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In the mining industry, smart surveying and exploration operations for the minerals are essential during mining missions.
Usually, these missions are performed in remote areas that do not have a wireless communications infrastructure. (is paper
proposes to use the unmanned aerial vehicle (UAV) as a relay communication node between the exploration team and the ground
control station (GCs). UAV can act as a relay node to provide mobile, flexible, and reliable communication links in remote
environments and complex topologies. In this work, the pathloss models in millimeter-wave technology are considered because
they provide massive data rates for line of sight scenarios. (e optimization problem of identifying a 3D location and trajectory of
the UAV relay node is formulated to maximize the total teammembers’ data rate. Because the problem is non-convex, the particle
swarm optimization algorithm is used to solve it and determine an efficient location and trajectory of the UAV.

1. Introduction

Unmanned Aerial Vehicles (UAVs) have recently been
employed in a variety of civilian applications, including real-
time monitoring, infrastructure inspection, remote sensing,
search and rescue operations, cargo delivery, surveillance,
precision agriculture, and assisting with wireless coverage
[1]. (e UAV can be used for a variety of purposes in
wireless communications, including providing coverage in
the scenario of a base station failure during a disaster or
temporary congestion in a specific geographic area [2–4].

On the one hand, numerous studies use UAVs as
wireless communication relay nodes. For example, the
analysis in [5] proposed employing a UAV as a relay to lower
UAV transmission power. In addition, the team designed an
energy-efficient relay UAV deployment in [6], which re-
duces backhaul link capacity and backhaul link latency.
Kumar et al. [7] also addressed utilizing a UAV as a relay

communication node to guarantee the quality of service
requirements was met. Furthermore, the authors devised a
closed-form to discover the optimal position of the UAV
acting as a relay in [8], to maximize network reliability. In
[9], the authors study the problem of locating an aerial relay
node efficiently that is presented as an optimization prob-
lem, with the goal of maximizing total wireless device
throughput. When conventional base stations’ capacity is
suffering in some extreme scenarios, such as congestion
inside the cell or a particular event, the authors of [10]
propose an efficient three-dimensional placement of a single
UAV-assisted wireless network.(e goal of the research is to
determine the 3D location of the UAV base station as well as
the percentage of available bandwidth that must be allocated
to the UAV in order to maximize the number of users
serviced. (e authors of [11] investigate a UAV-enabled
uplink NOMA network in which the UAV receives data
from ground users while flying at a predetermined altitude.
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(ey study the topic of user pairing and provide a dynamic
power allocation technique for calculating the user’s power
allocation coefficients, as well as a closed-form equation for
the ergodic sum rate. In [12], the authors utilize a cell on
wheels that cooperates with a single UAV in order to provide
maximum wireless coverage to ground users.

On the other side, Zhan et al. proposed in [8] a multi-
UAV relaying network between a group of users and a
distant base station to establish a single-hop communication
between ground users and the base station. In this work, a
fixed-wing UAV relay communication node was used.
Specifically, the communication link between the relay node
and the ground users was described using free-space
pathloss model. (e authors concentrated on the physical
communication layer, link efficiency, message error rate, and
the ground device handoff mechanism for switching be-
tween relay nodes.

Moreover, the topic of relay selection for UAV-assisted
vehicular ad hoc networks (VANETs) was investigated in
[13].(ey investigate multi-UAV collaboration, the network
communication node motion model, and the quality of
service for air-to-surface connections for UAV relaying in
VANETs.

