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)e clustering of mixed-attribute data is a vital and challenging issue. )e density peaks clustering algorithm brings us a simple
and efficient solution, but it mainly focuses on numerical attribute data clustering and cannot be adaptive. In this paper, we studied
the adaptive improvement method of such an algorithm and proposed an adaptive mixed-attribute data clustering method based
on density peaks called AMDPC. In this algorithm, we used the unified distance metric of mixed-attribute data to construct the
distance matrix, calculated the local density based on K-nearest neighbors, and proposed the automatic determination method of
cluster centers based on three inflection points. Experimental results on real University of California-Irvine (UCI) datasets showed
that the proposed AMDPC algorithm could realize adaptive clustering of mixed-attribute data, can automatically obtain the
correct number of clusters, and improved the clustering accuracy of all datasets by more than 22.58%, by 24.25%, by 28.03%, by
22.5%, and by 10.12% for the Heart, Cleveland, Credit, Acute, and Adult datasets compared to that of the traditional K-prototype
algorithm, respectively. It also outperformed a modified density peaks clustering algorithm for mixed-attribute data
(DPC_M) algorithms.

1. Introduction

Clustering analysis has been widely used in statistics, ma-
chine learning, pattern recognition, image processing, such
as image inpainting [1, 2], image super-resolution recon-
struction [3], and so on. Mixed-attribute data clustering is
one of the research hotspots in data mining. )ere are many
solutions to mixed-attribute data clustering, including at-
tribute conversion methods, clustering ensemble methods,
prototype-based methods, hierarchical clustering methods,
and density clustering methods [4]. )e K-prototypes al-
gorithm proposed by Huang [5] and the iterative clustering
learning based on object-cluster similarity metric (OCIL)
algorithm proposed by Cheung and Jia [6] are both typical
prototype-based methods. )e similarity-based agglomera-
tive clustering (SBAC) algorithm proposed by Li and Biswas
[7] is a famous aggregation hierarchical clustering method.
Density clustering algorithms include the relative density-
based clustering algorithm for mixture datasets (RDBC_M)

algorithm based on relative density proposed by Huang and
Li [8] and the density-based clustering algorithm for mixed
data with mixed distance measure methods (MDCDen)
algorithm based on density and mixed-distance measure-
ment proposed by Chen and He [9]. But the state-of-the-art
methods require user intervention and parameter tuning, so
they cannot realize adaptive clustering.

)e density peaks clustering (DPC) algorithm proposed
by Rodriguez and Laio [10] has attracted a great deal of
attention from researchers in recent years [11–14]. In this
algorithm, a decision graph is constructed by calculating a
local density ρi and a relative distance δi, and the number of
clusters is determined by manually selecting the center
points of the clusters in the decision graph. )e remaining
data points will be assigned to the cluster of the nearest
higher-density neighbor. )eoretically, it can cluster data of
both arbitrary shape and type and automatically identify
outliers. )e algorithm is efficient and has only one pa-
rameter, dc (cutoff distance), which determines the local
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density calculation. )e input of the DPC algorithm is the
distance matrix between data points, and as long as the
distance measurement problem of mixed-attribute data is
solved, the algorithm can be applied directly to cluster the
mixed-attribute data. )erefore, Liu et al. [15] defined a
distance measurement method for mixed attributes and
improved the DPC algorithm to a modified DPC algorithm
for mixed-attribute data (DPC_M) algorithm, which was
successfully applied to mixed-attribute data clustering. Du
et al. [16] defined a distance-measurement method between
mixed-attribute data points by referring to the similarity in
OCIL algorithm and used the DPC algorithm to perform
clustering analysis on the numerical attribute, categorical
attribute, and mixed-attribute data. )ese two algorithms
prove the feasibility of the density peaks algorithm in the
clustering of mixed-attribute data. But they are not adaptive
and need manual intervention in the clustering process.

Adaptive algorithm is one of the most popular research
fields [17–19]. )ere are also many studies on adaptive
improvement of DPC algorithm, but they mainly focus on
clustering of numerical attribute datasets, which will be
detailed in the next section. To realize the adaptive clustering
of mixed-attribute data, we proposed an adaptive mixed-
attribute data clustering method based on the DPC algo-
rithm, called AMDPC. Experimental results showed that the
proposed AMDPC algorithm had a better clustering effect,
automatically determined the cluster number, and realized
adaptive clustering of mixed-attribute datasets with no
parameter.

For this paper, the main contributions are as follows:

(1) )e distance-measurement method of mixed-attri-
bute data is studied, and a unified distance-mea-
surement method is used to construct the distance
matrix between data points of mixed-attribute data,
to solve the problem of using the DPC algorithm to
cluster mixed-attribute data.

(2) )e adaptive improvement of the DPC algorithm is
studied and a new method to determine the center of
the cluster is proposed. Because the cluster center is
usually a data point with large local density and
distance, after calculating ci � ρi × δi the cluster
center is determined by calculating the inflection
points of the sorted ci, ρi, and δi sets.

(3) An adaptive local density calculation method based
on K-nearest neighbor (KNN) is used to improve the
robustness of the algorithm, without manually de-
termining the cutoff distance dc and other
parameters.

