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Unlike previous studies that consider the Chicago Board of Options Exchange (CBOE) implied volatility index (VIX), we examine
long memory and fractality in the universe of nine CBOE volatility indices. Using daily data from October 5, 2007, to October 5,
2020, covering calm and crisis periods, we find evidence of long memory and fractality in all indices and a change in the degree of
volatility persistence, which points to inefficiency. 'e long memory of the SKEW index is strong before the onset of three crisis
periods, but eases afterwards. 'e findings provide new insights that matter to investment decisions and trading strategies.

1. Introduction

Within the basis of the efficient market hypothesis (EMH) of
Malkiel and Fama [1], the weak form efficiency hypothesis
points to the inability of investors to exploit information
from historical prices to earn consistent abnormal profits.
However, the presence of long-term memory is often shown
in financial asset returns [2–4], indicating that prices do not
respond immediately to the flow of information and that
shocks to the volatility process tend to persist. Accordingly,
past returns can be used to predict current returns, which
challenges the weak form efficiency hypothesis. Further-
more, evidence suggests that biases driven by investor
heuristics often cause stock markets to drift from being
efficient [5, 6]. Such biases become prominent when in-
vestors and fund managers behave irrationally, regardless of
their knowledge and expertise, which suggests the impor-
tance of mass psychology in driving market inconsistency
[5, 6]. Interestingly, implied volatility indices are established
to reflect investor psychology, and, thus, the volatility
tracking and the pattern identification become quite per-
tinent. In this regard, the fractal market hypothesis (FMH),
developed by Peters [7], relies upon investor behaviour
contrary to the EMH that considers investors to be rational
(previous studies consider the presence of long-term

memory properties to make inferences in favour of the FMH
and thus the possibility of predicting stock prices). In this
regard [8], the Hurst exponent is widely used to measure
long-term memory properties through its ability to quantify
the degree of persistence of similar price change patterns.
'e FMHwas considered during the dot-com bubble of 2001
and the global financial crisis in 2008 (Karp and Van
Vuuren, 2019). Studies examining the presence of long
memory and efficiency in the wide universe of volatility
indices are very limited. For example, Caporale et al. [9] have
showed the persistence in the Chicago Board Options Ex-
change (CBOE) VIX. Bogdan et al. [10] have studied the
efficiency of the VIX index and provided evidence of sub-
stantial change in its efficiency during 2020. However,
understanding the dynamics of volatility is important for
decisions regarding equity valuation, hedging, and risk
management, especially given the wide universe of volatility
indices that has been extended to include not only the well-
established Chicago Board Options Exchange CBOE VIX
but also other important indices for leading US equity in-
dices (the VXN for the NASDAQ 100, the VXO for the S&P
100, the VXD for the Dow Jones Industrial average, the RVX
for the Russell 2000, and the OVX for the crude oil price) as
well as the volatility of the VIX (VVIX), the Premium
Strategy Index (VPD), and the SKEW index. While volatility
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indices are time-varying, a key question concerns the per-
sistence of their levels and the evolution of their efficiency.
Our goal is to extend the scarce literature by Hurst exponent
using the autoregressive fractionally integrated moving
average (ARFIMA) model considering the wide universe of
volatility indices covering VIX, VXN, VXO, VXD, RVX,
VPD, OVX, VVIX, and SKEW. We do that for various
defined samples of daily data covering the period October 5,
2007, to October 5, 2020, which includes tranquil and crisis
periods. Methodologically, we employ the Hurst exponent
based on the autoregressive fractionally integrated moving
average (ARFIMA) model and the fractal dimension as an
additional confirmatory tool.