In [14], the authors take advantage of two sleep-
scheduling policies for massive machine-type communica-
tion devices, namely, the multiple vacation policy and the
start-up threshold policy, which are defined in the context by
three different multiple access protocols: time-division
multiple access, frequency-division multiple access, and
non-orthogonal multiple access. Furthermore, under the
constraints of energy harvesting power, status update rate,
and stability conditions, they develop closed-form formulas
for the massive machine-type communication devices sys-
tem’s peak age of information (AoI), which are formulated
as the optimization objective. By fixing the status update
rate, an exact linear search-based approach is proposed for
finding the optimal solution. A low-complexity concave-
convex technique is also proposed as a design alternative for
finding a near-optimal solution by transforming the original
problem into a form represented by the difference of two
convex problems. (e authors in [15] study an AoI-energy-
aware data collection system for UAV-assisted Internet of
(ings (IoT) networks using age of information as a per-
formance metric to assess the temporal correlation among
data packets consecutively sampled by the Internet of(ings
devices. By optimizing the UAV flight speed, hovering sites,
and bandwidth allocation for data collection, they aim to
reduce the weighted sum of predicted average AoI, UAV
propulsion energy, and transmission energy at IoT devices.
By adding a deep neural network for feature extraction, they
develop a twin-delayed deep deterministic policy gradient-
based UAV trajectory planning algorithm to deal with the
multidimensional action space. In [16], the authors study an
energy-efficient computation offloading technique for UAV-
mobile-edge computing (MEC) systems with a focus on
physical-layer security. For secure UAV-MEC systems, they
design a set of energy-efficiency challenges, which are
subsequently transformed into convex problems. Finally, the

optimal solutions for both active and passive eavesdroppers
are found.

Typically, in the exploration and search for minerals, the
site to be analyzed in mining operations is first examined by
the work team using geophysical equipment. (is infor-
mation is forwarded to the ground control station (GCs) for
analysis, processing, and creating maps of the Earth’s layers.
Surveys are conducted in remote places where no tele-
communication networks are available. As a result, the data
acquired is kept and processed later at the GCs. Our research
suggests a practical 3D placement of a dynamic UAV to
operate as a relay node between the work team devices and
the distant GCs over millimeter-wave frequencies in remote
areas.

Because the surrounding environment in mining is
typically harsh terrain, wireless communications network
planning and enhancement is a challenging task. It differs
from what communications engineers are used to when
constructing wireless communications networks. In [17],
they addressed the planning and optimization of broadband
wireless networks in open-pit mines.

On the other hand, due to the constant change in to-
pology and fleet in an open-pit mining environment, the
study in [18] emphasizes the requirement for persistent
wireless communication planning. Also, they provide an
example of an LTE network that was planned and estab-
lished in an open-pit mining site in 2007 to meet the needs of
users and devices on the site, but in 2014 this network was no
longer in service with only 34% of users; furthermore, the
mine became more significant, and more areas needed to be
connected by wireless communications.

Since working in an open-pit mine requires a collabo-
rative system that includes mining people, sensors, and
communications infrastructure. Rangan et al. discussed the
possibility of a wireless emergency communications
framework based on UAVs in deep open mines [19]. (ey
found that, in open-pit mines, a UAV-based system has a
viable communication method during an emergency and to
bridge the coverage gap where there is no communication
infrastructure. (e rigorous performance evaluation of their
proposed communications Skyhelp framework was imple-
mented as a proof of concept.

1.1. Paper Contributions. (e paper contributions are out-
lined as follows:

1 Two path losses models are utilized: (e Air-to-
Ground (ATG) pathloss model is utilized for the
backhaul link. While, for the uplink, the Ground-to-
Air pathloss model is used. (ese pathloss models are
appropriate for 5G Aerial Millimeter Wave Networks.

2 (e problem of determining the most efficient location
and trajectory of a single UAV is addressed in order to
optimize the total data rates of wireless devices in the
scenario of uplink transmissions.

3 (e RPGM mobility model is proposed and used to
represent the users’ movement inside the targeted
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mining area and the PSO algorithm to find the efficient
placements and trajectory for a UAV that maximizes
the data rates of the wireless devices on uplink
transmissions scenario.

(e rest of this paper is structured as follows. In Section
2, the system model is presented. (is section also includes
the pathloss models for uplink and backhaul links. Section 3
presents the problem of determining an efficient UAV 3-D
location and trajectory. Next, in Section 4, the Reference
point group mobility model (RPGM) is presented. (en,
Section 5 discusses the proposed UAV Placement and
Trajectory Algorithm. After that, the simulation results are
presented in Section 6. Finally, the conclusions are shown in
Section 7.