2. Related Work

2.1.DensityPeaksClustering. )eDPC algorithm is based on
the following two assumptions: the cluster center point has a
higher local density, which is surrounded by neighbor points
with lower local density, and the cluster center point is
relatively far from other denser data points. )erefore, the
DPC algorithm constructs a decision graph by calculating a
local density ρi and a relative distance δi to find the cluster

center of a dataset. )e remaining data points in the dataset
will be assigned to the cluster with the nearest local density
that is higher than its own.

Suppose that X� {X1, X2, . . ., Xn} is the dataset to be
clustered consisting of n data points; we define the distance
between the data points Xi and Xj as dij � dist(Xi, Xj). A
cutoff distance dc is defined in the DPC algorithm, and the
local density ρi and the distance δi of each data point are
defined, as shown in equations (1) and (2), where χ(dij −

dc) � 1 when dij − dc< 0 and 0 otherwise.

ρi � 
j

χ dij − dc , (1)

δi �

min
j: ρj>ρi

dij  ρi <maxk ρk(  ,

maxj dij  ρi � maxk ρk( .

⎧⎪⎨

⎪⎩
(2)

When the local density of Xi is not the maximum, the
relative distance is the minimum value of the distance from
this point to all points with higher density; otherwise, the
relative distance is the maximum distance from this point to
all other points.

When the dataset has few data points, the local density is
generally calculated using a Gaussian kernel, as shown in

ρi � 
j≠i

exp −
dij

dc

 

2
⎛⎝ ⎞⎠. (3)

Based on the local density ρi and relative distance δi for
each data point, users can explicitly choose the cluster
centroids on the decision graph. Once the center point is
determined, each remaining data point can be classified into
the same cluster as its nearest neighbor with a higher density.

2.2. Adaptive Improvement of the DPC Algorithm. )e
original DPC algorithm has some drawbacks: the cutoff
distance dc and cluster centroids selected manually have
great influence on the clustering results, and the original
method of local density calculation is not effective for data
with different density clusters or different shapes. At the
same time, the original sample allocation strategy will create
a domino effect. Once a sample is misallocated, it will lead to
a series of sample allocation errors, resulting in incorrect
clustering results and a reduction in the reliability of the
clustering results [20, 21]. )erefore, many adaptive im-
provement methods of the original DPC clustering algo-
rithm have been proposed. )e research on the adaptive
improvement of the density peaks algorithm mainly focuses
on the automatic determination of the cutoff distance dc, the
calculation of adaptive local density, the design of adaptive
distance measurement, and the automatic determination of
cluster number (the selection of cluster centroids). Most of
these studies are focused on the clustering of numerical
attribute data.

2.2.1. Adaptive Improvement for Selection of Cutoff Distance
and Local Density Calculation. Wang et al. [22] proposed a
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method to automatically extract the optimal value of the
threshold in different kernel functions and different datasets
from the original dataset by using the potential entropy of
the data field. According to the characteristics of the dataset,
Jiang et al. [23] used the change of the nearest-neighbor
distance curve to automatically determine the density
threshold dc and used this method to guide the clusters
merging after the first clustering using DPC. )is was done
to solve the problem that the DPC algorithm will divide a
cluster into multiple clusters when there are two or more
density peaks in a cluster. Sun et al. [24] proposed an ADPC
method with a Fisher linear discriminant. )e Pearson
correlation coefficient is first introduced as the weight, and
then the kernel-density-estimation function based on the
weighted Euclidean distance is used to calculate the local
density between the samples. Lotfi et al. [25] proposed a
novel dynamic density peaks clustering method based on
density backbone and fuzzy neighborhood called DPC-
DBFN in which a fuzzy kernel is proposed to compute the
local densities of the data points. Parmar et al. adopted the
residual error computation to measure the local density
within a neighbourhood region and proposed residual error-
based density peak clustering algorithm named REDPC
[26, 27] and FREDPC [28].

Du et al. [29] proposed a DPC-KNN algorithm that
introduced K-nearest-neighbor data to participate in the
local density calculation. In addition, they also proposed an
improved principal component analysis- (PCA-) based al-
gorithm named the DPC-KNN-PCA algorithm for high-
dimensional data clustering. Juanying et al. proposed KNN-
DPC [20] and FKNN-DPC [21] algorithms, in which a
uniform local density metric based on KNNs, fuzzy KNNs,
and two new strategies for assigning the remaining points to
their most likely clusters are proposed for both. Yaohui et al.
[30] proposed an adaptive DPC algorithm (named ADPC-
KNN), which introduced the idea of KNNs to calculate the
global parameter dc and the local density ρi of each point,
applied a new approach to automatically select the initial
cluster centers, and finally aggregated the clusters if they
were reachable in density. Shi et al. [31] presented an al-
gorithm called the adaptive clustering algorithm based on
KNN and density (ACND) that first determines the KNN of
every data point and then redefines the similarity between
pairs of points with shared nearest neighbors. It does not
force the user to define parameter values, recognizes the core
point and constructs the cluster around it, and then attempts
to detect the clustering boundary. It makes full use of the
effect of KNN, and it has low computational complexity and
can deal with different shapes as well as different data sizes
with noise and outliers. Xu et al. [32] proposed extended
adaptive density peaks clustering (EDAP) for overlapping
community detection in which the local density is calculated
based on KNN. Jiang et al. [33] proposed a method called
G-KNN-DPC to calculate the cutoff distance based on the
Gini coefficient and KNN. Sun and Liu [34] proposed a new
density formula combined with the idea of gravitation and
KNN that can make the local densities of sample points in
dense and sparse areas have more obvious separability. Fan
et al. [35] proposed a new DPC algorithm by incorporating