Our current study is related to studies considering
market persistence and efficiency in stock market indices
[2–4, 11], cryptocurrencies [12], and economic uncer-
tainties [13]. For implied volatility indices, Caporale et al.
[9] have shown first empirical evidence on the persistence
in the CBOE VIX. Our paper is more comprehensive given
its inclusion of more CBOE volatility indices such as the
VXN, VXO, VXD, RVX, VPD, OVX, VVIX, and SKEW, as
well as its coverage of the COVID-19 outbreak period. It
extends our limited knowledge of the behaviour of im-
plied volatility indices by considering the persistence of a
large set of volatility indices using long-memory methods.
'is is informative for policymakers and practitioners
regarding market efficiency and predictability. In fact,
evidence of predictability reflects evidence of market
inefficiency [9], which can be exploited by crafting trading
strategies to earn abnormal profits in CBOE volatility
indices that are mostly tradeable. Furthermore, evidence
of long-memory properties matters to derivative traders
and risk managers [14].

2. Data and Methodology

2.1. eDataset of Volatility Indices. 'e CBOE followed the
market clues back in 1973 and introduced its first implied
volatility index (VIX) for S&P 500 in 1993. 'e VIX was
perfected in the next decade, with a change in its meth-
odology. Known as the market fear gauge, the VIX has
predictive power over stock returns (e.g., [15, 16]). Subse-
quently, the CBOE launched NASDAQ-100 based VXN at
the onset of the dot-com bubble back in 2001, and later on it
developed the RVX as a near term implied volatility index
for the Russell 2000 in 2004 and the VXD for the Dow Jones
Industrial Average in 2005. 'e VXO followed soon,
reflecting the implied volatility of the S&P 100. Interestingly,
the CBOE developed the SKEW or Black Swan Index from
the tail risk of the S&P 500. VVIX measures the volatility in
VIX itself. OVX was developed in 2007 to predict volatility
related to crude oil. VPD, or the Premium Strategy Index
with a modified VIX (auto-account sell on every 1 month),
was also introduced in 2007. 'us, this basket of volatility
measures covers virtually all the known volatility universe.
Hence, long-memory investigation of such a universe could
lead to persistence.

Daily closing levels of nine volatility indices (VIX, VXN,
VXO, VXD, RVX, VPD, OVX, VVIX, and SKEW) are

extracted from the CBOE (http://www.cboe.com). 'e
sample period is October 5, 2007, to October 5, 2020, de-
termined by data availability, yielding 3,354 data points for
each index. 'e rationale behind the selection of these nine
volatility indices is the difference not only in their under-
lying assets (e.g., Russell 2000, DJIA, S&P 500, S&P 100,
NASDAQ, Crude Oil ETF, Premium Strategy, Tail Risk
Index, and volatility of volatility index) but also in their
construction, for example, the Premium Strategy index and
the Tail Risk Index.

Figure 1 depicts the time plot of the nine volatility in-
dices under study. Notably, there is a large spike in the levels
of VIX, VXN, VXO, VXD, RVX, OVX, and VVIX around
the COVID-19 outbreak in early 2020, whereas a drop is
shown for the Capped VIX Premium Strategy Index (VPD)
around that time, which reflects the performance of a
strategy that overlays a sequence of short, one-month VIX
futures. 'e SKEW index, which generally fluctuates be-
tween 100 and 150 points, reached the 150 level a few times
around the COVID-19 outbreak, reflecting the overall fear in
the US market and thus the fact that the implied volatilities
for the out-of-the-money (OTM) puts were much higher
than those of the OTM calls.

In our empirical analysis, we consider the pre-COVID-
19 outbreak period covering March 1, 2019, to December 31,
2019 (212 daily observations) and the during COVID-19
outbreak period covering January 1, 2020, to November 2,
2020 (212 daily observations). Accordingly, two windows of
equal length of 212 daily observations in the pre-COVID-19
and during COVID-19 periods are put to test, which help
unravel the degree of long memory during the pandemic.