2. System Model

Let the location of the aerial relay node is denoted by
(x, y, z) and M wireless devices are assumed to be far away
from the GCs. Due to the lack of line-of-sight linkages and
substantial route losses caused by operating at high fre-
quencies, these wireless devices are unable to communicate
with the remote GCs. (e drone, which works as an aerial
relay node to convey information from the wireless devices
to the GCs, must service the wireless devices, as illustrated in
Figure 1. We assume an uplink situation in which the data is
sent to the UAV using a frequency-division multiple access
(FDMA) method with a signal-to-noise ratio (SNR) larger
than or equal to SNRth threshold.

(is section considers a rectangular geographical region
as a targetedmining area,G ⊂ R2, this region is divided into
n sub-regions D ∈ (n1, n2, . . . , nk), where D denoted as
(xminimum, yminimum) and (xmaximum, ymaximum) as presented
in Figure 2. More specifically, the users are distributed non-
uniformly inside each sub-regions using beta random dis-
tribution and moving from sub-regions n to n + 1.

In this model, a single UAV serves and tracks mobile
users during their movement inside the targeted region to
accomplish the survey mission for mining. (e UAV 3-D
placement is represented by (xuav, yuav, zuav) where
(xuav, yuav) is the 2-D UAV placement and zuav is the height
of the UAV.

(e mobile UAV can change its location to serve the
ground users in the uplink scenario. We employ two mm
wave pathloss models operating in 28GHz in this scenario.
(e first model is the uplink model between users and UAV;
the ground to air path model [20], and the second is between
UAV and GCs [3]. Moreover, the RPGM mobility model
represents the ground users’ movement inside the targeted
region.

2.1. Path Loss Models. Millimeter waves technology can
support bandwidth up to 2GHz since it operates in an
extremely high frequency (EHF) band, ranging from 28GB
to 100GB, allowing multiple gigabit data rates transmission.
Millimeter-wave technology is unsuitable for non-line of
sight (NLOS) communication link scenarios for a relatively
large distance due to the high signal attenuation, not only

from buildings or barriers but also from being blocked by the
human body [21]. But it is possible to use the millimeter-
wave technique in cases where there are (NLOS) commu-
nication links at relatively small distances or in the LOS
communication link for several kilometers.

In this research, we assume that a group of geologists are
in the process of geological surveying and imaging the
Earth’s layers to detect minerals underground. (ere is a
ground control station at a distance from them to process the
data captured by exploration and prospecting devices. Since
we use millimeter waves and do not have reliable LOS
communication links with the ground control station, we
use a UAV as a relay node between the wireless devices and
the ground station. (is study considers the uplink scenario
between the ground users’ devices and the UAV relay node.

2.2. Ground to Air Channel Model. We assume the survey
team is working in semi-rugged terrain and providing data
directly to the UAV relay node over millimeter waves in the
case of uplink. To describe the channel between the ground
users and the UAV relay node, we use the rural area route
loss model. (e mean pathloss between the i th user and
UAV is given by [20, 22, 23].

Figure 1: UAV acting as a relay node.
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Figure 2: System settings of a coverage sub-area.
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La,i � PL ri, zu( 􏼁LL,i + 1 − PL ri, zu( 􏼁􏼂 􏼃LN,i, (1)

where LL,i and LN,i are the pathlosses for LOS and NLOS
links and they are given by

LL,i � AL + 10BLlog10 di( 􏼁,

LN,i � AN + 10BNlog10 di( 􏼁,
(2)

where AL, BL, AN, and BN are the parameters of the line of
sight (LOS) and non-line of sight (NLOS) pathloss models,

and di �

�����������������������������

(xi − xu)2 + (yi − yu)2 + (zi − zu)2
􏽱

is the 3D
distance between the user and the UAV. Moreover,
PL(ri, zu) represents the probability of human body
blockage for the i th user and can be modeled as [23].

