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For efficient energy distribution, microgrids (MG) provide significant assistance to main grids and act as a bridge between the
power generation and consumption. Renewable energy generation resources, particularly photovoltaics (PVs), are considered as a
clean source of energy but are highly complex, volatile, and intermittent in nature making their forecasting challenging. ,us, a
reliable, optimized, and a robust forecasting method deployed at MG objectifies these challenges by providing accurate renewable
energy production forecasting and establishing a precise power generation and consumption matching at MG. Furthermore, it
ensures effective planning, operation, and acquisition from the main grid in the case of superior or inferior amounts of energy,
respectively. ,erefore, in this work, we develop an end-to-end hybrid network for automatic PV power forecasting, comprising
three basic steps. Firstly, data preprocessing is performed to normalize, remove the outliers, and deal with the missing values
prominently. Next, the temporal features are extracted using deep sequential modelling schemes, followed by the extraction of
spatial features via convolutional neural networks. ,ese features are then fed to fully connected layers for optimal PV power
forecasting. In the third step, the proposed model is evaluated on publicly available PV power generation datasets, where its
performance reveals lower error rates when compared to state-of-the-art methods.

1. Introduction

Photovoltaic (PV) power generation is one of the easiest-to-
access, low-cost, and most promising sources of renewable
energy. When the energy demands rise in the developing
country, the PV power generation annually increases;
therefore, it mitigates the global energy and climatic change
crisis [1]. According to the Global Future Report, by 2050,
the PV generation capacity will reach 8000GW [2]. How-
ever, different atmospheric variables such as temperature,
solar irradiance, humidity, and cloud properties cause sig-
nificant uncertainty in integrating PVs to microgrid (MG)
[3–7]. In contrast, an effective PV power forecasting model
greatly improves solar power utilization [8–10]. ,erefore,
efficient forecasting models in the utility grid will operate the
power grid economically and transfer the required energy to

the end-users [11, 12]. Over the years, for efficient energy
management and distribution, MG has played an important
role in ensuring reliability, two-way power flow, self-healing,
and demand response [6]. Although MG offers several
advantages, due to the volatile and intermittent nature of PV
power, integrating a larger portion of renewable energy into
existing power generating systems creates several challenges,
such as load and demand mismatch, poor scheduling, op-
eration, penalties enforced by customers, and fluctuations in
the load connected to the power systems. To tackle these
challenges, integrating an intelligent forecasting model into
the MG greatly reduces the aforementioned problems.

Forecasting PV power belongs to the time series (TS)
forecasting problem which are divided into univariate and
multivariate forecasting [13]. Based on the time horizon,
these methods are divided into three types, such as long-
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term, medium-term, and short-term power forecasting
[14, 15]. For different scheduling and planning, each type has
its own uses, for example, contributing to long-term plan-
ning and decision-making such as month or year, usually
long-term forecasting is used. Similarly, for medium-term
scheduling, such as looking ahead one week or less, medium-
term forecasting is used. Finally, short-term forecasting is
the most challenging since the target is to look ahead for a
short period of time, such as hours, but it is the most reliable
and accurate method for PV forecasting. ,e forecasting
models are divided into three types, such as physical, sta-
tistical, and deep learning models [12]. Historical data is not
needed in a physical model but they are used in the solar
radiation and the interaction between physics laws [16],
where it further consists of three sub-modules, such as
numerical weather prediction [17], total sky image [18], and
satellite image [19].,emodelling techniques of the physical
model can be divided into regression model [20], autore-
gressive [21], grey theory [22], Markov chain [23], and fuzzy
theory [24]. However, physical models poorly perform in
ultra-short-term forecasting because it takes a long time and
only produces six hours of meteorological data [16]. ,ere
are huge deviations and low precision in the results of the
physical models; therefore, it is impractical to use them in
PV forecasting [17] in the MG. ,e statistical forecasting
modelling establishes a mapping relation between the his-
torical data and the target forecasting data using the future
prediction of PV power [16]. It is easy to use and possesses
strong interregional versatility, but due to the complex and
volatile nature of PV power generation, its TS is complex and
nonperiodic [25]. ,e traditional statistical forecasting
model provides limited performance on large-scale histor-
ical data due to long-range complex temporal information.
Furthermore, due to shallow and simple processing
methods, nonlinear PV power patterns are highly affecting
the prediction of PV. ,erefore, researchers investigated
ANN-based approaches and significantly improved the
performance of PV power due to their ability to learn the
variational pattern of PV [26]. However, because of different
atmospheric variables and complex patterns of the weather
conditions, it is unable to extract the corresponding deep
nonlinear characteristics and TS dynamics of PV power
[27, 28]. ,e task of nonlinear mapping and feature ex-
traction is extremely challenging; therefore, the best way to
tackle these challenges is to employ deep learning models
with the ability to extract the discriminative features end-to-
end [29, 30]. In recent years, the application of deep learning
models has significantly improved for image classification
[31, 32], video classification [33–37], and power forecasting
in TS data [38–42]. For instance, Khan et al. [43] proposed a
hybrid model for electricity forecasting in residential and
commercial buildings. ,ey used the CNN model for spatial
feature extraction and then applied a Bi-directional LSTM
(Bi-LSTM) network for temporal feature extraction. Li et al.
[44] proposed a hybrid model that integrated wavelet
transform with CNN for PV power prediction in various
horizons. Similarly, in [45], the authors predicted the day-
ahead weather forecast data from the solar irradiance using
LSTM and then established a mathematical model between