'e summary statistics of the level series for the nine
volatility indices are presented in Table 1. Apparently, the
most (least) volatile index is the VPD (VIX). All indices are
non-normally distributed as evidenced by the Jarque–Bera
statistics, which points to the suitability of applying the
Hurst exponent. However, SKEW tends to be mesokurtic in
nature. Skewness and kurtosis values are largest for the
OVX, which might be due to its unprecedented spike when
crude oil prices collapsed to negative territories during the
COVID-19 outbreak and the oil price war between Saudi
Arabia and Russia. Except for VPD, all volatility series are
stationary as shown by the augmented Dickey–Fuller (ADF)
test. 'erefore, we conduct the analysis of the VPD based on
its first difference to ensure stationarity (unreported results
from the ADF test show that the first differences of the VPD
index are stationary at the 1% level of significance), whereas
for the rest of indices the analysis is conducted with level
series.

2.2. Methodology. 'e ARFIMA model is a parametric
method used to examine the long-memory trait in time
series [14, 17]. In the ARFIMA (p, d, q) model, p repre-
sents the lag of autoregression, q represents the lag of
moving average, and d is the fractional integrating pa-
rameter. 'e ARFIMA (p, d, q) model can be expressed as
a generalization of the ARIMAmodel as follows: εt � mtσt,
where mt ∼ N(0, 1)
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ϕ(B)(1 − B)
d
Yt � θ(B)εt, (1)

where Yt is the state output represented by the time series,Φ
(B) and W (B), respectively, represent autoregressive and
moving average operators, with B being the lag operator; d is
the fractional parameter that varies between −0.5 and + 0.5,
which is also called the memory parameter because it reg-
ulates the long-memory property of the time series; and εt

represents the white noise term. According to Hosking [17],

whenever -0.5< d< 0.5, then Yt is mean reverting. We use a
fixed window method (calendar year) to calculate the long-
memory parameter with the local Whittle estimator of
Robinson [18]. 'e strength of the long-range dependence is
calculated by the fractional integration parameter d.

Furthermore, we calculate the Hurst exponent H ≈ d +

0.5 [19] (as argued by Torre et al. (2007), “ARFIMA mod-
elling provides an interesting method for estimating fractal
exponents”) to evaluate the long-memory intensity.H varies
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Figure 1: Levels of the nine volatility indices from October 5, 2007, to October 5, 2020.

Table 1: Descriptive statistics for the levels of the nine CBOE volatility indices.

Volatility index Mean Max Min SD Skewness Kurtosis Jarque–Bera ADF test
VIX 23.148 82.690 13.750 8.199 1.934 8.360 6106.486∗ −4.468∗
VXN 22.046 80.640 10.310 9.324 2.318 10.449 10758.400∗ −5.022∗
VXO 19.790 93.850 6.320 10.650 2.498 11.674 14004.380∗ −5.067∗
VXD 18.877 74.600 7.580 8.867 2.442 10.562 11323.660∗ −4.212∗
RVX 24.975 87.620 11.830 10.965 2.037 8.020 5842.102∗ −4.355∗
VPD 248.506 500.010 69.260 99.828 0.367 2.246 154.767∗ −1.232
OVX 37.975 325.150 14.500 19.209 4.463 39.260 194874.000∗ −5.333∗
VVIX 90.860 207.590 59.740 15.508 1.527 8.245 5147.311∗ −9.48∗
SKEW 125.401 159.030 107.230 8.285 0.702 3.146 278.5628 −8.681∗

Note: the sample period is October 5, 2007, to October 5, 2020, yielding 3,354 daily observations. ∗ denotes significance at the 5% level. ADF test is conducted
with intercept.
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between 0 and 1 and thus the Hurt exponent can have four
conditions as follows:

If 0.5<H≤ 1, then the time series is persistent and shows
evidence of long memory, which contradicts the EMH. 'e
higher the H value, the higher the persistence and long
memory.

If 0<H< 0.5, then the time series is anti-persistent (i.e.,
has a short memory). Such a condition indicates fast changes
in the direction of movements of the series.

If H� 0, then the time series exhibits no long-range
dependence.

If H� 0.5, then the time series follows a random walk,
which supports the EMH. Notably, the Gaussian distribu-
tion is observed with the series having nomemory. However,
it is difficult for the process to achieve H� 0.5, which is
merely a point rather than a range.