PL ri, zu( 􏼁 � exp −λgB

ri hB − hR( 􏼁

zu − zi( 􏼁
􏼠 􏼡, (3)

where ri is 2D distance between the i th user and the UAV, zu

is the height of the UAV, λ is the density of human blockers,
gB is the diameter of human blockers, hB is the height of the
human blocker, and zi is the height of the user.

2.3. Air to Ground. Since we assumed the exploration and
surveying operations take place in a remote area, we use the
free space pathloss model to characterize communication
channel between the UAV and the GCs. In free space
pathloss model, LFS the signal strength has a proportional
relationship with the carrier frequency and the distance
between the transmitter and the receiver, whereas the fre-
quency or the distance increases, the pathloss will increase,
as follows [3].

LUAV−GC d3 D( 􏼁 � 20log10 d3 D( 􏼁 + 20log10(f) + 92.45, (4)

where d3 D �

������������������������������������

(XU − XGC)2 + (YU − YGC)2 + (ZU − ZGC)2
􏽱

is the 3D distance between the projection of the UAV and
the GCs in Km, and f is the carrier frequency of the
transmitted signal in GHz.

3. Problem Formulation

(e problem of data rate maximization between ground
users and the GCs via the UAV relay node is discussed in this
work. As a result, we have two communication channels: one
between ground users and the UAV and another between
the UAV and the GCs.(e data rate between a ground user i

and the UAV can be calculated from Shannon’s theorem as
follows [24]:

Ci−UAV � Bi−UAVlog2 1 + SNRi−UAV( 􏼁, (5)

where Bi−UAV is the bandwidth assigned for ground user i,
and SNRi−UAV is the signal-to-noise ratio of the received
signal of ground user i at UAV relay node. However, the data
rate between the UAV relay node and the GCs is given by

CUAV−GCs � BUAV−GCslog2 1 + SNRUAV−GCs( 􏼁, (6)

where BUAV−GCs is the bandwidth assigned for the com-
munication channel between the UAV relay node and the
GCs, and SNRUAV−GCs is the SNR of the UAV relay node
transmitted signal at the GCs receiver.

(is work aims to find an efficient placement and tra-
jectory of a single UAV where the objective is to maximize
the total data rate for ground nodes. (e problem is for-
mulated as follows:

x
t
u, y

t
u, z

t
u 􏽘

|U|

i�1
􏽘
|T|

Bi−UAVlog2 1 + SNRt
i−UAV􏼐 􏼑, (7a)

􏽘

|U|

i�1
Bi−UAVlog2 1 + SNRt

i−UAV􏼐 􏼑≤BUAV−GCslog2 1 + SNRt
UAV−GCs􏼐 􏼑,∀t ∈ T, (7b)

SNRt
i−UAV ≥ SNRth,∀i ∈ U,∀t ∈ T, (7c)

p
t
i ≤p

max
,∀i ∈ U,∀t ∈ T, (7d)

p
t
i ≥ 0,∀i ∈ U,∀t ∈ T, (7e)

xmin ≤X
t
u ≤ xmax, (7f)

ymin ≤Y
t
u ≤ymax, (7g)

zmin ≤Z
t
u ≤ zmax. (7h)

Constraint (7b) is used to guarantee that the data rate for
the connection between the drone and the ground wireless

devices is less than or equal to the data rate of the connection
between the GCs and the drone. (e constraint (7c) is to
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ensure that the devices’ SNR is greater than or equal to the
threshold. Moreover, constraint (7d) is used to ensure that
the power consumption for each ground device is less than
the maximum power for this device. (e constraint (7e) is to
ensure that the power consumption for each device is greater
than or equal to zero.(e constraints from (7f)–(7h) present
the maximum and minimum Xt

u, Yt
u, and Zt

u values.

