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)e sizes of individual data files have steadily increased along with rising demand for customized services, leading to issues such as
low efficiency of web-based geographical information system (WebGIS)-based data compression, transmission, and rendering for
rich Internet applications (RIAs) in complicated visualization systems. In this article, a WebGIS-based technical solution for the
efficient transmission and visualization of meteorological big data is proposed. Based on open-source technology such as HTML5
and Mapbox GL, the proposed scheme considers distributed data compression and transmission on the server side as well as
distributed requests and page rendering on the browser side. A high-low 8-bit compression method is developed for compressing
a 100megabyte (MB) file into a megabyte-scale file, with a compression ratio of approximately 90%, and the recovered data are
accurate to two decimal places. Another part of the scheme combines pyramid tile cutting, concurrent domain name request
processing, and texture rendering. Experimental results indicate that with this scheme, grid files of up to 100MB can be
transferred and displayed in milliseconds, and multiterminal service applications can be supported by building a grid data
visualization mode for big data and technology centers, which may serve as a reference for other industries.

1. Introduction

Currently, the development of information collection and
storage technology has ushered in the era of big data in
various industries, as the amounts of data being recorded,
processed, and analyzed have exploded. In particular,
meteorological data are among the most important types of
data encountered in people’s daily lives, playing an es-
sential role in understanding the environment, natural
resources, the economy, and other aspects of life [1]. To
address society’s need for refined meteorological data, grid
data products for observations and predictions based on
radar data, satellite data, and station observations have
been extensively utilized [2]. On a global scale, the available
meteorological grid data mainly include numerical fore-
casting products from the European Centre for Medium-
Range Weather Forecasts (ECMWF) [3], the National
Centers for Environmental Prediction (NCEP) Global

Forecast System (GFS) model [4], the Global Regional
Assimilation and PreEdiction System Global Forecast
System (GRAPES_GFS) model of the ChinaMeteorological
Association (CMA) [5], and the real-time High-Resolution
CMA Land Data Assimilation System (HRCLDAS) [6]. )e
most common storage formats for such grid data products
are General Regularly-distributed Information in Binary
form (GRIB) and Network Common Data Form (NetCDF).
)e former is a file format that was designed by the World
Meteorological Organization (WMO) for storing and
transmitting meteorological grid data, such as the outputs
of numerical weather prediction models; this format is
concise enough to be widely used in meteorology to store
historical and forecast weather data [7]. )e latter is an
array-oriented and network sharing-based data description
and coding standard proposed by scientists of the Unidata
project at the University Corporation for Atmospheric
Research (UCAR) [8].
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Files in these commonly utilized grid data formats can
only be opened by professional applications (apps) and can
be used to obtain values at specific locations or to analyze the
spatial distributions of variables such as temperature or
rainfall [9]. For meteorological big data, which tend to have
strong geographical spatial characteristics and location
correlations, geographical information system (GIS) tech-
nology is usually combined with tools for visual expression
and application provided by common services [10]. Panoply
from the National Aeronautics and Space Administration
(NASA) Goddard Institute for Space Studies, which is a
viewing tool rather than a data extraction tool that supports
multiple formats such as GRIB, requires the Java Runtime
Environment [11]. MeteoInfo (i.e., MeteoInfoMap and
MeteoInfoLab), which was developed by the Chinese
Academy of Meteorological Sciences, is an integrated
framework for both GIS applications and scientific com-
putation environments that is utilized by the meteorological
community to visualize and analyze spatial and meteoro-
logical big data in multiple data formats [12]. As the cen-
terpiece of National Weather Service operations in China,
the Meteorological Information Comprehensive Analysis
and Process System (MICAPS) is a complicated computer
system that combines meteorological, satellite, and radar
data into one workstation and allows graphical and alpha-
numeric weather data in GRIB format to be read, analyze,
combined, and manipulated [13].

