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Hopfield neural network (HNN) is considered as an artificial model derived from the brain structures and it is an important model
that admits an adequate performance in neurocomputing. In this article, we solve a dynamical model of 3D HNNs via
Atangana–Baleanu (AB) fractional derivatives. To find the numerical solution of the considered dynamical model, the well-known
Predictor-Corrector (PC) method is used. A number of cases are taken by using two different sets of values of the activation
gradient of the neurons as well as six different initial conditions. )e given results have been perfectly established using the
different fractional-order values on the given derivative operator. )e objective of this research is to investigate the dynamics of
the proposed HNNmodel at various values of fractional orders. Nonlocal characteristic of the AB derivative contains the memory
in the system which is the main motivation behind the proposal of this research.

1. Introduction

Neural networks (NNs) are a part of machine learning that
are at the centre of deep learning techniques. )eir identity
and dynamics are taken from the human brain, and they
dovetail the path real neurons transfuse to each other. In
some branches of artificial intelligence (AI), deep learning,
and machine learning, NNs are mimetic to the function of
the human brain, helping computer algorithms to locate
patterns and estimate general problems. As a result of their
widespread use in a variety of sectors, NNs have elicited a
great deal of anxiety [1–3]. Practice data is utilized by neural
networks to swot and improve their performance over time.
However, when these learning tactics have been improved
for precision, they get as the knotty features in computer
science and AI, helping us to hastily classify and hoard data.
In comparison to manual recognition by human experts,
actions in speech or picture identification can take minutes

rather than hours. Various types of NNs are present, each of
which is used for a specific target.

For the first time in 1984, Hopfield introduced the
Hopfield neural network (HNN) [4]. Since then, a greater
learning of the Hopfield neural network’s dynamical be-
haviour has been crucial in the study of applications of
engineering and information processing, such as pattern
identification [5], signal processing, and associative memory
[6]. Moreover, there have been several studies published in
the literature on the dynamical characteristics of a range of
complex-valued neural network models. HNN, as previously
said, is an artificial model derived from brain dynamics, and
it is an important model in neurocomputing [7]. A neural
model like this is capable of accumulating information or
material in an identical fashion to a human brain. Njitacke
et al. in [8] discussed the space magnetization, hysteretic
dynamics, and offset boosting in a third-order memristive
system. In [9], the authors analyzed the complex structure of
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a 3D autonomous system without linear terms having line of
equilibria. A study on the control of multistability with
selection of chaotic attractor along with an application to
image encryption is given in [10]. In [11], a dynamical
analysis on a simple autonomous jerk system with multiple
attractors is proposed.

Nowadays, fractional-order operators are highly useful
to solve varieties of real-world problems [12–14]. )e main
feature of fractional derivatives is their nonlocal properties
which help to capture memory effects in the systems. )ese
operators are an advanced version of the integer-order
operators. To date, fractional operators have been used in
various scientific and engineering fields by using different
kinds of mathematical modelings. Recently, fractional de-
rivatives have been used in disease dynamics [15, 16], me-
chanics [17], psychology [18], engineering [19], advanced
modeling via fractal-fractional operators [20], etc. For the
sake of the various advantages of fractional operators for
memory effects, modeling dynamic systems using fractional
calculus has been met with scepticism [21, 22]. In [23], the
explicit stability dependency on a variable time delay was

presented and delay-dependent stability switches of linear
systems of the fractional type were examined.)is theory has
recently been included into NNs, resulting in fractional-
order neural networks (FONNs). So such a medication can
strengthen the ability of neurons to process information.
Fortunately, owing to the unwavering tenacity of re-
searchers, various worldwide applications of FONNs have
been discovered, including network approximation [24],
state estimation [25], system identification [26], robotic
manipulators [27], and formation control [28]. For neurons,
fractional-order elements have two clear benefits. On the one
hand, fractional calculus, as compared to ordinary calculus,
has a far better depiction of memory and hereditary features
[29]. Fractional-order parameters, on the other hand, can
improve system performance by adding one degree of
freedom [30]. By combining memory peculiarity into NNs,
there is clearly an enormous improvement. FONNs have
produced some astonishing effects [31, 32].