4. Mobility Model

Mobility models describe mobile nodes and users’ move-
ment patterns and mobility behavior. Moreover, it describes
the location, velocity, and acceleration changes for users over
time. Mobility models are split into two classes; individual
movement models like a Random-Walk, or Brownian
motion, Probabilistic Random Walk [25], Random Way-
point [26], Weighted Waypoint [27], and Random Direc-
tions [28]. (e second category is group movement models
such as Reference Point Group Model (RPGM) [29], Col-
umn Mobility Model, Nomadic Mobility Model, and Pursue
mobility model [25]. RPGM illustrates the users’ mobility
inside the targeted mining area in this paper.

In RPGM model [29], the users’ cluster has a centroid
point, namely, logical reference point (RP). Moreover, all
cluster members track the RP movement. Group RP’s
motion represents its behavior, with additional movement
parameters such as the user’s velocity, locations, direction,
and acceleration. Hence, the group’s trajectory is defined
according to the RP movement. (e group members are
distributed uniformly near the reference point center within
the targeted mining region.

For every time slot, the users’ are moved inside the
targeted sub-region and move from one sub-region to an-
other by tacking the RP. (e sub-region members are dis-
tributed randomly near the RP.

(e RPGM model describes the mobility of group
members for numerous approaches, such as in battleground
communications and during catastrophe scenarios in search
and rescue missions. In these systems, group members
progress towards a common objective and create all users’
cooperative movement.

(e RPGM consists of RP (group centroid) and all group
members inside the sub-region. (e main components of
this model will be represented as:

1 Reference point (RP) :(e RP guides the group
member’s movement, representing the group’s motion
pattern. Vector Vg(t)

����→
denotes the RP mobility of the

group member’s at time t and velocity v. (e vector’s
path Vg(t)

����→
will be selected based on a predefined path

or in a random manner. In this study, a predefined
path to represent the member’s trajectory is
considered.

2 Group nodes: (e RP movement will impact the
mobility of the cluster members. (e movement of
each member is associated with the RP movement,
which lets the cluster members heed the model
movement. (e allocation of group members is ran-
domly distributed around the RP.

Group members represent the nodes located inside the
sub-region of the team members.

(e motion vector Veli(t)

������→
for member i at time t de-

scribed as the following equation [30]:

Veli(t)

������→
� Velg(t)

������→
+ GMVi

(t), (8)

where GMVi
(t) is the group motion vector of member i, and

Velg(t)

������→
is the motion vector of the reference point.

5. UAV Placement and Trajectory Algorithm

In this section, the PSO algorithm [31, 32] is utilized to find
the efficient UAV placement and trajectory such that the
total data rate for all wireless devices in the uplink con-
nection between all users and UAV is less than or equal to
the total data rate for the backhaul connection between UAV
and GCs. Specifically, the PSO algorithm is utilized to locate
an efficient solution for the formulated problem in Section 3.
Moreover, the proposed algorithm pseudo-code is presented
in this section.

5.1. Particle Swarm Optimization Algorithm (PSO).
Eberhart, Russell, and Kennedy proposed in [33] the PSO
algorithm in 1995. PSO is a heuristic algorithm works based
on the paradigm of a swarm and animal social behavior such
as schools of fish and swarm of birds. In this algorithm, the
swarm consists of n particles, and the particles communicate
with each other for finding an efficient output to the for-
mulated problem. During every iteration, the location and
velocity of all particles are updated to better positions. (e
update process occurred according to the particles cost and
the cost of their neighbors.

PSO is initialized with a set of n possible solutions
(particles/members). (en, PSO updates the best local lo-
cation and velocity for all particles/members according to
velocity and position equations (9) and (10). In addition,
PSO updates the global best location.

Vj(t + 1) � Vj(t) +(k1∗ rand)∗ P
Best Loc
j (t) − Pj(t)􏼐 􏼑

+(k2∗ rand)∗ P
G Best

(t) − Pj(t)􏼐 􏼑.

