤0‖ϕ(θ)‖.
Denote the upper right-hand Dini derivative of function V

as D+V(t) � limh⟶0+supV(t + h) − V(t)/h.

2.2. Model. In this paper, based on relevant work in ref-
erence [13], we consider a class of INNs, the main form of
which is as follows:

_xi(t) � − aixi(t) + 􏽘
n

j�1
bijfj xj(t)􏼐 􏼑 + 􏽘

n

j�1
cijgj xj(t − τ)􏼐 􏼑, t≠ tk, t≥ t0 ≥ 0,

Δxi tk( 􏼁 � U k, xi t
−
k( 􏼁( 􏼁, k ∈ Z+,

xi t0 + θ( 􏼁 � ϕi(θ), θ ∈ [− τ, 0],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1)

where ai > 0, i � 1, 2, . . . , n are constants, n is the number of
neurons, xi(t) represents the state variable of the ith neuron
at time t, _xi(t) represents the derivative of xi(t), τ is the
transmission delay, fj(xj(t)) and gj(xj(t − τ)) are the

neuron activation functions at time t and t − τ, respectively,
bij and cij are real constants representing the connection
weight, tk􏼈 􏼉 is the impulse sequence satisfying
0≤ t0 < t1 < · · · < tk < · · · and limk⟶+∞tk � +∞, and
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Δxi(tk)≜ xi(t+
k ) − xi(t−

k ), where xi(t+) � lim
t⟶t+

k

xi(t) and
xi(t− ) � limt⟶t−

k
xi(t). Generally, we suppose that the so-

lution of network (1) is right continuous, that is,
xi(t+

k ) � xi(tk), and the sequence tk, U(k, xi(t−
k ))􏼈 􏼉 is called

the impulsive control rule. As a matter of convenience, we let
hk(xi(t−

k ))≜xi(t−
k ) + U(k, xi(t−

k )), which means
xi(t+

k ) � hk(xi(t−
k )), k ∈ Z+. Define the solution of network

(1) through (t0, ϕ) as x(t) � x(t, t0, ϕ), where
ϕ ∈ PC([− τ, 0],Rn) represents the initial state.

For subsequent needs, we give some requisite definitions
and assumptions as follows.

Definition 1 (see [14]). Suppose that there exist positive
constants N0 and Ta such that

N t2, t1( 􏼁≥
t2 − t1

Ta

− N0,∀t2 ≥ t1 ≥ t0, (2)

where N(t2, t1) represents the number of impulses in the
interval (t1, t2]. (en, N0 is called the elasticity number, and
Ta denotes the AII constants.

Remark 1. (e concept of AII is proposed to handle various
types of impulses. In fact, AII condition (2) allows an upper
bound, that is, N(t2, t1)≤ t2 − t1/Ta + N0. Particularly, at
least one impulse is required for each interval of length Ta in
the case of N0 � 1. For AII constant Ta, it can be observed
that it contains more impulsive instant sequences when the
elasticity number N0 is larger.

Definition 2. For any given initial value ϕ ∈ PC([− τ, 0],Rn),
if there exist positive numbers M and λ such that

x t, t0, ϕ( 􏼁
����

����≤M‖ϕ‖τe
− λ t− t0( ),∀t≥ t0, (3)

holds for every sequence tk􏼈 􏼉 ∈ J∗(Ta, N0), then we can say
that the network (1) is globally uniformly exponentially
stable (GUES) over the class J∗(Ta, N0).

Remark 2. J∗(Ta, N0) mentioned in the above definition
represents a collection of impulsive instant sequences tk􏼈 􏼉

that satisfy AII condition (2).

Assumption 1. (e functions f(·), g(·) ∈ Rn satisfy
f(0) � 0, g(0) � 0, and function hk: R⟶ R satisfies
hk(0) � 0.

Remark 3. Clearly, Assumption 1 guarantees that x � 0 is an
equilibrium point to network (1).

Assumption 2. (e functions f(·), g(·) are all Lipschitz
continuous and meet

fj θ1( 􏼁 − fj θ2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ cj θ1 − θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

gj θ1( 􏼁 − gj θ2( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ cj θ1 − θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,
(4)

for all θ1, θ2 ∈ R, j � 1, 2, . . . , n, where cj, cj > 0 are
constants.

Assumption 3. (e impulsive operator hk meets

hk θ1( 􏼁 − hk θ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ q θ1 − θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (5)

for all θ1, θ2 ∈ R, k ∈ Z+, where q> 0 is Lipschitz constant.