an improved mutual K-nearest-neighbor graph (Mk-NNG)
into DPC.

In general, KNN is used for local density calculations in
most of these improved algorithms. Letting d(Xi, Xj) be the
Euclidean distance between the ith and jth data points in the
dataset X� {X1, X2, . . ., Xn}, the local density calculation
formula defined by DPC-KNN is expressed by

ρi � exp −
1
K



Xj∈KNN Xi( )

d
2

Xi, Xj 
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (4)

and the local density calculation formula defined in the
KNN-DPC and FKNN-DPC algorithms is expressed as
follows:

ρi � exp − 

Xj∈KNN Xi( )

d
2

Xi, Xj ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (5)

where KNN(Xi) represents the KNN set of data point Xi. In
general, k takes a fixed value of 5 or 6, or is calculated
according to the percentage of data points in the dataset. In
most cases, k � p∗N, where the percentage p� 2, N is the
total number of data points in the dataset, and ∗ is a ceiling
function. Most of these algorithms are based on equations
(4) and (5) or variants.

2.2.2. Automatic Determination of Cluster Number. To solve
the problem that the density peaks algorithmmust manually
select the cluster center, Ma et al. [36] introduced the weight
of the cluster center. First, the products c (ci � ρi × δi) of the
normalized adjacent distance δi and the local density ρi were
calculated. )en, the inflection point of c was used to de-
termine the cluster center of the dataset to avoid the sub-
jective difference of users’ selection of the cluster center.
Zhao [37] proposed an improved LDPC algorithm com-
bined with the linear fitting method. In this algorithm, the
sparse and dense points are separated by the linear fitting
method, and then the residual sequence C is obtained by
making a difference between the original cs and the fitting
value cr. )e average residual value of the first 20 points is
selected as the threshold value, and the data points with
residual values greater than the threshold are the central
points. Du et al. [38] proposed a parameter-adaptive clus-
tering algorithm named DDPA-DP. )e data-driven
thought goes through the design of DDPA-DP: at first, a
series of fitted curves are established to automatically detect
points’ roles by points’ density attributes instead of any
artificial thresholds; meanwhile, a new point’s role “pending
point” is defined, and then by the change of pending points’
number, the local field’s radius can be adaptively optimized.
Garćıa-Garćıa and Garćıa-Ródenas [39] proposed an opti-
mization-based methodology for automatic parameter/
center selection that uses the internal/external cluster val-
idity index as the objective function.

Wang et al. [40] proposed an efficient hierarchical
clustering algorithm based on density peaks, used the step
characteristics of the parameter c to distinguish different
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levels of clustering, and then constructed a hierarchical
clustering tree based on the intermediate result of DPC
(NNeigh, a DPC array) to complete efficient hierarchical
clustering and determined the cluster number automati-
cally. Zhang and Li [41] extended the traditional DPC
algorithm by using the CHAMELEON hierarchical clus-
tering algorithm. )e DPC algorithm was used for the
initial clustering in the extended algorithm, and then the
hierarchical clustering algorithm was used to merge the
subclasses for the clustering results, and the effect was
improved. Bie et al. [42] proposed a fuzzy DPC algorithm
called Fuzzy-CFSFDP that uses fuzzy rules to find all
density peaks and treats each peak as a local cluster, and
then merges the close local clusters into a global cluster to
achieve the final cluster. Ding et al. [43] proposed an
improved density peaks clustering based on a natural
neighbor expanded group (DPC-NNEG).)ey first define a
natural neighbor expanded (NNE) and a natural neighbor
expanded group (NNEG) and then divide all NNEGs into a
target number of sets as the final clustering result according
to the degree of closeness of the NNEGs. To describe the
clustering center more comprehensively, Diao et al. [44]
redefined the local density and relative distance and dis-
tance attributes of the two neighbor relationships (KNN
and SNN) as fused. )is method can detect the low-density
clustering center. Mehrmohammadi et al. [45] proposed a
better method for selecting centers based on the mutual
kNN graph and the shortest path. Fang et al. [46] proposed
adaptive core fusion-based density peak clustering
(CFDPC) to detect clusters in any shape and density
adaptively. An initial clustering based on automatic finding
of density peaks is proposed first. An adaptive search
approach is then proposed to find the core points and a core
fusion strategy based on similarity within the cluster is
proposed to obtain the final clustering results.