We have also calculated fractal dimension (D) as an ad-
ditional confirmatory tool, widely accepted in long-memory
research. Fractal dimension or Hausdorff dimension (D) is
widely considered as an indicator for surface roughness. It
functions as an estimator of the “short-range memory” or
“local” memory. It has been well documented that, for any self-
affine processes, the fractal dimension is linked to the long-
range dependence or long memory of the underlying series.
'e relationship of Hurst exponent and fractal dimension is
linear and represented by D� 2−H. Furthermore, D� 1.5 is
denoted as random walk or an indicator of market efficiency.
Market efficiency gets violated if the condition is not satisfied.
Moreover, D� 1.5 signifies no local trend as well. 'e classical
box-count estimator of D has been put into use here. It has
conditions such as the following: ifN(ε) denotes the number of
boxes required at scale ε, the box-count estimator equals the
slope in an OLS fit of log(N(ε)) on log(ε) [20].

3. Empirical Results

Wepresent in Table 2 the values of the Hurst exponent (H) and
the standard errors (SE) of the nine volatility indices. 'ey
range from 0.56431 to 0.99999, showing that the extent of long-
memory changes within a short range. Past levels in the vol-
atility index have a significant impact on current levels, sug-
gesting that correlations between levels decay very slowly. 'e
results indicate the presence of the long-memory effect in all
volatility indices (given that the estimates of the Hurst expo-
nent are larger than 0.5). Persistence in the volatility indices is
present over the years; however, the degree of persistence
changes over time. Accordingly, the results indicate that none
of the volatility indices follows a random walk (in fact, none of
the nine volatility indices under study has an H value below
0.55 for the entire observation period from October 5, 2007, to
October 5, 2020).

For the VPD, the Premium Strategy Index with auto ad-
justment remains themost persistent with anH value very close
to 1 throughout the sample period 2008–2020. Another in-
teresting observation is that almost all the volatility indices are
above the extremely high persistence zone (H> 0.9) during the
2008 global financial crisis.'e only exception is SKEW, called
the Black Swan Index, which is based on the slope of implied
volatility. A similar pattern is observed during the BREXIT

announcements and multiple bailouts of Greece during
2014–2016. 'is pattern however breaks in 2020 (amid the
COVID-19 outbreak). Hence, the persistence and extent of
longmemory in SKEW is relatively less than the other volatility
indices during financial crisis periods. 'e Hurst value for the
SKEW clocks marginally below 0.8 on two occasions. Inter-
estingly, both are during financial crisis periods (2008 and
2014). Another important observation is that the Hurst value of
SKEW is in the extreme zone, clocking well above 0.9, just
before a financial crisis on both occasions (2007 and 2013).
Even before the COVID-19 pandemic, it clocked close to 1.
'is might imply that the long memory of SKEW holds the
clue to future crisis periods. Usually, extremely high Hurst
values coincide with the peaks of crises [9]. 'e SKEW index,
which tracks the S&P 500 tail risk, computes the probability of a
S&P 500 move of 2 σ from its mean value 30days in advance;
for example, when the SKEW is 130, a 2 σ deviation has a
probability of 10.4%.'e sudden drop of theHurst exponent of
the SKEW in various periods (the global crisis of 2008, BREXIT
2016, and the onset of the pandemic in 2020) indicates a sudden
change in probability of 2 σ deviation. 'e probability is either
increasing or decreasing drastically. Results from other vola-
tility indices indicate that their levels are positively correlated,
generating persistence and long memory throughout the
sample. As for the SE of the Hurst exponent, they are extremely
low on all occasions, indicating the robustness of Hurst ex-
ponent measurements.

Table 2 also indicates a D ≠ 1.5 for all one twenty-six
outcomes over nine volatility indices (from October 5,
2007, to October 5, 2020), signifying that the idea of EMH is
getting defenestrated entirely. In fact, the observations are
quite similar even in COVID-19 subsamples (see Table 3)
under consideration. Since volatility is fundamentally
derived from various financial asset classes, hence, it can be
said that financial market efficiency suffered during
COVID-19 as well.