All of the above methods have been used to display local
meteorological files. However, with the emergence and
popularization of cloud storage, new types of applications
have arisen in which computing resources are no longer
localized but rather distributed, heterogeneous, and dy-
namic. )e Grid Analysis and Display System (GrADS) is a
widely used drawing software tool in meteorology. It has two
main functions, namely, data processing and image display,
and plays a role in the meteorological research community
similar to that of the World Wide Web in facilitating in-
formation exchange over the Internet. GrADS has unique
characteristics, mainly for scientific research and business
personnel involved in atmospheric and marine research.
With its powerful data analysis capabilities, flexible envi-
ronment setup, wide range of mapping types and variety of
map projection methods, GrADS has greatly aided meteo-
rological research [14]. )e Integrated Data Viewer (IDV)
from Unidata/UCAR is a Java-based software platform for
analyzing and visualizing geoscience data [15]. )e IDV
combines the abilities to display and analyze satellite im-
agery, gridded data (such as numerical weather prediction
model outputs), GIS data, and other data in a single interface
[16]. It has been integrated with common scientific data
servers, including Unidata’s THematic Realtime Environ-
mental Data Distributed Services (THREDDS) Data Server
(TDS) [17], as data sources to enable easy access to a large
number of real-time and archival datasets. )e IDV is the
main tool used in the computer laboratory portion of various
meteorological courses at colleges and universities.

)ese localized applications can read files directly from a
local disk, efficiently download them to a local disk, or
integrate them with common scientific data servers.

However, the local installation process has relatively high
system requirements and is therefore not suitable for public
services.

As mobile terminal apps such as Wireless Application
Protocol (WAP) browsers andWeChat have been developed
for IOS and Android operating systems, rich Internet ap-
plications (RIAs), which are web-based applications
designed to deliver the same features and functions normally
associated with desktop applications, have become essential
platforms that can run in web browsers without installation.
One of the earliest attempts to make RIAs accessible was to
use the World Wide Web Consortium (W3C) standard for
Accessible Rich Internet Applications (ARIA) [18]. )is
technology has been used to visualize meteorological big
data with web-based GIS (WebGIS) tools. Rain Viewer, an
all-in-one weather radar and rain forecast app for predicting
storm tracks, is available for 90 countries and offers the most
comprehensive weather radar coverage on the market,
displaying a single map with data from 1000+ Doppler
radars with the option of viewing information about each
radar on the map. To provide this functionality, all requests
to Rain Viewer are routed through an online web service that
overlays the Rain Viewer data on a map tile with 256 or 512
pixels centered on the user’s current location and then
resizes the image to match the screen size of the device [19].
In the WebGIS service OpenStreetMap, the layer overlay is
displayed within milliseconds by using leaflet technology
and considering the aging of single-slice requests. )us, this
service cannot meet the requirements of real-time interac-
tions, such as changing the color range or filtering by value.
Moreover, the layer is virtualized, and the user experience
can be poor if the maximum image resolution is exceeded
after the image is enlarged. Advancements in vector tile
technology have offered solutions to the above problems, in
which vector tile layers are saved as compressed files in the
Protocolbuffer Binary Format (PBF) file format [20]. Such a
compressed file, which contains vector map data in one or
more layers, can be rendered and styled based on the style of
each layer. )e data in a vector tile include geographic
features in the forms of points, lines, and polygons [21]. For
weather radar, this solution goes beyond simply resampling
the data and aims to generate vector contours based on the
raw radar data. With the data in the form of vector polygons,
the AerisWeather Mapping Platform (AMP) can render
radar data at any zoom level without reducing the resolution
or quality. )is also allows the user to control how much
smoothing is applied to the radar data, enabling clean and
smooth radar imaging at the city and neighborhood levels
[22].