In this article, we perform some novel mathematical
simulations on the dynamical model of 3D HNNs which was
investigated in ref. [33] given as follows:
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(1)

where terms x1, x2, x3 are state variables and β1, β2, β3
stand for the variable gradient in relation to the activation
function. Firstly, we give some preliminaries related to the
fractional calculus in Section 2. )en, to solve the above
given dynamical model (1), we generalise the model into
Atangana–Baleanu (AB) fractional derivative under the
Mittag–Leffler kernel in Section 3. For investigating the
numerical solution of the fractional-order model, we
apply Predictor-Corrector (PC) method. In Section 4, a
number of graphs are plotted to check the correctness of
the derived solution. Lastly, we give the supporting
conclusion.

2. Preliminaries

Several important notions are recalled here.

Definition 1 (see [34]). For the function X ∈H1(a, b),
where b> a and 0≤ c≤ 1, the cth-AB derivative is

AB
a D

c
t (X(t)) �

AB[c]

1 − c
􏽚

t

a
X′(η)Ec c

(t − η)
c

c − 1
􏼢 􏼣dη, (2)

where AB[c] with AB[1] � AB[0] � 1 is the normalization
function.

Definition 2 (see [34]). )e AB fractional integral is given by

AB
a I

c
t (X(t)) �

1 − c

AB[c]
X(t) +

c

Γ(c)AB[c]

· 􏽚
t

a
X(η)(t − η)

c− 1
dη.

(3)

Lemma 1 (see [34]). For 0< c< 1, the solution of the system
BDc

0x(t) � z(t), t ∈ [0, T],

x(0) � x0,
(4)

is derived by

x(t) � x0 +
(1 − c)

AB(c)
z(t)

+
c

AB(c)Γ(r)
􏽚

t

0
(t − ω)

c− 1
z(ω)dω .

(5)

Lemma 2 (see [35]). Let a1 is a nonnegative integer and
0< c< 1, then there exist two constants Cc,1 > 0 and Cc,2 > 0
in terms of c, such that

a1 + 1( 􏼁
c

− a
c
1 ≤Cc,1 a1 + 1( 􏼁

c− 1
, (6)

and (a1 + 2)c+1 − 2(a1 + 1)c+1 + a
c+1
1 ≤Cc,2(a1 + 1)c− 1.

Lemma 3 (see [35]). Let us suppose
]s,r � (r − s)c− 1(s � 1, 2, . . . , r − 1) and ]s,r � 0 for
s≥ r, c, M, h, T> 0, a1h≤T and a1 is a positive integer. Let
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􏽐
s�r
s�a1

]s,r|es| � 0 for k> r≥ 1. If
|er|≤Mhc􏽐

r− 1
s�1]s,r|es| + |η0|, r � 1, 2, . . . , a1, then

|ea1
|≤C|η0|, a1 � 1, 2, . . . in which C> 0 is independent of

both a1 and h.

3. The Structure of the Model

Here we generalise the aforementioned integer-order model
(1) into the fractional-order sense by using a nonsingular

type fractional derivative called Atangana–Baleanu frac-
tional derivative. Nonlocal characteristic of the AB deriva-
tive contains the memory in the system which is the main
motivation behind this generalization. So, the fractional
form of the given system (1) in the AB-operator sense is
given by

AB
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c
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(7)

where ABD
c
t is the AB fractional derivative of order c.

3.1. Derivation of the Numerical Solution. In the current
literature, there are many computational methods available
to solve different types of fractional-order systems. Some
very recent works on the proposal of numerical methods in
the sense of fractional derivatives can be seen from ref.
[36, 37]. Here we implement the Predictor-Corrector
method for solving the given dynamical model (7). )e
complete methodology of the proposed method has been
defined in ref. [38]. Firstly, we consider the initial value
problem (IVP)

ABDc
tB(t) � Φ(t,B(t)), t ∈ [0, τ], 0< c≤ 1,

B(0) � B0.
(8)

From ref. [38], the equivalent Volterra integral equation
is written by

Br+1 � B0 +(1 − c)Φ tr+1,Br+1( 􏼁

+
c

Γ(c)
􏽚

tr+1

0
tr+1 − s( 􏼁

c− 1Φ(s,B(s))ds.