In order to facilitate the subsequent expression, we make

α1 � max
1≤i≤n

− ai + 􏽘

n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠,

α2 � max
1≤i≤n

􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠.

(6)

3. Main Results

Wewill discuss the stability of INNs from the following three
aspects in current section. Firstly, we consider the stability of
a kind of INNs with small delay (the delay does not exceed
any two consecutive impulsive time intervals, i.e.,
τ ≤ tk − tk− 1). Besides, the latent effects of time delay are also
explored. Secondly, the stability of INNs with arbitrarily
finite delay is considered. Compared with small delay, we use
large delay (which implies that the delay may be greater than
a certain impulsive time interval, namely, τ ≤ tk − tk− 1 may
not be true) to represent relatively larger delay (which is
collectively referred to as arbitrarily finite delay here). For
arbitrarily finite delay, we analyze the robustness of the
stability of INNs with delay and verify that the system can
remain stable for any large but bounded delay under certain
conditions. Finally, in view of the fact that the impulsive
effects may promote or suppress system stability, we extend
the ideas of the first two points to delayed INNs with hybrid
impulses.

3.1. INNs with Small Delay. In what follows, we will discuss
the case where the delay is small. We capture the stabilizing
information of time delay with the help of the impulsive
delay inequality and then integrate it into the Lyapunov-
based function. Finally, through the AII method, we can
derive the stability criterion of INNs.

Theorem 1. If there exist constants q ∈ (0, 1),
η∗ � max α1 + α2, η0􏼈 􏼉 and the following conditions hold:

α1 + α2 > 0,

lnq

Ta

+ η∗ < 0,

(7)

where

α1 +
α2
q

e
− η0τ − η0 � 0, (8)

then under Assumptions 1–3, network (1) is GUES over the
class J∗(Ta, N0).

Proof. Construct a function V(t)≜V(t, x(t)) �

‖x(t)‖ � 􏽐
n
i�1 |xi(t)| and make V(t0) � sup

t0− τ ≤ s≤ t0

V(s). For
any ε> 0, let η � η∗ + ε, and design an auxiliary function

Complexity 3



L(t) �
V(t)e

− η t− tk( ), t ∈ tk, tk+1􏼂 􏼁,

V(t), t0 − τ ≤ t≤ t0.

⎧⎨

⎩

⎫⎬

⎭ (9)

To start with, letΩk � qkV(t0), and then we will confirm
that

V(t)≤Ωke
η t− t0( ), t ∈ tk, tk+1􏼂 􏼃, k ∈ Z0

+. (10)

Together with (7) and (8),

L(t)≤Ωke
η tk− t0( ), t ∈ tk, tk+1􏼂 􏼃. (11)

Firstly, we demonstrate that (9) is true for k � 0, namely,
L(t)≤Ω0 � V(t0), t ∈ [t0, t1]. Note that
L(t0) � V(t0)≤V(t0) � Ω0. If the above statement is in-
correct, then there is an instant t∗ ∈ [t0, t1] such that

L t
∗

( 􏼁 � Ω0, L(t)≤Ω0, t ∈ t0, t
∗

􏼂 􏼁andD
+
L t
∗

( 􏼁≥ 0. (12)

When s ∈ [t0 − τ, t0], it is apparent that
L(s) � V(s)≤V(t0) � Ω0, and in combination with (10), we
derive L(s)≤Ω0, t ∈ [t0 − τ, t∗]. For t ∈ [tk, tk+1], k ∈ Z0

+, we
can calculate that

D
+
V(t) � 􏽘

n

i�1
sgn xi(t)( 􏼁 − aixi(t) + 􏽘

n

j�1
bijfj xj(t)􏼐 􏼑 + 􏽘

n

j�1
cijgj xj(t − τ)􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ 􏽘

n

i�1
− ai|xi(t)|( 􏼁 + 􏽘

n

i�1
􏽘

n

j�1
bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌cj xj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽘

n

i�1
􏽘

n

j�1
cij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌cj xj(t − τ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ max
1≤i≤n

− ai + 􏽘
n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠‖x(t)‖ + max

1≤i≤n
􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠‖x(t − τ)‖

� α1V(t) + α2V(t − τ).