Meteorological big data vary spatially and temporally,
and any dynamic vector slicing scheme must include data
preparation, slicing, and front-end visualization, with high-
performance requirements for the server hosting the spatial
database (PostGIS) [23]. Hence, complex visualization
technology for meteorological big data is gradually devel-
oping in the direction of data file compression prior to
transmission, followed by foreground decoding. )e Null
school designed a global visual display system (Nullschool.
net) [24] for ECMWF forecast data, which converts a map
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from the Natural Earth dataset into the TopoJSON format to
serve as the base map, utilizes the EPAK format to transform
and compress the grid data, and applies Node.js to rapidly
render and display the foreground [25]. Since the launch of
this system, the Tokyo Meteorological Bureau and other
institutions have developed the Tokyo Wind Map based on
this technical framework, which has been extensively pro-
moted. Although this framework makes full use of the
advantages of rapid visualization on a web terminal, there
are still incompatibility problems on mobile terminals for
base maps with coastline contour resolutions of 50 km or
110 km in the JSON format; hence, it is difficult to use this
framework for fine-scale service applications. Lytvyn et al.
[26] and Prastika et al. [27] have implemented multichannel
support applications such as PC browser, WAP, and mobile
applications based on the OpenStreetMap online map by
integrating slices with data compression and transmitting
only single slices within 30 kB for faster transmission and
visualization. For data visualization based on the browser/
server (B/S) architecture, the minimum resolution of me-
teorological grid data reaches more than 9 km worldwide,
and the file size for a single transmission is between 700 kB
and 2MB. A single request can reach a second-level re-
sponse, and dynamic rendering allows updating, which
satisfies the requirements for large-scale services. However,
various disaster prevention and emergency mitigation
support applications need more refined grid data services. In
2021, the CMA released the HRCLDAS product [28], which
covers East Asia with a resolution of 1 km. )e grid size is
7000 ∗ 4500, and the data volume of a single file reaches
106MB. )e main applications for visualizing such data
superimpose a transparent image directly on top of the map
and reduce the zoom or resolution layer by layer, resulting in
a loss of eigenvalues (e.g., the maximum and minimum
values) and thus affecting the front-end rendering results.
)erefore, it is extremely difficult to balance efficiency and
data accuracy in page rendering based on the B/S
architecture.

In conclusion, visualization systems based on the B/S
architecture are the most user-friendly option; however,
their compression and transmission methods have become
increasingly complicated as the demand for refined services
and individual file sizes have increased. Compression is a
highly efficient method for files smaller than 10MB, but the
visualization process achieves better transmission and
rendering pressure when the file size is approximately
100MB or larger, and 100MB is a common file size for
refined meteorological services. )erefore, there is a need to
design a fast transmission and display scheme for meteo-
rological grid data on PCs, mobile browsers, WAP apps,
WeChat applets, and other platforms based on an open-
source WebGIS service platform.

In this article, we propose a customized scheme for use in
complicated visualization systems for meteorological big
data. At the back end, a high-low 8-bit compression algo-
rithm is adopted, and customized slice transmission is re-
quired to ensure high network transmission efficiency. Based

on the HTML5 and Vue frameworks, the front-end uses
Mapbox GL [29, 30] technology to satisfy the demands of
dynamic meteorological big data visualization services while
considering compression, slicing, display, and other factors.
)e proposed scheme offers a mid-platform support mode
for visualizing meteorological grid data that have been
published in the meteorological visualization column of the
China Meteorological Data Service Center, via a mobile app,
or on WeChat. )is scheme provides a fast and convenient
solution for rapidly visualizing and rendering grid data and
can serve as a reference for grid data visualization appli-
cations in other industries.

2. Methodology

)e proposed system includes big data processing, trans-
mission, and page rendering and involves technologies such
as data analysis, compression, browser transmission, page
data restoration and splicing, as well as WebGL [31] ren-
dering. )e detailed design is shown in Figure 1.

Data processing and compression: Red-green-blue
(RGB) channels are used to compress and store the data in
high-low 8-bit PNG files to maintain data accuracy to the
fullest extent possible during the transmission process.

Data slicing and transmission: Based on pyramid slicing
technology, slicing is performed with a specified minimum
scaling resolution, and distributed multithreading is used
during transmission to increase the timeliness of trans-
mitting the data from the server to the page terminal.