irradiance and PV power to analyze the forecasting. Yona
[46] proposed a novel method that uses atmospheric data
and a deep neural network for the next day’s PV generation.

However, to accurately forecast the PV power, numerous
researchers investigate different techniques to map the as-
sociation between the historical data and the target attri-
butes. ,eir methods are mainly focused on only spatial or
temporal features, but without focusing on different dis-
criminative features extracting strategies to hold the long-
range temporal dependencies among complex PV power
patterns. ,erefore, in this paper, we explore different
feature extraction mechanisms and finally propose a hybrid
model that prioritizes temporal features first followed by
spatial features for PV power forecasting. Our proposed
model was evaluated on four publicly available PV power
generation datasets for an hour-ahead forecasting. ,e ex-
periments concluded that the proposed feature extraction
mechanism achieved the lowest error rates when compared
with state-of-the-art techniques. ,e contributions of the
proposed model are summarized as follows:

(1) A novel framework is proposed for the MG to ac-
curately forecast an hour-ahead power generation to
effectively manage the energy distribution between
the consumers and suppliers. Next, a comparative
study is conducted over different deep learning
models for efficient feature extraction mechanisms,
and finally, a hybrid GRU-CNN network is
proposed.

(2) ,e mainstream methods first learn the spatial and
then temporal features that degrade the overall
performance for complex nonlinear PV power pat-
terns. Herein, the temporal features are prioritized
over spatial features to efficiently learn the long-
range complex non-linear PV power patterns for an
hour-ahead PV power forecasting. ,e proposed
model learns temporal dependencies using a mul-
tilayered GRU sequential deep model and spatial
patterns using convolutional features, thus making
our proposed model robust and generalized for an
hour-ahead PV power forecasting.

(3) To validate the performance of the proposed model,
standard TS performance metrics such as mean
square error, mean absolute error, root mean square
error, and mean bias error are used to compared it
with existing state-of-the-art methods over bench-
mark datasets. Our experimental results achieve the
lowest error rates compared to other state-of-the-art
methods.