In summary, the main improvement ideas of automatic
determination of cluster number can be categorized as
following two directions. One is to determine the cluster
center by taking a larger value of c, ρ, and δ, such as finding
the inflection point of c or using curve fitting and residual
analysis. )e second is to adopt the idea of hierarchical
clustering, initially selecting more clustering centers and
then merging the close local clusters.

Notably, c, ρ, and δ are discrete sequences, and for the
calculation of the inflection point of the discrete sequence,
Ma et al. [36] used the slope of the line segment at two points
to represent it. )e calculation formula is expressed as
follows: Sm

i represents the average change rate of the discrete
sequence in the interval [i, i+m], namely, the slope change
of y in the interval [i, i+m].

S
m
i �

yi+m − yi

m
. (6)

Based on the slope calculation, the inflection point is
defined as follows:

i � argmax
S
1
i

S
i−1
1

 , (7)

where S1i is the slope from the ith point to the ith +1 point,
Si−1
1 is the slope from the first point to the ith point, and

S1i /S
i−1
1 represents the average change rate of the discrete

sequence y in the interval [1, i]. In this case, the inflection
point is the critical point with the fastest slope change.

3. Adaptive Mixed-Attribute-Data Density
Peaks Clustering

3.1. Definition of Unified Distance Metric of Mixed-Attribute
Data. Suppose that DS� {X1, X2, . . ., Xn} is a mixed dataset
with d dimensions and n instances, which contains dr di-
mensional numerical attributes and dc (dc � d − dr) di-
mensional categorical attributes, for two instances Xi and Xj
in the dataset; their distance is defined asD(Xi, Xj) as follows:

D Xi, Xj  � Dr Xi, Xj  + Dc Xi, Xj . (8)

Equations (9) and (10) illustrate the distance compu-
tation of the numerical attribute Dr(Xi, Xj) and that of the
categorical attribute Dc(Xi, Xj), respectively:

Dr Xi, Xj  � 1 − e
− dist X

dr
i

,X
dr
j 

, (9)

Dc Xi, Xj  � 

dc

t�1
ωt ∗ δ xit, xjt , (10)

where dist(X
dr

i , X
dr

j ) denotes the normalized Euclidean
distances of the numerical attribute of the data points
Xi, Xj. Because the Euclidean distance is non-negative, it is
ensured that the distance value of the numerical attribute is
in the interval [0,1]. Regarding the distance of the categorical
attribute, the matching method with the entropy weight is
used. )e matching distance of the data point Xi, Xj in the
tth categorical attribute is calculated by

δ xit, xjt  �
0, if xit � xjt 

1, if xit ≠xjt 
.

⎧⎪⎨

⎪⎩
(11)

)e importance of a categorical attribute is quantified by
its average entropy on each attribute value. )e weight of
each attribute ωt is then computed by

ωt �
HAt


dc

s�1 HAs

. (12)

Assume that the total number of categorical values on
the tth categorical attribute is mt, where the probability of
occurrence of the sth (s� 1,2, . . ., mt) values is p(ats). )e
entropy weight HAt

can be calculated using equation (13); it
represents the average entropy of mt values of tth classifi-
cation attribute:

HAt
� −

1
mt



mt

s�1
p ats(  log p ats( . (13)

Assuming a mixed-attribute dataset about the weather
record is shown in Table 1, the dataset DS� {X1,X2,X3,X4,X5}
has five records X1–X5 and four attributes A1–A4. )e four
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attributes represent weather, windy, temperature, and hu-
midity: the first two attributes weather and windy are cat-
egorical attributes and the last two are numerical ones. Here
dr � 2, dc � 2. Let us look at the calculation process of the
unified distance metric.

Firstly, it is necessary to normalize the numerical at-
tributes A3 and A4; the results are

A3 � [1.0000,0.9615,0.9231,0.6154,0]T, A4 � [1,0.5,1,1,0]T,
)en formulas (12) and (13) are used to calculate the weights
of the first and second dimensions as ω1 � 0.5708 and
ω2 � 0.4292, respectively. Finally, the distance between the
first record and other records can be calculated according to
formula (8) as follows:

D X1, X2(  � 1 − exp −

���������������������

(1 − 0.9615)
2

+(1 − 0.5)
2



  + 0.4292 � 0.8235,

D X1, X3(  � 1 − exp −

�������������������

(1 − 0.9231)
2

+(1 − 1)
2



  + 0.5708 � 0.6449,

D X1, X4(  � 1 − exp −

�������������������

(1 − 0.6154)
2

+(1 − 1)
2



  + 0.5708 � 0.8901,

D X1, X5(  � 1 − exp −

���������������

(1 − 0)
2

+(1 − 0)
2



  + 0.5708 � 1.3277.

(14)

3.2. Local Density Calculation Based on KNN. In a small
dataset, the Gaussian kernel function is usually used to
calculate the local density, which requires manually setting
the density threshold parameter dc. As mentioned above, to
adaptively calculate the local density, many studies have
adopted KNN information to improve the calculation of the
local density. We adopt the idea of the DPC-KNN algorithm
and use the improved Gaussian kernel function of KNN
information to calculate the local density of each data point.
Using the KNN set of data points, we can calculate the
average of the sum of squares of distance between each data
point and KNNs. )us, equation (4) can be used to calculate
the local density of data points. In this calculation method, it
is not necessary to set the cutoff distance parameter dc, but
rather to determine the nearest-neighbor number K.
)rough subsequent experiments, the nearest-neighbor
number K can be automatically determined based on the
data points in the dataset.