(13)

When t∗ − τ ∈ [t0 − τ, t∗], combining the definition of
L(t) and conditions (6), (10), and (11), one has

D
+
L(t)|t�t∗ � e

− η t∗− t0( )D
+
V(t)|t�t∗ − ηe

− η t∗ − t0( )V t
∗

( 􏼁

≤ e
− η t∗ − t0( ) α1V t

∗
( 􏼁 + α2V t

∗
− τ( 􏼁􏼂 􏼃

− ηe
− η t∗− t0( )V t

∗
( 􏼁

� α1L t
∗

( 􏼁 + α2L t
∗

− τ( 􏼁e
− ητ

− ηL t
∗

( 􏼁

≤ α1 + α2e
− ητ

− η( 􏼁Ω0 < 0.

(14)

Obviously, it could be observed that it contradicts
D+L(t∗)≥ 0, namely, (9) holds for k � 0.

Next, through mathematical induction method, we as-
sume that (9) is true for k≤p, p ∈ Z0

+, i.e.,

L(t)≤Ωke
η tK− t0( ), t ∈ tk, tk+1􏼂 􏼁, k≤p, (15)

which means

L(t)≤Ωpe
η tp− t0( 􏼁

, t ∈ tp, tp+1􏽨 􏼑. (16)

Subsequently, we demonstrate that

L(t)≤Ωp+1e
η tp+1 − t0( 􏼁

, t ∈ tp+1, tp+2􏽨 􏼑. (17)

Recall (7) and (14), and we obtain

L tp+1􏼐 􏼑 � V tp+1􏼐 􏼑 � x tp+1􏼐 􏼑
�����

�����

� hp+1 x t
−
p+1􏼐 􏼑􏼐 􏼑 − hp+1(0)

�����

�����

≤ qL t
−
p+1􏼐 􏼑e

η tp+1 − tp( 􏼁

� Ωp+1e
η tp+1 − t0( 􏼁

.

(18)

(us, (15) holds for t � tp+1. On the contrary, it is as-
sumed that there is an instant t∗ ∈ [tp+1, tp+2] which makes

L t
∗

( 􏼁 � Ωp+1e
η tp+1 − t0( 􏼁

, L(t)≤Ωp+1e
η tp+1 − t0( 􏼁

, t ∈

· tp+1, t
∗

􏽨 􏽩andD
+
L t
∗

( 􏼁≥ 0.
(19)

If t∗ − τ ≥ tp+1, referring to (12), we derive that

D
+
L(t)|t�t∗ ≤ α1L t

∗
( 􏼁 + α2L t

∗
− τ( 􏼁e

− ητ
− ηL t

∗
( 􏼁≤

· α1 + α2e
− ητ

− η( 􏼁Ωp+1e
η tp+1 − t0( 􏼁 < 0.

(20)

Similarly, what calls for special attention is that when
s ∈ [tp, tp+1], it follows from (14) that

L(s)≤Ωpe
η tp− t0( 􏼁

�
Ωp+1

q
e
η tp+1 − t0( 􏼁

e
− η tp+1− tp( 􏼁

�
L t
∗

( 􏼁

q
e

− η tp+1− tp( 􏼁 ≤
L t
∗

( 􏼁

q
e

− ητ
.

(21)
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At this time, if t∗ − τ < tp+1, on account of
tp ≤ tp+1 − τ ≤ t∗ − τ < tp+1, and together with (6), (16), and
(17), we could compute that

D
+
L(t)|t�t∗ ≤ α1L t

∗
( 􏼁 + α2L t

∗
− τ( 􏼁e

− ητ
− ηL t

∗
( 􏼁

≤ α1L t
∗

( 􏼁 + α2
L t
∗

( 􏼁

q
e

− ητ
− ηL t

∗
( 􏼁

� α1 +
α2
q

e
− ητ

− η􏼠 􏼡Ωp+1e
η tp+1 − t0( 􏼁 < 0,

(22)

which contradicts D+L(t∗)≥ 0, namely, (15) holds.
Hence, we can get

L(t)≤Ωke
η tk− t0( ),∀t ∈ tk, tk+1􏼂 􏼁, k ∈ Z0

+, (23)

which means (8) is true, namely,
V(t)≤Ωkeη(t− t0) � Ωke(η∗+ε)(t− t0), t ∈ [tk, tk+1).