2. Related Work

For efficient PV forecasting, different researchers have used
different techniques, for example, in the early literature,
researchers used shallow ANN, which achieved promising
results when compared with the traditional techniques. For
instance, Almonacid et al. [47] used multilayer perceptron
(MLP) to predict the PV power generation. Similarly,
Dahmani et al. [48] used the forward propagation MLP
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model on the global solar radiation forecasting at a certain
tilted angle for five-minute resolution. Another group of
researchers [49] proposed a neural network with one hidden
layer (extreme learning machine) for intermittent predic-
tion.,e authors claim that when there are large numbers of
hidden layers in the network, it creates problems such as
overfitting and gradient vanishing [50]. To solve these
problems, researchers developed different techniques and
finally, in 2006, introduced the Deep Belief Network (DBN)
[51]. With the recent improvement of deep learning tech-
niques in PV power forecasting, Kuremoto et al. [52] used
DBN with a restricted Boltzmann machine (RBM) for TS
forecasting. Similarly, Dalto et al. [53] investigated the
performance of the deep and shallow networks for ultra-
short-term wind prediction. ,e authors claimed that the
computational complexity of the model is reduced by
carefully selecting the input variables using their proposed
variable selection algorithm. Wan et al. [54] used DBN with
RBM for day-ahead wind speed prediction. ,ey used 144
input and output nodes each in their regression model. ,e
experimental results concluded that their model out-
performed when compared with the support vector re-
gression, single-hidden, and three-layer ANN. However, for
efficient wind and PV power forecasting, their performance
is affected by many variables; therefore, training DBN layers
by layers requires extensive training and the model gets
stuck in the local minimum. To tackle these problems, re-
searchers introduced CNN architectures, which share fea-
tures locally and globally to reduce the computational
complexity and extract meaningful patterns from complex
TS data. In this direction, different techniques are reported
in the literature, for instance, Diaz-Vico et al. [55] used CNN
for wind and solar irradiation prediction. Wang et al. [56]
used ensemble techniques for wind power forecasting.
Similarly, Wang et al. [29] used PV power forecasting using
CNN. Sezer and Ozbayoglu [57] used the CNN model and
changed the input format from 2D to 1-D for TS data.
Usually, CNN is suitable to extract and learn spatial features
from the input data; however, temporal features also play a
key role in TS PV power prediction. ,erefore, researchers
used the LSTM model for long-range temporal dependen-
cies, for example, Qing and Niu [58] used meteorological
and weather data as input to the LSTM model for solar
irradiance prediction. Recently, researchers concluded that
integrating CNN with the LSTM model overcomes the
shortcoming of a single model, as it utilizes the advantages of
multiple models to jointly learn the spatial and temporal
information for accurate and complex PV forecasting.
Hybrid models are also introduced in the TS prediction
domain, for example, Liu et al. [59] used wavelet transform
followed by CNN to extract low-frequency information,
while LSTM is used for high-frequency information ex-
traction. Qin et al. [60] used the CNN model for spatial
feature extraction while the temporal features were extracted
by the LSTM model.

To reduce the energy crises and limit the harmfulness of
climatic changes, researchers proposed different techniques
as mentioned above to integrate PV power forecasting into
their existing power generation systems. ,e existing

traditional methods employ structural and parameter ad-
justments of the forecasting model. ,eir performance is
better for traditional forecasting tasks. However, due to the
extremely unsteady nature of the PV power, especially on
cloudy and rainy days [61, 62], their performance is ex-
tremely degraded. In the literature, most researchers claim
that for accurate PV power forecasting, both spatial and
temporal features are important [63, 64]. ,e existing
standalone network of deep learning paradigms is only
capable of exploring spatial or temporal features. To address
these challenges, researchers are developing hybrid networks
that have the potential to learn spatial and temporal features
at the same time. However, in the context of PV power
forecasting, hybrid networks are developed in the literature
without focusing on the discriminative features of spatial
and temporal ordering. ,erefore, in this paper, we have
comprehensively analyzed different feature extraction
mechanisms by using a hybrid model. Our experiments
concluded that learning temporal features by GRU followed
by spatial features by CNN has much more efficient and
effective pattern representation and learning potential,
thereby achieving the highest accuracy and greatly reducing
the error rates as compared to state-of-the-art methods.

3. Proposed Methodology

,is section briefly discusses the overall flow of the proposed
framework, where power from the main grid flows through
the MG towards the end users, as visualized in Figure 1. In
this research, we have developed an intelligent and robust
hybrid deep learning inspired model, which mainly consists
of three steps: processing; model training; and its evaluation.
In the preprocessing step, outliers and abnormalities are
removed from the data, while in the second stage, a training
procedure is applied on various machine and deep learning
models. In the third stage, the final PV forecasting is
computed and evaluated using different error metrics. All
these steps of the proposed method are discussed in sub-
sequent sections.

3.1. Preprocessing. A recent study shows that the perfor-
mance of the deep learning model highly depends on the
input data [45]. ,erefore, the PV power data is refined in
terms of filling missing values, removing outliers, stan-
dardization, and normalization, then the proposed deep
learning model efficiently extracts the meaningful patterns
more conveniently. ,e existing PV power data is obtained
from the solar panel in a raw format that is incomplete and
unorganized [42]. It contained abnormalities because of
sensors’ faults, bad weather conditions, and variable cus-
tomer consumptions. Feeding these data directly to the deep
learning model degraded the overall prediction [40].
,erefore, the input data is fed to the preprocessing stage to
fill in missing values by taking the mean of the next and
previous values.,en the data is normalized, and outliers are
removed via the min-max and standard deviation methods,
respectively.
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3.2. Temporal Feature Extraction. To capture long-range
temporal dependencies in the complex PV power foresting
data, most of the researchers used a recurrent neural net-
work (RNN) that learns weights across the hidden layers of
the network for long-range dependencies in TS data [65].
,e intermediate layers of the RNN preserve meaningful
information from the previous state. ,e visual represen-
tation of the internal structure of RNN is shown in
Figure 2(a), where the input and output are represented by
xt and 􏽢yt at time t, similarly, the output of the single hidden
layer at time t is represented by at, where w represents the
weight metrics. Figure 2(a) can be mathematically repre-
sented as in equation (1).