Data visualization rendering: )e browser obtains slices
and performs slice stitching, while the Mapbox GL com-
ponent based on WebGL technology realizes fast dynamic
rendering.

2.1.DataProcessingandCompression. First, the source GRIB
file is transformed into a float array by PYGRID [32] in
Python and is generally stored as 4-byte data with a max-
imum legend display resolution of 0.1. )e data can be
retained to 1 significant digit before being stored, that is, the
original value O is multiplied by 10 and rounded to obtain
the integer C. )e image is saved as an RGB compressed
image with 2 bytes in the G and B channels in the range of
[− 32768, 32767]. To minimize data loss, the image is stored
in the PNG format by adopting an LZ77-derived algorithm
for file compression, thus resulting in a small data volume, a
high compression ratio, and no data loss.

O �

I11 · · · I1W

⋮ ⋱ ⋮

IH1 · · · IHW

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦;

C � round(O × 10).

(1)

)e high 8-bit and low 8-bit values of the converted data
C are stored in the G and B channels, respectively. )e
specific operations are shown as follows:
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U � trunc
C

256
 ;

D � C%256,

G N �

R11, G11, B11  · · · R1W, G1W, B1W 

⋮ ⋮ ⋮

RH1, GH1, BH1  · · · RHW, GHW, BHW 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G N[: ][: ][:, :, 1] � U;

G N[: ][: ][:, :, 2] � D.

(2)

where U andD represent the intermediate values, while G_N
denotes the newly created PNG image used to store the
corresponding compressed values.

To improve the efficiency of page data transmission, the
data are processed in accordance with the image pyramid
model. )e compressed PNG file is scaled down using the
image pyramid approach with bicubic interpolation. )e
tilemap pyramid model is a multiresolution hierarchical
model. )e resolution decreases from the bottom to the top
of the tile pyramid; however, the geographical range of the
representation remains constant. )e image is first scaled
and then filled with squares in accordance with the tilemap
pyramid model.

2.2.DataSlicingandTransmission. )e original image serves
as layer 0 of the pyramid and is scaled by 2×, 4×, 8×, and 16×

via bicubic interpolation [33]. In numerical analysis, bicubic
interpolation is the most commonly applied interpolation
method in two-dimensional space.

It is assumed that if the source image G has a size of
M×N and the scaled target image g has a size of m× n, the
coordinates of g on G can be calculated using formula (3).

x′ � x ×
M

m
,

G N[: ][: ][:, :, 1] � U;

G N[: ][: ][:, :, 2] � D.

(3)

As shown in Figure 2, (x′, y′) denotes the location of a
point P′ in the original image, which corresponds to the
position g(x, y) in the compressed image; the value at this
point is obtained by interpolating from the pixel values at the
16 neighborhood points (P00, . . ., P33). If the position of
P11 is (x, y), then the position of P′ can be expressed as
(x + u, y + v), where u and v represent the fractional parts of
the pixel coordinates.

Once the influence weights of the 16 neighborhood
points relative to point P’ have been calculated, the value of
P’ can be obtained and mapped to the scaled image g. )e
basic function for bicubic interpolation is shown in Formula
(2), where a� − 0.5:

W(x) �

(a + 2)|x|
3

− (a + 3)|x|
3

+ 1, for |x|≤ 1,

a|x|
3

− 5a|x|
2

+ 8a|x| − 4a, for 1<|x|< 2,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

When the rows and columns are separated, the distance
between the pixel value to be calculated and the known pixel
value P00 in Figure 2 can be expressed as (1 + u, 1 + v); hence,
the abscissa-coordinate weight of the P00 pair is W(1 +U)
and the ordinate weight is W(1 +V), yielding a corre-
sponding value contribution of
Pix00 × W(1 + u) × W(1 + v). )e contributions from the
other 15 points can be calculated similarly. Finally, the pixel
value at the point in the map scaled to the image G can be
calculated using formula (5).