Let ε⟶ 0+, and then we obtain

V(t)≤Ωke
η∗ t− t0( ),∀t ∈ tk, tk+1􏼂 􏼁, k ∈ Z0

+. (24)

Since tk􏼈 􏼉 ∈ J∗(Ta, N0), the AII method further yields
that

V(t)≤ q
N t,t0( )e

η∗ t− t0( )V t0( 􏼁

≤ q
t− t0/Ta− N0e

η∗ t− t0( )V t0( 􏼁

≤ q
− N0e

lnq/Ta+η∗( ) t− t0( )V t0( 􏼁,∀t≥ t0,

(25)

where N(t, t0) represents the number of impulses in the
interval (t0, t].

According to (18) and the definition of V(t), we have

‖x(t)‖≤Me
− λ t− t0( )‖ϕ‖τ ,∀t≥ t0, (26)

where M � q− N0 , λ � − (lnq/Ta + η∗)> 0. Until now, we
have done the proof. □

Remark 4. From (6) and (8) in(eorem 1, we can notice the
latent impacts of time delay τ on the decay rate of Lyapunov
function V(t). In particular, if η0 > α1 + α2, then we have
η∗ � η0. Meanwhile, the implicit function η∗(τ) is deter-
mined by α1 + α2/qe− η∗τ − η∗ � 0, which decreases as τ
increases. Obviously, the result derived from the above
theorem shows that the convergence rate λ is related to
parameter η∗, and in view of the relationship between η∗ and
delay τ, it can be concluded that the convergence rate of the
system will become larger with the increase of delay, which
means that we have captured the stabilizing effects of time
delay. In addition, what needs special attention is that in the
majority of the available literature about the stability of
delayed INNs, we can see that the stability of the system
tends to be destroyed as delay increases, but different results
are obtained in this paper.

Remark 5. It should be noted that the conclusion of the
relationship between time delay and system stability derived
from Remark 4 is based on η∗ � η0, so the results may be

conservative to some extent. Furthermore, the conclusion of
(eorem 1 is a sufficient condition rather than a necessary
condition; then, it is possible for the system to be stable when
τ is small and does not meet the conditions of (eorem 1.

3.2. INNs with Arbitrarily Finite Delay. For the case of ar-
bitrarily finite delay, based on strict comparison principle
and the concept of AII, a stability criterion of INNs is also
derived.

Lemma 1 (see [13]). Let α1 ∈ R, α2 ≥ 0 and q> 0. Suppose
that a(t), b(t) ∈ C([tk− 1, tk],R+) meet

D
+
a(t)≤ α1a(t) + α2a(t − τ), t≥ t0, t≠ tk,

a(t)≤ qa t
−

( ), t � tk,

⎧⎨

⎩

⎫⎬

⎭, (27)

D
+
b(t) � α1b(t) + α2b(t − τ), t≥ t0, t≠ tk,

v(t) � qb t
−

( ), t � tk,
􏼨 􏼩, (28)

for all k ∈ Z+. @en, a(t)≤ b(t),∀t0 − τ ≤ t≤ t0 implies that
a(t)≤ b(t),∀t≥ t0.

Theorem 2. If there exists constant q ∈ (0, 1) such that

α1 +
α2

q
N0

+
lnq

Ta

< 0, (29)

then under Assumptions 1–3, network (1) is GUES over the
class J∗(Ta, N0) for arbitrarily finite delay τ.

Proof. Construct a function V(t) � ‖x(t)‖ � 􏽐
n
i�1 |xi(t)|,

and let V(t0) � sup
t0− τ ≤ s≤ t0

V(s).

Next, similar to (11), we have

D
+
V(t)≤ α1V(t) + α2V((t − τ)),∀t ∈ tk− 1, tk􏼂 􏼁, k ∈ Z+.

(30)

When t � tk, according to Assumptions 1–3, we could
get

V tk( 􏼁 � x tk( 􏼁
����

���� � hk x t
−
k( 􏼁( 􏼁

����
���� � hk x t

−
k( 􏼁( 􏼁 − hk(0)

����
����

≤ q x t
−
k( 􏼁

����
���� � qV t

−
k( 􏼁.

(31)

Introduce an impulsive delayed system with u(t) as its
unique solution:

D
+
u(t) � α1u(t) + α2u(t − τ), t≥ t0, t≠ tk,

u(t) � qu t
−

( ), t � tk,

u(t) � V t0( 􏼁, t ∈ t0 − τ, t0􏼂 􏼃.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

(32)

Apparently, V(t)≤V(t0) � u(t) when t ∈ [t0 − τ, t0]. In
accordance with Lemma 1, we have

0≤V(t)≤ u(t), ∀t≥ t0. (33)

From the variable parameter formula, we obtain

u(t) � K t, t0( 􏼁u t0( 􏼁 + 􏽚
t

t0

K(t, s)α2u(s − τ)ds, t≥ t0, (34)
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where K(t, s) denotes the Cauchy matrix of the following
system:

D
+
u(t) � α1u(t), t≥ t0, t≠ tk,

u(t) � qu t
−

( ), t � tk, k ∈ Z+.