a
t

� g1 waaa
t− 1

+ waxx
t− 1

+ ba􏼐 􏼑, 􏽢y
t

� g1 waya
t

+ by􏼐 􏼑. (1)

In equation (1), the terms g1, ba, and by are used to
represent the nonlinear activation and bias terms, while the
term w refers to the learn weights when capturing temporal
dependency in PV power forecasting. RNN suffers from the
vanishing gradient problem when the time interval of the
target output is long, therefore a special variant called GRU
resolves the vanishing gradient problem, which has two
structure-gated mechanisms such as reset and update. As a
result, it is less complex than the LSTMmodel because it has
fewer gates and require a small number of parameters during
training [66]. ,eir visual representation is shown in
Figure 2(b).
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,e mathematical representation of GRU is given in
equations (2) to (5), the updated and reset gate is represented
by wu and wr, similarly, the candidate activation and basis
vectors are represented by Ct and bu , br , bc,, respectively.
,e ct is the output of the current unit which is connected to
the input of the next unit. Furthermore, ct− 1 is the input of
the current unit, which is also the output of the previous
units. ,e σ and tanh represent the activation function while
the input of the training data and their corresponding output
are represented by xt and 􏽢yt at a time stamp t. ,e reset gate
and update gate are represented by Ґr and Ґu.

3.3. Spatial Features Extraction. CNN has two main
properties, such as local connection and weight sharing to
process high-dimensional data and extract meaningful
discriminative features. CNN mainly consists of
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Figure 1: ,e proposed PV power forecasting framework comprises mainly three steps. Step 1: Preprocessing is applied to normalize the
data, remove outliers, and fill in missing values. Step 2: Model selection with the refined data using the GRU and CNN networks. Step3:
Evaluate the model via metrics, including MSE, MAE, RMSE, and MBE.
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convolutional layers, pooling layers, and fully connected
layers. Convolution layers are the core layers that are re-
sponsible for extracting local features. ,e extracted features
of the previous layer are multiplied with the convolutional
kernel to form the output feature map j. It contains con-
volution with multiple input feature maps; their mathe-
matical representation is given in equation (6).

y
(l)
j � 􏽘

i∈Cj

t
l−1
i ⊗w

(l)
ij

⎛⎜⎝ ⎞⎟⎠ + b
(l)
j ,

t
(l)
j � f y

(l)
j􏼐 􏼑.

(6)

Here, the feature map of the input convolutional layers l

and Cj are represented by t
(l)
j , while the bias, kernel, and

output of the convolutional layer are represented by b
(l)
j ,

y
(l)
j , and w

(l)
ij , respectively. A Relu f activation function is

used throughout the network and its mathematical repre-
sentation is shown in equation (7)

f(x) � max(0, x). (7)

,e pooling layer is mainly responsible for reducing
the dimensions of the features, also known as the down-
sampling layer. It has several variants, such as average, max-
pooling, etc.

3.4. Network Architecture. ,e GRU module captures the
long-range dependency, so it is capable of learning useful
information from TS data using the memory cells. ,e
nonsalient information is discarded by a memory gate called
the forget gate. ,eir output is directly connected to the
CNN module. In the proposed hybrid model, the GRU
module consists of two layers. In the first and second layers,
32 and 64 cell sizes are used, followed by a two-layered CNN
module having a kernel size of 3 and a filter size of 64 in each
layer. For nonlinearity, a ReLU activation is used. A detailed
summary of the proposed model is given in Table 1. ,e
output features are then flattened and a fully connected layer
with 16 numbers of neurons is applied. An MSE is used as a
loss function when the model is successfully trained, and
then we evaluated it on testing data.

4. Experimental Results and Discussion

In this section, we discussed the PV power datasets, eval-
uation metrics, and comparative analysis with state-of-the-
art methods. ,e proposed model is implemented in the
Python programming language and the Keras (2.3.1) with
TensorFlow (1.14.0) deep learning framework. Windows 10
operating system with a GeForce RTX 2070 SUPER graphics
card is used to speed up the training process and the
complete details are given in Table 2.