G(x, y) � 
3

i�0


3

j�0
Pixij × W(i) × W(j). (5)

Notably, a browser can process only a limited number of
concurrent requests for the same domain name, which re-
stricts the number of simultaneous requests that can be
served during page rendering, resulting in requests queuing
or timing out. )is process occurs on GIS service websites
such as Google and Baidu Maps, which add subdomains and
domain dashes to increase the number of concurrent re-
quests that can be served [34]. However, given the increased
difficulty of DNS resolution for an excessive number of
domain names, the concurrency of each secondary domain
name should be limited to 2–4.

)e scheme proposed here, which is based on a B/S
service framework, uses an Nginx server, which is a light-
weight Web server/reverse proxy server, and an e-mail
(IMAP/POP3) proxy server distributed under a BSD-like

Data
decoding GRIB data

Data processing and
compression

PYGRID

Data slicing and
transmission 

Concurrent requests on
the web 

Data visualization
rendering 

Acquire and
splice 

Compress and store 
with high-low 8-bits 

Pyramid slices in PNG format

Visualization

Figure 1: Design of the system.
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protocol, as proxies, thus occupying less memory and en-
abling high concurrency. Moreover, Nginx supports the gzip
compression function, which can be used to compress the

website CSS, JS, XML, and HTML files during transmission,
thus boosting the access speed and optimizing Nginx
performance.

2.3. Data Visualization Rendering. During the rendering
process, the number of slices should be adjusted to account
for different screen resolutions and map magnifications. )e
coordinates of the map are translated into screen coordi-
nates to realize the transformation between the longitude
and latitude coordinates of the map and the screen coor-
dinates. Once the scale problem has been resolved, the
spatial information of the latitude and longitude ranges on
the earth corresponding to the GRIB file is transformed to
the range of the screen. Based on the size of each layer of the
image pyramid in the GRIB file, the pyramid slice that offers
the best rendering is finally selected (Figure 3).

)e distance between any two points expressed in terms
of longitude and latitude can be calculated using the fol-
lowing flow formula:

Distance((lons, lats), (lone, late)) � R∗ cos− 1 cos(lats)∗ cos(late)∗ cos(lons − lone)

+sin(lats)∗ sin(late)
 , (6)

where R is the radius of the earth, which is approximately
equal to 6371.0 km.

)e corresponding screen distance can be calculated
from the Mapbox scale.

screenD � Distance((lons, lats), (lone, late))∗ scale. (7)

Finally, the layer number of the selected slices can be
determined based on the diagonal width of each layer image
in the pyramid.

Here, orgSZ denotes the diagonal image size in the
compressed resource file (Figure 4). )e result of dividing
“orgSZ” by “screenD” indicates how many times larger the
visible range on the screen is than the size of the compressed
file (layer 0). Because consecutive layers differ in size by a
factor of 2, the indicated layer is determined by rounding up
the value to a power of 2.

Pyramid layer �

�������
orgSZ

screenD

2



. (8)

)ereafter, the latitude and longitude ranges on the
screen are obtained, namely, the upper left (lux, luy) and
lower right corner (rdx, rdy), and the tile index is obtained
in accordance with the flow progress.

disx � tilex − lux,

colstart � ceil
disx

interval
 , if disx> 0 else � 0,

colend � colstart + ceil
rdx − lux

interval
 ,

(9)

where tilex is the upper left corner of the data in the x
direction, disx denotes the distance between the upper left
corner of the screen and the upper left corner of the data in
the x direction, colstart represents the index of the starting tile
column, colend represents the index of the ending tile row,
interval denotes the length and width of a tile, and ceil
denotes the operation of rounding up. Similarly, the row and
column indices of the starting and ending tiles can be ob-
tained. Because the tile coordinate range is greater than the
screen coordinate range, all tiles need to be offset. Starting
with the upper left corner of the screen, the position offsets
in the CSS file can be obtained by calculating the difference
between the pixel coordinates of the upper left corner of each
tile and those of the upper left corner of the screen [35].