⎧⎨

⎩

⎫⎬

⎭ (35)

According to the properties of the Cauchy matrix,
combining 0< q< 1 and tk􏼈 􏼉 ∈ J∗(Ta, N0), we can obtain

K(t, s) � e
α1(t− s)Πs<tk ≤ tq≤ e

α1(t− s)
q

t− s/Ta− N0

� q
− N0e

α1+lnq/Ta( )(t− s)
� q

− N0e
− c(t− s)

,
(36)

where c � − (α1 + lnq/Ta), and it is evident that c> 0 by
using condition (21).

Reviewing (26) and (28), we have

u(t)≤ q
− N0e

− c t− t0( )u t0( 􏼁

+ 􏽚
t

t0

q
− N0e

− c(t− s)α2u(s − τ)ds,∀t≥ t0.
(37)

Since c> 0, N0 > 0, and 0< q< 1, this implies

u(t) � V t0( 􏼁 � u t0( 􏼁≤ u t0( 􏼁e
− c t− t0( )

< q
− N0u t0( 􏼁e

− λ t− t0( ), t ∈ t0 − τ, t0􏼂 􏼃,
(38)

where λ � c − q− N0α2eλτ . In fact, by using (21), we can obtain
λ> 0. (en, we shall confirm that

u(t)< q
− N0u t0( 􏼁e

− λ t− t0( ), t≥ t0. (39)

On the contrary, suppose (31) is untenable; then, there
exists an instant t∗ > t0 which makes

u t
∗

( 􏼁≥ q
− N0u t0( 􏼁e

− λ t∗ − t0( ), (40)

u(t)< q
− N0u t0( 􏼁e

− λ t− t0( ), t< t
∗
. (41)

Subsequently, from (29) and (33), one has

u t
∗

( 􏼁≤ q
− N0e

− c t∗ − t0( )u t0( 􏼁 + 􏽚
t∗

t0

q
− N0e

− c t∗− s( )α2u(s − τ)ds

< q
− N0e

− c t∗ − t0( )u t0( 􏼁 + 􏽚
t∗

t0

q
− N0e

− c t∗− s( )α2q
− N0u t0( 􏼁e

− λ s− τ− t0( )ds

� q
− N0u t0( 􏼁 e

− c t∗− t0( ) + q
− N0α2e

λτ
e

− ct∗+λt0 􏽚
t∗

t0

e
(c− λ)sds􏼢 􏼣

� q
− N0u t0( 􏼁e

− λ t∗− t0( ),

(42)

which is in contradiction with (32). (us, we can derive that
(31) holds. Finally, combining (25), we have

V(t)≤ u(t)< q
− N0u t0( 􏼁e

− λ t− t0( ),∀t≥ t0, (43)

i.e.,

‖x(t)‖≤ q
− N0e

− λ t− t0( )‖ϕ‖τ ,∀t≥ t0. (44)

So far, we have done the proof. □

Remark 6. It can be observed from (eorems 1 and 2 that
the AII constant Ta should be small enough to meet con-
ditions (5) and (21) in the case of 0< q< 1. (e AII constant
means the frequency of impulsive control. (e smaller Ta is,
the higher the impulsive frequency will be. In addition, it
should be noted that the result derived from (eorem 2
involves elasticity number N0, and equation (21) may not
hold when N0 is sufficiently large. However, for delay-free
system (see [14]), the derived result does not involve N0, so
we cannot obtain such a conclusion. Moreover, we can
obverse that the elasticity number N0 is not involved in the
result of (eorem 1, which is the difference between (e-
orems 1 and 2. (erefore, under the condition of AII,

(eorem 2 further illustrates the internal relationship be-
tween large delay and system stability.

Remark 7. Although (eorems 1 and 2 are proposed for
small and large delays, respectively, this does not mean that
(eorem 2 and (eorem 1 are mutually exclusive. Actually,
(eorem 2 is a supplement to (eorem 1 because the so-
called large delay in (eorem 2 just means that τ ≤ tk − tk− 1
may not be true, in which case it covers the case of small
delay. (erefore, (eorem 2 is also applicable to the case of
small delay.