3.3. Automatically Determining the Cluster Number. To re-
alize the automatic determination of the cluster number, the
method of calculation of the inflection point of c proposed
by Ma et al. [36] is simple but not sufficiently accurate. In
theory, the center points should be points with large local
density ρi and large relative distance δi, and the product of
the two ci does not fully guarantee that the local density and
the relative distance are both large.

From the sample dataset of the DPC algorithm and its
decision graph [10] in Figure 1, points 1 and 10 in the upper

right corner of the decision graph are cluster centers for which
the local density and relative distance are both large. Points
26, 27, and 28, however, are treated as outliers for which the
relative distance is large, but the local density is small.
)erefore, we presented a three-inflection-point improve-
ment method, which is based on equations (2) and (4) to
calculate the local density and distance of the data points. We
then sorted the c, ρ, and δ values of each data point by
descending order and used equation (7) to calculate the in-
flection point of c, ρ, and δ, and to obtain three candidate sets
Sg, Sp, and Sd according to three inflection points of c, ρ, and
δ, respectively.)e candidate set Sg contains the points with c

values that are larger than those of the inflection point of c.
Similarly, the candidate set Sp contains the points for which
the value of ρ is larger than that of the inflection point of ρ,
and the candidate set Sd contains the points with δ values
larger than those of the inflection point of δ. )en we cal-
culated the intersections Sc � Sg ∩ Sp∩ Sd, and Sc is the cluster
center set. Points for which the relative distances are larger,
but not the cluster center, can be judged as the outliers, which
can be obtained by calculating So� Sd− Sc. )erefore, the
improved method proposed in this paper could automatically
identify the cluster center and outlier point.

For example, the local density ρi, relative distance δi, and
ci of partial data points of a sample dataset are shown in
Table 2. According to equation (7), we can calculate
Sd � {1,2,3,4,5,6,8}, Sp � {1,2,3,4,5,6,7,10}, Sd � {1,2,3,4,5,6,7},
and then Sc � Sg ∩ Sp∩ Sd � {1,2,3,4,5,6}; it contains the
cluster centers. At the same time, we can get the outlier
So � Sd − Sc � {8}.

Table 1: A sample mixed-attribute dataset.

Records Weather (A1) Windy (A2) Temperature (A3) Humidity (A4)
X1 Sunny No 36 0.9
X2 Sunny Yes 35 0.8
X3 Cloudy No 34 0.9
X4 Rainy No 26 0.9
X5 Rainy No 10 0.7
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)e three-inflection-point algorithm to determine the
center of the cluster is described as Algorithm 1.

3.4. AMDPC Implementation. First, we used the unified
distance measurement of the mixed-attribute data to calculate
the distance matrix of the mixed-attribute dataset according
to equation (8).)en, we calculated the local density ρi of each
data point using the KNN equation (4) and calculated the
distance δi using the method of equation (2); thus, ci� ρi × δi
is calculated and the cluster centers are found using Algo-
rithm 1. Finally, the remaining points could be clustered by
finding the nearest local point with densities higher than it
and setting the clustering label to be consistent with its
nearest-neighbor point with high density. )e overall flow
diagram of the AMDPC algorithm is shown in Figure 2.

)e input of the algorithm is the mixed-attribute dataset
(DS) and the output is the cluster label vector (CL). )e
detailed process of the AMDPC algorithm is as Algorithm 2.

3.5.ComplexityAnalysis. For datasets with n data points, the
space complexity of the algorithm is mainly from the storage
of distance matrix. According to the input demand of DPC
algorithm, 3∗ n∗ (n − 1)/2 storage space is needed. Col-
umns 1 and 2 are the data point numbers and column 3 is the
distance between the two data points. In addition, the al-
gorithm requires three arrays of length n to store the local
density ρ, distance δ, and its product c, so the space com-
plexity is O(n2).

)e time complexity of the AMDPC algorithm is mainly
derived from distance calculation in Step 2 and the local
density computation in Step 3. )e time complexity of
distance computation and its product calculation is O(n2).

)e sort time complexity in Step 4 (Algorithm 1) depends on
the sorting algorithm, the minimum O(n log(n)), and the
largest O(n2), so the total complexity is no more than O(n2).
)e time complexity of the data point allocation in Step 5 is
O(n). )erefore, the overall complexity of the algorithm is
O(n2), and it is the same as the DPC algorithm.

4. Experimental Analysis

To verify the effectiveness of the AMDPC algorithm in this
paper, we used several mixed datasets from the University of
California-Irvine (UCI) for experimental study. We com-
pared the clustering results of the AMDPC algorithm with
those of the K-prototype and DPC_M algorithms.