(9)

According to the derivation of the method proposed in
[38] for the fractional-order c ∈ [0, 1], 0≤ t≤T and con-
sidering h � (T/N) and tn � nh, for n � 0, 1, . . . , N ∈ Z+,
the corrector term for the IVP (8) is derived by

Br+1 � B0 +
ch

ζ
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(10)

where

ar+1,w �

r
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− (r − c)(r + 1)
c
, ifw � 0,
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(11)

and ar+1,r+1 � 1 + ((1 − c)Γ(c + 2)/chc). )e predictor term
is given by

B
P
r+1 � B0 +

h
c

Γ(c)
􏽘

r

w�0
br+1,wΦ tw,Bw( 􏼁, (12)

where

br+1,w �

− (r − w)
c

+(r − w + 1)
c
, w � 0, . . . , r − 1,

1 +
(1 − c)Γ(c)

h
c , w � r.

⎧⎪⎪⎪⎨
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(13)
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We can see that our proposed model (7) is just a gen-
eralized form of the considered IVP (8). Hence the corrector
formulae in relation to the proposed model (7) are given by
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where
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3.1.1. Stability of the Scheme

Theorem 1. 9e derived scheme (14) and (15) is condi-
tionally stable.
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Figure 1: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.15 and x1(0) � 1, x2(0) � x3(0) � 0 at different fractional orders.
(a) State variables x2 versus x3; (b) state variables x2 versus x3; (c) state variables x1 versus x2; (d) state variables x1 versus x3; (e) state variables
x1 versus x2; (f ) state variables x1 versus x3.
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Figure 2: Dynamics of coexistingmultiple attractors’ for gradient β2 � 1.15 and x1(0) � − 1, x2(0) � x3(0) � 0 at different fractional orders.
(a) State variables x2 versus x3; (b) state variables x2 versus x3; (c) state variables x1 versus x2; (d) state variables x1 versus x3; (e) state variables
x1 versus x2; (f ) state variables x1 versus x3.
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According to the Lipschitz condition, we get

􏽥Br+1
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􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠, (17)

where c0 � max0≤r≤N | 􏽦B0| + (chcMar,0/Γ(c + 2))| 􏽦B0|􏽮 􏽯.
Also, from Eq.(3.18) in [35] we write
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where η0 � max0≤r≤N | 􏽥B0| + (hcMbn,0/Γ(c))| 􏽥B0|􏽮 􏽯.
Substituting | 􏽥B

P

r+1| from (18) into (17) reads as follows:
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􏽘

r
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(r + 1 − w)
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| 􏽦Bw|

(19)

where c0 � max c0 + (chcMar+1,r+1/Γ(c + 2))η0􏽮 􏽯. Cc,2 > 0 is
a constant dependent on c (from Lemma 2) and h is sup-
posed to be very small. From Lemma 3, it is obtained that
| 􏽥Br+1|≤Cc0, which is the desired result. □
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Figure 3: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.15 and x1(0) � 2, x2(0) � x3(0) � 0 at different fractional orders.
(a) State variables x2 versus x3; (b) state variables x2 versus x3.
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Figure 4: Dynamics of coexistingmultiple attractors’ for gradient β2 � 1.15 and x1(0) � − 2, x2(0) � x3(0) � 0 at different fractional orders.
(a) State variables x2 versus x3; (b) state variables x2 versus x3.

Complexity 7



4. Graphical Observations

Now to check the role of the proposed Atangana–Baleanu
fractional derivative, we plot a number of graphs with the
help of the above mentioned numerical method. )e values

of the parameters β1 and β3 are fixed and equal to
β1 � 0.9, β3 � 1.4. For the activation gradient of the second
neuron β2 � 1.15, we plotted the coexistence of four distinct
stable states in the group of Figures 1–4. In the frame of
Figure 1, the initial values are taken as
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Figure 5: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.18 and x1(0) � 1.44, x2(0) � x3(0) � 0 at different fractional
orders. (a) State variables x2 versus x3; (b) state variables x2 versus x3; (c) state variables x1 versus x2; (d) state variables x1 versus x3; (e) state
variables x1 versus x2; (f ) state variables x1 versus x3.
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x1(0) � 1, x2(0) � x3(0) � 0. Here Figures 1(a) and 1(b)
represent the dynamics of x2 versus x3 at
c � 1, 0.95, 0.90, 0.80.