3.3. Extension to INNswithHybrid Impulses. In recent years,
hybrid impulse as an important topic has attracted wide
attention, and numerous meaningful results have emerged.
Particularly, in [15], considering the influence of hybrid
impulses on the synchronization process, the authors
designed an effective hybrid impulsive controller so as to
achieve the quasi-synchronization of NNs. In this case, a
sufficient delay-dependent criterion for quasi-synchroniza-
tion is obtained. Meanwhile, in [15, 16], the authors adopted
AII and average impulsive gain methods to deal with the
hybrid impulses. In this paper, an improved dwell-time
condition is introduced to treat the hybrid impulses. In view
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of the above discussion, we extend the results of the first two
theorems in this section.

First of all, in order to extend(eorem 1, we put forward
(eorem 3 by referring to the processing procedure of the
small delay case.

Theorem 3. If Assumption 3 is replaced by the following
condition:

hk θ1( 􏼁 − hk θ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ e
− ρk θ1 − θ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (45)

where ρk ∈ R, then under Assumptions 1 and 2 and (35), for
given constants ρ> 0, ρ∗ > 0, c> 0, δ > 0, the following condi-
tions are satisfied:

A1( 􏼁α1 + α2 > 0

A2( 􏼁 􏽘

N t,t0( )

k�1
ρk > ρN t, t0( 􏼁 − ρ∗

A3( 􏼁ρN t, t0( 􏼁≥ c t − t0( 􏼁 − δ

A4( 􏼁η∗ − c< 0,

(46)

where η∗ � max α1 + α2, η1􏼈 􏼉, and η1 satisfies
α1 + α2e

ρsupe− η1τ − η1 � 0 with ρsup � sup
k∈Z+

ρk􏼈 􏼉<∞; then,
network (1) is GES.

Proof. (e same analysis method as (eorem 1 is used here,
except that the impulsive parameters are changed, so we
shall take advantage of (A1) and (A4) to acquire the fol-
lowing statement:

V(t)≤ΠN t,t0( )
k�1 e

− ρk( 􏼁e
η∗ t− t0( )V t0( 􏼁,∀t≥ t0. (47)

(en, by using (A2) and (A3), one has

V(t)≤ e
− ΣN t,t0( )

k�1 e− ρk( 􏼁
e
η∗ t− t0( )V t0( 􏼁

≤ e
− ρN t,t0( )+ρ∗

e
η∗ t− t0( )V t0( 􏼁

≤ e
− c t− t0( )+δ+ρ∗

e
η∗ t− t0( )V t0( 􏼁

≤ e
δ+ρ∗

e
− c− η∗( ) t− t0( )V t0( 􏼁,∀t≥ t0.

(48)

(at is,

‖x(t)‖≤ e
δ+ρ∗

e
− c− η∗( ) t− t0( )‖ϕ‖τ ,∀t≥ t0. (49)

(e proof is completed.
Next, referring to the analysis method of arbitrarily finite

delay case, we obtain(eorem 4 as an extension of (eorem
2. □

Theorem 4. Suppose that the parameter q in Assumption 3 is
replaced by e− ρk , then under Assumptions 1 and 2 and
modified Assumption 3, for given constants
ρ> 0, ρ∗ > 0, c> 0, δ > 0, the following conditions are fulfilled:

􏽢A1􏼐 􏼑 􏽘

N t,t0( )

k�1
ρk > ρN t, t0( 􏼁 − ρ∗

􏽢A2􏼐 􏼑ρN t, t0( 􏼁≥ α1 + c( 􏼁 t − t0( 􏼁 − δ

􏽢A3􏼐 􏼑α2e
δ+ρ∗

− c< 0.

(50)

@en, network (1) is GES.

Proof. It is easy to prove this theorem by combining the
analytical methods of(eorems 2 and 3, so we leave out it for
brevity. □

Remark 8. (e parameter e− ρk in (eorems 3 and 4 is used
to describe the variable of hybrid impulses in impulsive
control systems. As you can see, q in (eorems 1 and 2 is
required to be 0< q< 1, but e− ρk in(eorem 3 and 4 satisfies
ρk ∈ R, that is, e− ρk < 1 if ρk > 0 and e− ρk > 1 if ρk < 0. It
implies that stabilizing impulses and destabilizing impulses
may exist at the same time. Furthermore, in order to handle
these parameters overall, we propose conditions (A2) and
(􏽢A1), and in a sense, the parameter ρ may be approximately
regarded as the “average value” of ρk. In fact, condition (A2)

combined with (A3) or (􏽢A1) combined with (􏽢A2) can be
considered as an improvement of dwell-time condition.