We implemented the three algorithms in MATLAB
2015a (MathWorks, USA) running on Windows 10 on a
laptop with Intel Core i5-5200u model CPU and 4GB of
DDR3 memory.

4.1. Experimental Datasets. In this study, we investigated
four datasets of mixed datasets from the UCI machine-
learning repository, namely, Statlog Heart, Cleveland Heart
Disease, Statlog Credit Approval, and Acute Inflammations.
Brief information describing these datasets is shown in
Table 3.

)e Acute Inflammations dataset contains pathological
and physiological indicators for 120 patients with acute in-
flammation. )ere is one numerical attribute (body tem-
perature) and five categorical attributes (different symptoms)
to determine whether each patient has cystitis and nephritis.
)ere are two class labels to represent the two diseases. We
used the first to predict cystitis in our experiments. )e
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Figure 1: Sample dataset of the DPC algorithm and its decision graph [10].

Table 2: Partial data points of a sample dataset.

i 1 2 3 4 5 6 7 8 9 10 11
δi 0.9 0.89 0.9 0.88 0.88 0.88 0.75 0.88 0.7 0.5 0.62
ρi 0.88 0.87 0.85 0.83 0.8 0.78 0.88 0.42 0.65 0.88 0.5
ci 0.792 0.7743 0.765 0.7304 0.704 0.6864 0.66 0.3696 0.455 0.44 0.31
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deletion of missing data in the dataset did not affect the result
of clustering analysis. )erefore, we eliminated 6 instances
with missing values in the Cleveland dataset and 37 instances
with missing values in the Credit dataset before the experi-
ment.)eAdult dataset was extracted from the census bureau
database, which contain 30162 training instances.We selected
3000 of them by random sampling. In addition, we nor-
malized the numerical properties using the maximum-min-
imum normalization method.

4.2. Effectiveness Analysis. We used the K-prototype algo-
rithm, DPC_M, and the proposed AMDPC algorithm to
separately cluster the dataset described in Section 4.1.
According to the research in [5], the parameter c of the

K-prototype algorithm was 1/2σ (σ represents the average
standard deviation of the numerical attributes). )e
K-prototype algorithm ran 100 times and the clustering
results were averaged. In the DPC_M algorithm, the percent
parameter p� 2, as described in [15]. When the AMDPC
algorithm calculated the local density, the parameter K was
assigned as ceil(0.1∗N); that is, 10% of the data points were
taken as the nearest neighbors.

Because the UCI datasets have real class labels, the
clustering accuracy rate (ACC) can be used as the validity
index. We also used the normalized mutual information
(NMI), Rand index (RI), adjusted Rand index (ARI), and
F-score as validity indexes. For all indexes, the higher the
index values, the better the clustering effect. )e optimal
results are indicated in bold in Tables 4–8.

Accordingly, we observed that the performance of the
AMDPC algorithm was much better than that of the tra-
ditional K-prototype algorithm. )e AMDPC algorithm
improved the clustering accuracy of all datasets by more
than 22.58%, by 24.25%, by 28.03%, by 22.5%, and by 10.12%
for the Heart, Cleveland, Credit, Acute, and Adult datasets,
respectively. It also outperformed the DPC_M algorithm in
the first four datasets as shown in Tables 4–7. In the Adult
dataset, the clustering accuracy of the AMDPC algorithm
was 0.43% worse than that of the DPC_M algorithm, but it is
better than the DPC_M algorithm in the NMI index and the
ARI index. )e F-score takes into account both precision
and recall; the value of F-score shows that different algo-
rithms perform differently in different experimental data-
sets. )e proposed AMDPC algorithm got the best
performance in Credit dataset.

As shown in Table 7, for the first four indexes, the
DPC_M algorithm had two different results because of the
different selection of center points. )e DPC_M2 was worse
than the AMDPC algorithm in the clustering effect, whereas
the DPC_M1 was better. )is showed that the selection of
the center point in the DPC algorithm had a significant

Begin

Step4: Find the cluster center points using Algorithm 1.

End

Step1: Load the dataset DS and separate it into numerical subset
Dr and categorical subset Dc

Step2: Construct the distance matrix of DS according to
Equation (8)

Step3: Calculate the local density and the relative distance of
each data point according to Equation (4) and (2)

Step5: Assign the class label and return the class label vector
CL.

Figure 2: )e flow chart of the AMDPC algorithm.

Input: rho, delta (represent local density vector ρ and relative distance vector δ)
Output: Sc (set of cluster centers Sc)
(1) //Step 1. Calculate ci � ρi ∗ δi.
(2) for i� 1 to length(rho) do
(3) gamma(i)� rho(i) ∗ delta(i)
(4) end
(5) //Step 2. Sort rho, delta, gamma (ρ, δ, c) in descending order:
(6) Sorted_rho� sort (rho, “descend”);
(7) Sorted_delta� sort(delta, “descend”);
(8) Sorted_gamma� sort(gamma, “descend”);
(9) //Step 3. Calculate the inflection point of rho, delta, gamma using equation (7) separately and construct the three candidate sets

Sg, Sp, and Sd.
(10) Sp � calcinflection(Sorted_rho);
(11) Sd � calcinflection(Sorted_delta);
(12) Sg � calcinflection(Sorted_gamma);
(13) //Step 4. Calculate the intersections of the three sets and return the result Sc.
(14) Sc � intersection(Sp,Sd,Sg).