Figures 1(c) and 1(e) show the dynamics of x1 versus x2,
and Figures 1(d) and 1(f ) justify the variations of x1 versus

x3 at the given values of order c. Similarly, we perform some
other cases of different initial values. In the frame of Figure 2,
the initial values are taken as x1(0) � − 1, x2(0) � x3(0) � 0.
In the case of Figure 3, these values are x1(0) � 2, x2(0) �

x3(0) � 0 and for Figure 4 are fixed as
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Figure 6: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.18 and x1(0) � − 1.44, x2(0) � x3(0) � 0 at different fractional
orders. (a) State variables x2 versus x3; (b) state variables x2 versus x3; (c) state variables x1 versus x2; (d) state variables x1 versus x3; (e) state
variables x1 versus x2; (f ) state variables x1 versus x3.
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Figure 9: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.18 and x1(0) � 1, x2(0) � x3(0) � 0 at different fractional orders.
(a) State variables x2 versus x3; (b) state variables x2 versus x3.
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Figure 7: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.18 and x1(0) � 0.5, x2(0) � x3(0) � 0 at different fractional
orders. (a) State variables x2 versus x3; (b) state variables x2 versus x3.
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Figure 8: Dynamics of coexisting multiple attractors’ for gradient β2 � 1.18 and x1(0) � − 0.5, x2(0) � x3(0) � 0 at different fractional
orders. (a) State variables x2 versus x3; (b) state variables x2 versus x3.
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x1(0) � − 2, x2(0) � x3(0) � 0. Here we can see that the
proposed results are slightly different to the previously given
results of ref. [33]. When we change the values of c, the
nature of the assumed multiple attractors also changes. One
of the main differences in the proposed fractional-order
analysis and the previously performed results of [33] is that
there is no existence of any perfect periodic attractors at any
fractional-order values, but the chaotic attractors are
achieved inmuch better form. All simulations are performed
by using Mathematica software.

In the same line when β2 � 1.18, we consider the co-
existence of six different stable states in the group of
Figures 5–10. In the frame of Figure 5, we assume
x1(0) � 1.44, x2(0) � x3(0) � 0. Here Figures 5(a) and 5(b)
represent the dynamics of x2 versus x3 at
c � 1, 0.95, 0.90, 0.80.

Figures 5(c) and 5(e) show the dynamics of x1 versus x2,
and Figures 5(d) and 5(f ) justify the variations of x1 versus
x3 at the given values of order c. In Figure 6, we take
x1(0) � 1, x2(0) � x3(0) � 0. In the case of Figure 7, these
are x1(0) � 0.5, x2(0) � x3(0) � 0 and for Figure 8 are fixed
as x1(0) � − 0.5, x2(0) � x3(0) � 0.)en for Figure 9, values
are x1(0) � 1, x2(0) � x3(0) � 0 and for Figure 10 are
x1(0) � − 1, x2(0) � x3(0) � 0. Here again we notice that the
proposed results are different to the previously given results
of ref. [33]. Again, the main difference in the proposed
fractional-order analysis and the previously performed re-
sults of [33] is that there is no existence of any periodic
attractors at any fractional-order values, but the chaotic
attractors are achieved in much better form.

5. Conclusions

In this paper, we simulated a dynamical model of 3D HNNs
in terms of Atangana–Baleanu fractional derivative. )e
numerical solution of the suggested dynamical model has
derived via the Predictor-Corrector method. A number of
cases for initial values are considered for the better

understanding of the role of initial changes. By using the two
different values of the second activation gradient of the
neuron, the behaviour of the proposed model is investigated
at four different fractional orders. From the given graphical
simulations, we conclude that in the case of fractional-order
values there is no clear existence of any periodic attractors,
but the chaotic attractors are achieved in much better form.
In the future, the proposed dynamical model can be further
solved by using any other fractional operators.
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