Remark 9. Compared with reference [11], this paper studies
the effects of time delay in continuous dynamics on system
stability. Bear in mind that the relationship between time
delay in continuous dynamics and the stability of impulsive
systems is not easy to find, and the derived results based on
AII method contain both time delay and the AII constant Ta,
which is not obtained in previous results. Furthermore, we
extend the results to systems with hybrid impulses. In ad-
dition, when discussing the delay effects in reference [12],
the authors limit the time delay to be less than any two
consecutive impulsive time intervals. However, we loosen
the condition of time delay in this paper, that is, the time
delay can be smaller than any two consecutive impulsive
intervals, or it can be greater than any two consecutive
impulsive time intervals.

Remark 10. On the basis of this paper, we could also in-
vestigate the case of neural network models with time-
varying delays. Actually, the results of this paper are still
valid after the constant delay is replaced by time-varying
delay in the model. We will continue to explore this question
in depth in future studies.

4. Illustrative Examples

Finally, for the purpose of verifying the above achievements,
we put forward the following three examples in current
section.
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Example 1. Consider a 2-dimensional INN with small delay:

_x1(t)

_x2(t)
􏼢 􏼣 � −

0.2 0

0 0.3
􏼢 􏼣

x1(t)

x2(t)
􏼢 􏼣

+
0.2 0.4

0.03 0.01
􏼢 􏼣

tanh x1(t)( 􏼁

tanh x2(t)( 􏼁
􏼢 􏼣

+
0.25 0.25

0.05 0.02
􏼢 􏼣

tanh x1(t − τ)( 􏼁

tanh x2(t − τ)( 􏼁
􏼢 􏼣,

(51)

under impulsive control

x1 tk( 􏼁

x2 tk( 􏼁
􏼢 􏼣 �

0.01 0

0 0.01
􏼢 􏼣

x1 t
−
k( 􏼁

x2 t
−
k( 􏼁

􏼢 􏼣, (52)

where t≥ 0, k ∈ Z+, tk − tk− 1 ≥ τ > 0.
Obviously, c1 � c2 � 1, c1 � c2 � 1, q � 0.01. By

calculating,

α1 � max
1≤i≤n

− ai + 􏽘
n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.11,

α2 � max
1≤i≤n

􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.3.

(53)

Here, we set the initial value ϕ � [3, − 0.4]T and choose
impulsive instants tk � 5k, k ∈ Z+, which means Ta � 5.
When τ ∈ [4, 5], we can figure out η∗ ≤ 0.91 and
lnq/Ta + η∗ < 0, and it can be tested that all conditions in
(eorem 1 hold. (erefore, we can derive that systems (39)
and (40) are GUES when τ ∈ [4, 5]. In addition, according to
Remark 4, it can be seen that the system may converge faster
with the increase of delay, which corresponds to the sim-
ulation results in Figures 1–3. Moreover, we calculate its
corresponding parameter η∗ and estimate its convergence
rate for different time delays τ � 4, 4.5, 5, which are shown
in Table 1. More importantly, it also reveals the potential
stabilizing effect of time delay.

Example 2. Consider another 2-dimensional INN with large
delay:

_x1(t)

_x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � −

0.1 0

0 0.1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

x1(t)

x2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+

0.08 0.5

0.2 0.35
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

tanh
x1(t)

2
􏼠 􏼡

tanh
x2(t)

2
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
0.03 0.1

0.1 0.07
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

tanh
x1(t − τ)

8
􏼠 􏼡

tanh
x2(t − τ)

2
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(54)

under impulsive control

x1 tk( 􏼁

x2 tk( 􏼁

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �

sin
x1 t

−
k( 􏼁

5
􏼠 􏼡

sin
x2 t

−
k( 􏼁

5
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (55)

where t≥ 0, k ∈ Z+ and τ � 25, tk � 2k. Here, we set the
initial value ϕ � [0.4, 3]T. As shown in Figure 4, the impulse-
free system is unstable.
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Figure 1: (e state of (39) and (40) with τ � 4.
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Figure 2: (e state of (39) and (40) with τ � 4.5.
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In addition, it is apparent that
c1 � c2 � 1/2, c1 � 1/8, c2 � 1/2, q � 1/5, Ta � 2, N0 � 1. By
calculating,

α1 � max
1≤i≤n

− ai + 􏽘
n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.325,

α2 � max
1≤i≤n

􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.085.