Based on the Vue development framework, the proposed
scheme comprehensively considers the spatiotemporal at-
tributes of meteorological big data and the demands of fast
rendering, utilizes Mapbox to support geographical infor-
mation services, and applies WebGL high-performance
front-end rendering technology for data visualization. Vue is
a progressive and high-performance JavaScript framework
for front-end page display that uses view layer rendering as
its core. Vue utilizes a component mechanism, a routing
mechanism, and a state management mechanism to quickly
realize front-end high-frequency Document Object Model
(DOM) operations and efficient page interactions. Due to
the use of the NodeJS service and the utilization of Node
Package Manager (NPM) to install the Vue command-line
interface (Vue CLI), the framework can be built quickly.
Mapbox, which has corresponding GIS engines for different
platforms (e.g., PC and mobile), is an efficient WebGIS
development framework. As a Mapbox component [36],

P’

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

u
v

Figure 2: Bicubic interpolation diagram.
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Mapbox GL has been used for HTML5 web development.
Mapbox GL is a JavaScript library that can render a large
number of map elements while allowing for smooth in-
teractions and animation.

3. Experiments and Analysis

To examine the performance and effectiveness of the whole
proposed process, high-low 8-bit compression was devel-
oped in Python 3.7, and the grid data (GRIB2) were decoded
into arrays by PYGRID. )e web page was developed in
Visual Studio XCODE, and the web server was deployed
using Nginx 1.16.0. )e progress server and web server were
64-bit Linux servers, and the CPU for the experiment was an
eight-core Intel Core i5 @ 2.30GHz with 16GB of memory.

3.1. Data Processing. )e data used in the experiments were
obtained from the CMA Multisource Precipitation Analysis
System (CMPAS) [37], which are available through the
China Meteorological Data Service Center (http://data.cma.
cn). )e data include latitude and longitude ranges of
70–140° E and 15–60° N.)e experiments included 24 hourly
precipitation fusion products with a resolution of 1 km ∗
1 km from 00 : 00 to 23 : 00 on July 20, 2021; these data were
chosen as an example to evaluate and compare the data
processing with the foreground display. )e data included
7000 latitude points and 4500 longitude points, with over
300 million data points in a single file, and the single file size
of the hourly precipitation fusion product was 101.3MB.

Before image slicing, the image in each layer was
transformed into a square. )e longest side length was taken
as the side length to create a new square canvas. )e upper
left corner of the original image was overlapped with the
upper left corner of the square, and the remainder of the
square was filled in white.)us, layer 0 (7000∗ 7000), layer 1

(3500∗ 3500), layer 2 (1750∗1750), layer 3 (875∗ 875), and
layer 4 (437∗ 437) were obtained.

Table 1 shows the minimum andmaximum compression
ratios of the five data layers, which reached 30 and 95, re-
spectively, after PNG compression and conversion. )e
average file size of the 24 experimental files was calculated.
)e degree value equivalent to the pixel interval corre-
sponding to each scale ratio in the five layers of the pyramid
was determined based on the scaling coefficient. )e pixel
size in layer 4 was taken as the size of a single tile to slice the
data from the other four layers. )e maximum size of a
single-slice file was less than 90.7 kB, sufficient to guarantee
fast transmission. When the sizes of the slice files were
compared, it was found that the slice files tended to be larger
in areas with rainfall due to the data distribution in these
locations.

3.2. Transmission Efficiency. In the experiments, the time it
took for all slices in the compressed file (layer 0) to be
transmitted from the server to the browser was a thousand
times faster than the time it took for the original file to be
transmitted when 256 concurrent channels were used. )e
compressed PNG transmission efficiency is compared be-
tween the full-size image and its slices (Figure 5).

)emaximum amount of data that could be requested by
the browser includes the map and data slices. In these ex-
periments, the actual maximum amount requested was less
than 60 because the visible slices were determined according
to the range of the map. Sixty-four concurrent channels with
eight subdomains were opened for the requests.