(9)

Here, Vj(t + 1) is the speed at t + 1, k1 is the acceleration
coefficients for best local solution. While, k2 is the accel-
eration coefficients global best solution. rand is a function
used to generate a random number between 0 and 1, Pj(t) is
the location of the jth particle/member, PBest Loc

j (t) is the
best location of the jth particle/member at time t, and
PG Best(t) is the global best location of the problem.

(e following equation presents the positions update for
particle/member:

Pj(t + 1) � Pj(t) + Vj(t + 1). (10)

(e PSO algorithm is considered one of the most
popular meta-heuristic algorithms. It can be used for finding
or choosing a near-optimal solution to the optimization
problem. PSO employs a global search method to locate the
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global optimal point instead of being stuck in a local
minimum solution. (us, the employment of the global
search approach in PSO can overcome the problem of the
local search methods that converges optimal local solutions.
Moreover, it can converge to the efficient solution faster than
other meta-heuristic algorithms [11].

5.2. Meta-Heuristic Algorithms Complexity. In this section,
we present the computation complexity of two meta-heu-
ristic algorithms, the PSO and the genetic algorithm GA. For
PSO, the complexity depends on the following steps $a-
Initialization of the population. b- Fitness function evalu-
ation which requires t iterations. c- Performs Nit iterations
for step b. d- Performs pit iterations to update velocity and
position for each particle.(e worst-case complexity of these
steps can be expressed as O(tpitNit). For constant Nit the
algorithm complexity is O(tpit).

On the other hand, the performance of the PSO-based
approach is compared and evaluated against the GA algo-
rithm. (e computation complexity of the GA algorithm is
discussed in detail in [30]. In GA, the fitness function of each
particle of n population will be evaluated, then, the tour-
nament selection to select m individuals that have the best
fitness score, to become parents of the new generation of m

individuals using the crossover andmutation process, will be
evaluated. Specifically, in the tournament selection, it takes
O(log(m)) operations, after building the initial tournament
in O(m). (us, considering the worst-case scenario, the
computational complexity of the GA algorithm can be
denoted as O(n.mlog(m)).

(e simulation results section presents the results for
both PSO and GA algorithms, and we show that the PSO
requires less computational complexity and less execution
time.

5.3. Efficient UAV Placement Approach. (is section dis-
cusses the proposed approach to find the efficient 3D UAV
placement and trajectory such that the total group members
throughput is maximized and satisfies the backhaul link
throughput. Algorithm 1 presents the proposed approach. In
this algorithm, we apply the PSO to solve the optimization

problem and find the 3-D UAV placement that minimizes
the total path losses between ground users and the UAV;
then, we compare this pathloss with the backhaul pathloss
between UAV and GCs. Here, we aim to guarantee that the
total throughput between all users and UAV does not exceed
the backhaul link throughput, specifically, to satisfy con-
straint 8a in the problem formulation. If the total pathloss
between users and UAV is less than the backhaul link
pathloss, then we move UAV 1 meter towards the GCs as in
Step 5 in the proposed algorithm. (ese steps will be re-
peated until this constraint is satisfied.

6. Simulation Results and Discussion

In this section, the results of the proposed approach are
presented. PSO is employed to find a UAV trajectory
considering the mobility of the mining team, where their
movement follows the RPGM models. In this paper, we aim
to maximize the throughput of the mining team’s members,
satisfying the constraints in the problem formulation
(7a)–(7h). (e simulation parameters used in this work are
presented in Table 1.

In this work, the dimension of the targeted mining re-
gion,D is 500m × 2000m. Moreover, the teammembers are
uniformly distributed inside the sub-region and moving in a
group based on RPGM model. In this scenario, the total
number of team members is 20.

(e total required time to finish the mining mission in
each targeted area G is defined as T. (en, the targeted area
G is split into n sub-areas, with dimensions of
500m × 2000m, where the 200m is the sub-area length ∈∈D.
(e average movement speed of the team members is
0.41m/s [30].