(56)

(erefore, we can conclude that
α1 + α2/qN0 + lnq/Ta ≈ − 0.05< 0. (at is to say, the con-
ditions in (eorem 2 are fulfilled, and it is deduced that
systems (43) and (44) are GUES, which is well reflected in
Figure 5. By the way, the time delay could be much larger
and the system would still be stable. In what follows, we
calculate the corresponding convergence rate for different
time delays τ � 25, 60, 100, which are shown in Table 2.
Actually, the delay is not limited to 100, and it can even be
greater than 100. As long as the delay is bounded under
certain conditions, the initial stability of impulsive system
can be guaranteed. Here we only calculate the convergence
rate of the system when the delay increases to 100.

Example 3. Consider a 3-dimensional INN:

_x(t) � − Ax(t) + Bf(x(t)) + Cg(x(t − τ)), (57)

under hybrid impulsive control

x tk( 􏼁 � e
− ρk x t

−
k( 􏼁, tk � 8k, k ∈ Z+, (58)
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Figure 3: (e state of (39) and (40) with τ � 5.

Table 1: (e convergence rate λ for different time delays.

Time delay τ Parameter η∗ Convergence rate λ
4 0.9070 0.0140
4.5 0.8291 0.0919
5 0.7649 0.1561
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Figure 4: (e state of (41) without impulse.
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Figure 5: (e state of (41) with impulsive effects (42).

Table 2: Stability of systems with different time delays.

Time delay τ Stable or not Convergence rate λ
25 ✓ 0.0045
60 ✓ 0.0019
100 ✓ 0.0012
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where

A �

0.6 0 0

0 0.6 0

0 0 0.6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B �

0.24 − 0.3 − 0.2

− 0.2 − 0.24 0.3

− 0.4 0.7 0.9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, C

�

0.01 0 0

0 0.2 0

0 0 0.01

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(59)

ρk �
3.1, k � 2l − 1
− 0.9, k � 2l

􏼨 􏼩, l ∈ Z+. (60)

Suppose that f(x) � (f1(x1), f2(x2), f3(x3))
T, g(x) �

(g1(x1), g2(x2), g3(x3))
T and fi(xi) � tanh(xi(t)/2), gi

(xi) � tanh(xi(t)), i � 1, 2, 3. We give the initial value ϕ �

[0.5, 0.6, − 0.3]T and take time delay τ � 7. As shown in
Figure 6, the impulse-free system is unstable.

Additionally, it is evident that
c1 � c2 � c3 � 1/2, c1 � c2 � c3 � 1, ρsup � 3.1, ρ � 1.1> 0.
By calculating,

α1 � max
1≤i≤n

− ai + 􏽘
n

j�1
bji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.1,

α2 � max
1≤i≤n

􏽘

n

j�1
cji

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ci
⎛⎝ ⎞⎠ � 0.2.

(61)

Furthermore, we can figure out η1 ≈ 0.3899 by Matlab.
(at is, η∗ � max α1 + α2, η1􏼈 􏼉 ≈ 0.39 and c � 0.4 in condi-
tions (A1) − (A4) of (eorem 3 are fulfilled. At the same
time, a series of conditions in(eorem 3 are completely true.
(erefore, systems (43) and (44) are GES, which is well
illustrated in Figure 7. From the simulation results, the
impulsive effects indeed have both stabilizing and destabi-
lizing effects.

5. Conclusion

In this paper, we have discussed the stability of a kind of
INNs with delay. Particularly, the internal relation between
time delay and system stability has been revealed. Firstly, we
have investigated the case where the delay is small. By
constructing Lyapunov function, combining the impulsive
delay inequality and AII condition, we have obtained a
sufficient condition to assure the exponential stability of
INNs. (e results have shown that within limits, the system
converges more quickly with the increase of time delay.
Secondly, we have explored the case where the delay is
arbitrarily large but bounded and derived a Lyapunov-based
stability criterion by virtue of the strict comparison prin-
ciple. Finally, as an extension, we have considered the case
where INN is a system with hybrid impulses. In future
studies, we may discuss the delay effects of a kind of INN
with state-dependent delay.
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