ALGORITHM 1: Find cluster center.
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influence on the clustering effect, whereas the AMDPC
algorithm automatically determined the center point of the
clustering, and the algorithm ran more stably. )e decision

graphs for center selection by the two aforementioned
clustering types using the DPC_M algorithm (that is,
DPC_M1 and DPC_M2) are shown in Figure 3.

Input: DS (the mixed-attribute dataset)
Output: CL (cluster label vector)
(1) //Step 1. Load the dataset DS and separate it into numerical subset Dr, categorical subset Dc and the ture label subset.
(2) [Dr,Dc,truelabel]� loadseparate(DS);
(3) //Step 2. Calculate the distance and construct the distance matrix of the mixed-attribute dataset DS according to equation (8).

distmatrix� distamdpc(Dr,Dc);
(4) //Step 3. Calculate the local KNN density ρi of each data point according to equation (4) and calculate the relative distance δi

according to equation (2).
(5) rho� kNNrho(distmatrix);
(6) delta� calcdelta(distmatrix);
(7) //Step 4. Run Algorithm 1 to obtain the cluster center points and set each point a different label.
(8) Sc� findClusterCenter(rho,delta);
(9) //Step 5. Assign the class label for center and non-center points using original DPC method according to the Sc.
(10) //Step 5.1. Initialize the class label vector CL.
(11) NCLUST� 0;
(12) for i� 1 to number of datapoints
(13) CL(i)� −1;
(14) End
(15) //Step 5.2. Assign the class label for center points
(16) for j� 1 to sizeof(Sc)
(17) NCLUST�NCLUST+ 1;
(18) CL(Sc(j))�NCLUST;
(19) End
(20) //Step 5.3. Assign the class label for non-center points
(21) for k� 1 to number of datapoints
(22) if (CL(ordrho(k))� � −1)
(23) CL(ordrho(k))�CL(nneigh(ordrho(k))); //assign the non-center data points to the cluster with the nearest local

density that is higher than its own.
(24) end

ALGORITHM 2: AMDPC_clustering.

Table 3: Brief information of UCI mixed datasets.

Datasets Instances Attributes (dc+ dr) Class Description
Heart 270 7 + 6 2
Cleveland 297 7 + 6 2 Original class labels 1–4 are treated as 1
Credit 653 9 + 6 2 )irty-seven incomplete instances are deleted
Acute 120 5 + 1 2 One class label is used
Adult 3000 8 + 6 2 Use 3000 samples from 30162 instances

Table 4: Clustering results of Heart dataset.

Algorithm ARI RI NMI ACC F-score
K-prototype 0.0303 0.5154 0.0202 0.5927 0.5541
DPC_M 0.3751 0.6878 0.3107 0.8074 0.5717
AMDPC 0.4032 0.7018 0.3251 0.8185 0.5622

Table 5: Clustering results of Cleveland dataset.

Algorithm ARI RI NMI ACC F-score
K-prototype 0.0195 0.5098 0.0139 0.5758 0.5565
DPC_M 0.3609 0.6805 0.3135 0.8013 0.5730
AMDPC 0.4028 0.7015 0.3362 0.8183 0.5620
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Table 6: Clustering results of Credit dataset.

Algorithm ARI RI NMI ACC F-score
K-prototype 0.0026 0.5048 0.0303 0.5528 0.6680
DPC_M 0.3875 0.6938 0.2988 0.8116 0.7006
AMDPC 0.4428 0.7215 0.3475 0.8331 0.7157

Table 7: Clustering results of Acute dataset.

Algorithm ARI RI NMI ACC F-score
K-prototype 0.039 0.5195 0.0358 0.6083 0.9414
DPC_M1 0.4629 0.7312 0.4932 0.8417 0.8200
DPC_M2 0.1151 0.5576 0.0903 0.6750 0.9917
AMDPC 0.2609 0.6304 0.2091 0.7583 0.7399

Table 8: Clustering results of the Adult dataset.

Algorithm ARI RI NMI ACC F-score
K-prototype −0.0042 0.5225 0.0001 0.6365 0.6476
DPC_M 0.1956 0.6170 0.0931 0.7420 0.6442
AMDPC 0.2062 0.6128 0.1179 0.7377 0.6133
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Figure 3: Decision graphs of the DPC_M and AMDPC algorithm. (a) Decision graph of DPC_M1. (b) Decision graph of DPC_M2.
(c) Decision graph of AMDPC.
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4.3. Parameter-Adjustment Experiment. )e AMDPC al-
gorithm uses the improved Gaussian kernel function of the
KNN information to calculate the local density of each data
point. To understand how the parameter K affects the ef-
fectiveness of the algorithm, we conducted a series of ex-
periments and found that the best effect was obtained when
Kwas approximately 10% of the data instances in the dataset.