Figure 3 illustrates the movement of the mining team
members from one sub-area to another at a speed of
0.41m/s. Here, the worst-case distribution scenario for the
mining teammembers inside sub-region kn is considered. In
this scenario, the users are distributed inside the whole kn.
(en, we find an efficient UAV placement, where the total
path-losses between team members and the UAV are
minimized, and guarantees that the total throughput be-
tween users and UAV does not exceed the backhaul link

1 Efficient UAV 3-D Placement
2 Input:
3 (hmin, hmax): min. and max. UAV height. (xmin, xmax), (ymin, ymax): MIN. and MAX. dimensionalities of the 2-D region.
4 Initialization: z1� total_pathloss from users to UAV; z2� total_pathloss from UAV to GCs;
5 For (h� hmin: hmax, x� xmin: xmax, y� ymin: ymax)
6 for All users (U): a) Apply PSO to find 3-D UAV placement that minimizes z 1; b) Find z2;
7 end
8 If z1 ≤ z2, then xmin � xmin +1;
9 Go to Step 3
10 else
11 Efficient 3-D UAV placement� (x, y, h)

12 end
13 (x, y, h) is the efficient 3-D UAV placement at minimum pathloss between users and UAV that satisfying the constraint in (7a).

ALGORITHM 1: Proposed algorithm for efficient UAV 3-D placement.
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throughput. Specifically, this figure shows the users distri-
bution, reference point for RPGM model, GCs, and the
efficient 3-D UAV placement for each sub-region from T1 to
T10.

As we can see in Figures 3–1, the sub-region dimensions
(0, 0) to (500, 200), themining teammembers starts forward
movement from the beginning of the trajectory between
(0, 500) with velocity 0.41m/s. (e reference point for this
sub-region is (230, 86) as shown in Figures 3–1. (e mining
team members are distributed uniformly around this point.
(e time required to survey this sub-region is 8.1 minutes.
Moreover, an efficient 3D UAV placement using PSO is
(472, 58.38, 100). (is figure also presents the UAV 3-D
placement and the reference point for the RPGM model for
all time steps from T1 to T10.

Table 2 depicts the dimension of the sub-regions, the
reference point of the RPGM model, the efficient 3-D UAV
placement using two different heuristic algorithms PSO and
GA. (is table also presents the average pathloss for the
uplink between team members and the aerial UAV; and the
pathloss between UAV and the GCs for all time steps.

Moreover, from this table, it can be clearly seen that the
PSO and GA algorithms converge to the same efficient
placement. As a result, to compare these two meta-heuristic
algorithms, we consider the execution time and the com-
putational complexity for the worst-case scenario. On the
other hand, the required time to find the efficient placement
using GA is 1.9644 sec. Moreover, the PSO requires, on
average, 1.6417 sec. (erefore, the PSO algorithm outper-
forms the GA in terms of execution time. (e PSO reduces
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Figure 3: Users movement and trajectory based on RPGM inside the sub-area from T1 to T10. (e dimensionalities of the axes are meters.

Table 1: Simulation and system parameters.

Simulation and System Parameters
Targeted mining area, G (xmax, ymax) (500m, 2000m) Frequency f 28GHz
Min UAV height hmin 100 m (α, β, ζ ∼ N(0, σ2) ) NLOS (113.63, 1.16, 2.58)
Number of teams members U 20 (α, β, ζ ∼ N(0, σ2) ) LOS (84.64, 1.55, 0.12)
GCs location (xGCs, yGCs) (1000, 1000) PSO max # of iterations Nit 100
Mining mission period T ≃80min PSO population size Npop 50
Users velocity Vi ≃0.41m/sec Height of GCs hGCs 6m
# Of sub-regions inside each G k 10 Noise power Np −100 dBm
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the execution time by 16% compared to GA. In this paper,
the minimum height of the aerial drone is 100m for safety
and collision avoidance. References [34, 35].

On the other hand, Figure 4 presents an efficient tra-
jectory for the UAV during mining surveying operations
from T1 toT10 using the proposed algorithm.Moreover, this
figure shows the trajectory of the reference point for the
RPGM model during team members’ movement for all time
slots.