3.3. Rendering Efficiency. Currently, there are three main
online WebGIS rendering methods for processing GRIB,
NetCDF, and other file formats: GeoJSON processing, bi-
nary compression, and grayscale compression. Table 2 lists

Get map zoom level=ZS

Get the projection range of the map 
corresponding to the size of the area 

visible on the screen (Lons,lats)-
(lone,late)

Get the slice level index 
by ZS

Get the slice indices

Merge and splice slice data

Render visualizations

Figure 3: )e rendering process.
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Pyramid level

Layer 0 Layer 1

Screen distance of Visible area 
in map

lons,lats

lone,late

screenD

orgSZ

orgSZ/2

Figure 4: )e area relation between the visible screen range and the diagonal width of each layer.
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Figure 5: Comparison of transmission timeliness between the whole compression file and the slices.

Table 1: Slices after compression.

Layer Resolution Compression to PNG
(kB)

Range of the single-slice file size
(kB)

Number of
slices

Distance between adjacent grid
points

0 7000× 7000 1611.9 [0.6, 79.3] 256 0.01° (1 km)
1 3500× 3500 543.0 [0.6, 57.3] 64 0.02° (2 km)
2 1750×1750 174.3 [0.9, 35.8] 16 0.04° (4 km)
3 875× 875 56.4 [9.5, 20.4] 4 0.08° (8 km)
4 437× 437 17.6 [17.6, 17.6] 1 0.16° (16 km)
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the rendering efficiencies of the above methods and the
method in this article for a 120MB file. )e same WebGL
and WebGIS rendering technology was used for all pro-
cesses. )e results indicate that the rendering efficiency of
the high-low 8-bit compression method reduced the time
consumption to the order of milliseconds, thus making this
the optimal method.

4. Conclusion and Future Work

Due to climate and weather phenomena such as global
climate change and the frequent occurrence of extreme
weather, the demands for meteorological services have been
increasing in relation to various social activities and in-
dustries. Accordingly, there is a need for methods of visu-
alizing the spatiotemporal characteristics of meteorological
big data for disaster prevention and mitigation for various
social activities and industries. Based on the Vue architec-
ture of HTML5, the scheme proposed in this article can be
used to quickly visualize grid data of approximately 100MB
in size with PC and mobile browsers as carriers. )e mul-
titerminal rendering of technical data is accomplished by
combining Python, Node.js, HTML5, Mapbox, and other
technologies. )e proposed process can support efficient
WebGIS rendering of various kinds of large grid data files,
thus providing a solution for quickly visualizing industrial
data and spatial big data after fusion and improving the
efficiency of installation-free visualization of grid big data in
browsers.

Data compression: Various compression algorithms,
including binary compression, grayscale map compression,
and high-low 8-bit compression, were compared in terms of
the compression ratio and the loss ratio. High-low 8-bit
compression was selected because it enables the visual
display of meteorological values accumulated over periods
such as years, months, and days. However, the use of this
compression algorithm is limited due to the large scale of the
accumulated values and the need for visualization accuracy
up to three significant digits after the decimal point.

Slicing: Pyramid slicing met the efficiency requirements
of this study. )e visualization efficiency could be further
improved by adopting other algorithms, such as the quad-
tree algorithm, based on specific requirements.

Transmission and rendering: In this study, the image
rendering data were separated from the original data. )e
data of layer 0 were original, while the data in the other layers
were rendered on the web page, thus preserving the ei-
genvalues in the visualization, which is preferable to grid
pumping and visualization. Furthermore, the rendering
method based on the WebGL technical framework fully uses

the capabilities of the browser, reducing the pressure on the
server and taking advantage of combining cloud computing
with sliding windows.

Data Availability

)edatawere saved asGrib2 format, which can be downloaded
from http://image.data.cma.cn/test/Z_SURF_C_BABJ_P_CM
PA_RT_CHN_0P01_HOR-PRE-20210720.rar, and the data-
file can be decoded by the software of Panoply (https://www.
giss.nasa.gov/tools/panoply/).
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