Taking the Heart dataset as an example, we had 270 data
points in total. We took K as 1–20% of the data points to
calculate the clustering accuracy of the AMDPC algorithm.

)e results are presented in Table 9 ; optimal results are
indicated in bold).

As shown in Table 9, when K was 10% of the data points
(K� 27), the clustering accuracy reached the best value. As
shown in Figure 4, in the Heart and Cleveland datasets, K
took 10% of the data points to achieve the best effect. In the
Credit and Acute datasets, some values of K would have led
to the incorrect clustering number, so the value of clustering
accuracy (ACC� 0) was marked “not available” in the graph.
For Acute dataset, K� 4 or 5 was the best, and 10% was also

Table 9: Clustering results of the Heart dataset with different K values.

P 1% 2% 3% 4% 5% 6% 7%
K 3 6 9 11 14 17 19
ACC 0.7556 0.7926 0.7926 0.7963 0.7963 0.7963 0.7963
P 8% 9% 10% 12% 15% 20%
K 22 25 27 33 41 54
ACC 0.8148 0.8111 0.8185 0.8185 0.8185 0.8111
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Figure 4: Clustering accuracy of datasets according to different K values. (a) Clustering accuracy of Heart with different K. (b) Clustering
accuracy of Cleveland with different K. (c) Clustering accuracy of Credit with different K. (d) Clustering accuracy of Acute with different K.
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good. )erefore, we determined that the value of K in the
AMDPC algorithm is 10% of the data points in the dataset.

4.4. Computational Complexity Experiment. To verify the
time complexity of the proposed algorithm, we calculated
the running time of the above three algorithms. )e
K-prototype algorithm was run 100 times and the running
times were averaged. )e running times are shown in
Table 10.

As shown above, the K-prototype is the most efficient
algorithm. )e proposed AMDPC needs more time to
calculate distance and compute local density. With an in-
crease in data volume, the time consumption of the AMDPC
algorithm and the DPC_M algorithm presents a linear re-
lationship, and the time complexity of the two algorithms is
of the same order of magnitude, which is consistent with the
previous theoretical analysis. As shown in Table 11, when
there are 120 points in the Acute dataset, the clustering time
used by AMDPC is 3.6 times that of the DPC_M algorithm.
When the data amount increases to 653 points (in Credit),
the clustering time used by AMDPC is about 6 times that of
DPC_M algorithm.When the data amount increases to 3000
points (in Adult), the clustering time used by AMDPC is less
than 2 times that of DPC_M algorithm.

5. Conclusion

)e DPC algorithm is a simple and efficient algorithm. As
long as the distance-measurement problem of data points in
the mixed-attribute dataset is solved, the DPC algorithm also
can be used for efficient clustering of mixed-attribute data.
In this paper, we study the clustering methods of mixed-
attribute data, focusing on the DPC algorithm and its
adaptive improvement. Accordingly, we proposed an
adaptive mixed-attribute data clustering algorithm based on
DPC called AMDPC that adopted a unified mixed-attribute
distance-measurement method and KNN adaptive local
density calculation method. We used three inflection points
to calculate the cluster center set and automatically deter-
mined the clustering number, which realized adaptive
clustering of mixed-attribute datasets. From the analysis of
experimental results, the proposed algorithm was signifi-
cantly superior to the traditional K-prototype and DPC_M

algorithms. In all five datasets, the clustering accuracy of the
AMDPC algorithm is significantly improved compared with
that of the K-prototype algorithm, by 10.12% to 28.03%, and
also slightly improved compared to the DPC_M algorithm
except in the Adult dataset. In addition, AMDPC imple-
ments adaptive clustering without manual adjustment of any
parameters.

)e AMDPC algorithm could realize adaptive clustering
of mixed-attribute data well. When we used KNN to cal-
culate the local density of the data points, the determination
of K was different from the value in the previous research
paper [10, 14], and the value of K also had a significant
influence on the effect of cluster. According to the experi-
mental analysis, the effect was optimal when K was 10% of
the data points, but there was still room to adjust the value of
K on different datasets, which requires further research.
)ere are still many problems in adaptive clustering of
mixed-attribute data to be further studied, such as mixed-
attribute data clustering on the datasets containing a huge
number of objects or a huge number of attributes, or on the
datasets with arbitrary shapes, different sizes, variable
density, and overlapping clusters, etc.
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Table 10: Running time of the K-prototype, DPC_M, and proposed AMDPC in different datasets.

Algorithms Heart Cleveland Credit Acute Adult
K-prototype 0.0982 0.1110 0.1104 0.0347 0.6343
DPC_M 0.1131 0.0969 0.3445 0.0383 17.8739
AMDPC 0.3001 0.3381 2.0599 0.1386 34.1307

Table 11: Time-complexity comparison between AMDPC and DPC-M.

Datasets Heart Cleveland Credit Acute Adult
Instances 270 297 653 120 3000
DPC_M 0.1131 0.0969 0.3445 0.0383 17.8739
AMDPC 0.3001 0.3381 2.0599 0.1386 34.1307
)e time ratio:(AMDPC/DPC_M) 2.6534 3.4892 5.9794 3.6188 1.9095
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