Figure 5 shows the average sum rate of ground users for
three different UAV placement scenarios, namely, dynamic,
RPGM center, and static. Specifically, in the dynamic UAV
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Figure 4: Efficient UAV and RPGM trajectories from T1 to T10.
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Figure 5: Users average sum rate over different time slots for 3
UAV placement approaches efficient, RPGM center and static.

Table 2: Simulation results for mining mission inside a subarea.

Time Alg. Sub-region Efficient UAV 3-D Reference RPGM Average pathloss Pathloss
Step (Tn) (m) Placement Model placement Usr-UAV UAV-GCs

T1 PSO 0–200 (472, 58.379, 100) (230.81, 86.72, 0) 122.1563 122.094GA (470.22, 56.01, 102.74) 122.1650

T2 PSO 200–400 (409, 293.248, 100) (245.38, 300.45, 0) 120.7329 120.7300GA (409.3761, 293.6445, 100) 120.7400

T3 PSO 400–600 (310, 518.708, 100) (255.06, 519.13, 0) 120.0709 119.9504GA (312.42, 520.07, 100) 120.0714

T4 PSO 600–800 (237, 723.795, 100) (213.89, 716.78,0) 119.8564 119.641GA (239.10, 702.38, 100) 119.700

T5 PSO 800–1000 (200, 903.039, 100) (228.72, 903.46, 0) 119.6643 119.5821GA (203.88, 908.61, 100.06) 119.6856

T6 PSO 1000–1200 (250, 1.1112e + 03, 100) (260, 1101.8, 0) 119.6257 119.0550GA (251.42 1.1112e + 03 100) 119.6258

T7 PSO 1200–1400 (271, 1.2872e + 03, 100) (237.8, 1283.5, 0) 119.3638 119.3418GA (272.6354, 1.2923e + 03, 101.3710) 119.4084

T8 PSO 1400–1600 (327, 1.4976e + 0,3 100) (231.2, 1483.5, 0) 120.0784 119.9063GA (328.40 1.4974e + 03 100) 120.0877

T9 PSO 1600–1800 423, 1.7112e + 03, 100) (262.9, 1713.5, 0) 120.7655] 120.6787GA (428.29 1.7084e + 03 100.54) 120.8518

T10 PSO 1800–2000 (443, 1.8982e + 03, 100) (214.1, 1885.6, 0) 122.0125 121.9112GA (454.91 1.8977e + 03 101.68) 122.2650
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placement scenario, the PSO algorithm is used to find the
efficient trajectory of the UAV satisfying the constraints
from (7b) to (7h). (en, in the static UAV placement, we
consider the center of the coverage region (500, 1000) as a
location of the UAV. Moreover, for the third scenario, we
use the center of the RPGM as a UAV placement from T1 to
T10. In the second and third scenarios, the UAV height is set
to 100m. (ese two scenarios are employed as a bench-
marking for comparison with the dynamic approach. As
shown in Figure 5, the sum rate of team members in the
dynamic UAV scenario outperforms both RPGM centers
and static UAV scenarios for all time slots. Moreover, Table 3
presents the values of the average sum data rate for opti-
mized dynamic UAV, RPGM centers, and static UAV lo-
cations [36].

7. Conclusion

UAVs in wireless communication networks have a great
value on the mining industry. In this paper, a single UAV
was used in the mining mission; specifically, UAV acted as a
relay node between the exploration team and the GCs using
millimeter-wave technologies. Two pathloss models were
used to present the communication channel; the first is the
ground to air pathloss to describe the uplink communication
channel between the team members and the UAV that acts
as a relay node. (e second model is the free space pathloss,
which is used to represent the downlink communication
channel between the UAV and the GCs. (e optimization
problem was formulated with an objective function to find
the 3-D location and trajectory of the UAV such that it
maximizes the data rate of team members. Since the for-
mulated problem is non-convex, we have used the PSO to
find the UAV relay node’s efficient 3D location and
trajectory.
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