In Table 3, we compute the Hurst exponent for the pre-
COVID-19 and during COVID-19 periods using a rolling
window approach that tends to provide more reliable results.
'e results show that, during the COVID-19 outbreak pe-
riod, HSKEW drifted marginally away from 1, whereas other
Hurst values progressed towards 1. Otherwise, the major
patterns remained consistent with the findings from Table 2.
Notably, more than 70% of our selected sample period
covers periods of turmoil that are diverse in nature. For
example, it includes the build-up and crash period around
the 2008 global financial crisis, the EU sovereign Debt crisis,
and the COVID-19 outbreak.'is can be shown in the Hurst
values that exhibit high persistence during these crisis pe-
riods, intuitively indicating bubbles and anti-bubbles. Our
results draw parallel with previous studies of repute though
with only the VIX [9, 10].

4. Conclusion

While evidence for long-term memory in the US stock
market is well recognized (e.g., [2]), much less is known
about the various implied volatility indices. To address this
gap, we examine the presence of long-memory properties in
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nine CBOE volatility indices (VIX, VXN, VXO, VXD, RVX,
VPD, OVX, VVIX, and SKEW) to make inferences re-
garding the FMH and the possibility of applying prediction
models based upon past volatility. 'e main results are
summarized as follows. Firstly, the consistent presence of
long memory in various volatility indices supports the FMH.
Past volatility certainly provides information about future
prediction. Secondly, these empirical findings provide a
theoretical premise for trading strategies. Evidence of the
consistent presence of long memory points to the utility of
applying trend-based trading strategies such as moving
average convergence divergence (MACD). 'irdly, the
SKEW might be used as a predictor of various probable
crises (both financial and non-financial). Fourthly, the rel-
ative instability in long-memory traits is visible in all vol-
atility indices. Hence, trading strategies might need to switch
periodically for more consistent performance.

Our results supporting the presence of a degree of
persistence are extremely useful to both investors and
policy-makers for identifying herding, and to traders opting
for generating abnormal returns using trend-based tech-
niques such as the MACD. We found true long memory in
all the cases (i.e., persistence coupled with mean reverting
feature). 'is means permanent policy shocks are required
rather than random policy shocks, as suggested by some
eminent studies [21, 22]. Circuit filters, deployed in the stock
markets, can be truncated for a reasonably long period of
time, in order to contain volatility within specified limits.
Option trading could be restricted for a long period as well.

Notably, the results show that long memory is persistent
through all crisis phases such as the global financial crisis
(2007–2008), BREXIT (2016), and lately COVID-19 (2020) in
an extremely consistent manner. Hurst exponent did not
decrease drastically across all nine volatility indices even during
relatively calmer periods such as 2012 to 2014.'is observation
indicates towards embedded speculative bubble formation (of
various degrees) on all occasions under consideration. Intui-
tively, if the near-term (e.g., last 15 days) Hurst exponent is
larger than the comparatively midterm (e.g., last 30 days), then
this indicates an increase in the degree of herd, which might be
understood in the context of panic selling during crisis periods.
If short selling is possible under regulations, it could be well the
trader’s call. Suppose the 15-day Hurst is lower than the 30-day
Hurst; this indicates in a steady market with surging investor
sentiment index that a trend reversal is around the corner and
that bull market players have eased or ceased their constant
buying. Given the emergence of the SKEW as a potent indi-
cator of crisis prediction, it deserves further in-depth analysis
via the application of suitable prediction models. SKEW es-
sentially reflects the tail risk of S&P500 through implied vol-
atility of OTM strikes.'e higher the SKEW (closer to 150), the
higher the chances of a probable Black Swan event. In fact,
SKEW-Hurst enjoyed a strong negative correlation with VIX-
Hurst (-0.74). A rising SKEW (persistent) coupledwith a falling
VIX (persistent) is considered bearish in equity markets, en-
couraging short selling (provided permitted by the regulators).
Our results showed such trends, especially in 2009, 2017, and
2020. 'at issue of SKEW-VIX relationship is left to future
studies [20].
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