4.1. Datasets Description. To assess the proposed method’s
performance, we use four publicly available real-world PV
power datasets such as DKASC-AS-1A, DKASC-AS-1B,
DKASC-AS-2Eco, and DKASC-Yulara-SITE-3A gathered in
DKASC, Alice Springs (AS), Australia [67–69].,eDKASC-
AS-1A dataset is taken from the 1A plant, which generates
10.5 kW from 2× 30 solar panels, and their installation was
completed on ,ursday, January 8, 2009. Similarly, the
DSKASC-ASA-1B dataset was collected from the 1B plant
that generated 23.4 kW from 4× 30 number of panels, and
their installation was completed on ,ursday, January 8,
2009. ,e overall details of each plant and collected data
information are given in Table 3. All these datasets are
recorded from active solar power generation plants at five-
minute resolution with different power generation capa-
bilities. It consists of different attributes, for example, power
generation and meteorological elements such as wind speed,
weather temperature, etc. For training purposes, these
datasets are divided into 70% for training, 20% for valida-
tion, and 10% for testing.

Table 1: Detailed summary of the proposed model for short-term
one-hour ahead solar power forecasting model.

Type of layer Size of kernel Size of filter Params
GRU layer 1 (32) — 4224
GRU layer 2 (64) — 18816
CNN layer 3 64 12352
CNN layer 3 64 12352
Flatten — — —
Dense (16) — — 8208
Dense (12) — — 204
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Figure 2: Visual representation of the (a) recurrent neural network, while (b) represents the gated recurrent unit.
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4.2. Evaluation Metrics. ,e performance of the proposed
model is evaluated on the four widely used forecasting
metrics such as MSE, MAE, RMSE, and MBE, which are
mathematically expressed in equations (8) to (11).

MSE �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
, (8)
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1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (9)
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2

􏽶
􏽴

, (10)

MBE �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁. (11)

5. Experimental Results and Discussions

,e performance of the proposed model is evaluated with
several deep learning models such as LSTM, GRU, CNN-
LSTM, CNN-GRU, LSTM-CNN, and finally, the proposed
GRU-CNN model.

5.1. Detailed Comparative Analysis. To analyze the perfor-
mance of the proposed model, we have used four real-world
PV power datasets, and their details are given in Table 3. In
the literature, there are two types of feature extraction; one
refers to spatial or temporal features extraction, and the
second is a hybrid model where the spatial or temporal
features are prioritized, respectively. Table 4 shows one-hour
ahead PV power forecasting of the different standalone and
hybrid models. Here, the error rate such as MSE, MAE,
RMSE, and MBE of the proposed hybrid model is com-
paratively lower than standalone models. A graphical
comparison of the forecasting results of näıve (SVR), state-
of-the-art (LSTM-CNN), and the proposed model is given in
Figure 3. While the visual representation of the proposed
model on each dataset is given in Figure 4. ,e results reveal
that the performance of naı̈ve forecasting methods is much
worse than the state-of-the-art and our proposedmethod. As
given in Figure 4, there is a narrow gap between actual and

forecasted values by the proposed model. ,is gap is higher
in state-of-the-art models and much higher in naı̈ve fore-
casting models.

Table 3: Technical details of each dataset and their corresponding
details about the power generation plants.

Dataset Technical
specification Value

DKASC-AS-1A
[67]

Manufacturer Trina
PV technology Mono-Si
Array structure Tracker: Dual axis

Panel size 2× 38.37m2

Array tilt/azimuth Variable. Dual axis
tracking.

Generation capacity
of a panel 175W

Number of solar
panels 2× 30

Power generation
capacity 10.5 kW

Duration 08-14-2013∼07-01-
2021

DKASC-AS-1B
[68]

Manufacturer Trina
PV technology Mono-Si
Array structure Tracker: Dual axis

Panel size 4× 38.37m2

Array tilt/azimuth Variable: Dual axis
tracking

Generation capacity
of a panel 195W

Number of solar
panels 4× 30

Power generation
capacity 23.4 kW

Duration 8-14-2013∼7-1-2021

DKASC-AS-2Eco
[69]

Manufacturer Eco-kinetics
PV technology Mono-Si
Array structure Tracker: Dual axis

Panel size 199.16m2

Array tilt/azimuth Fixed. Tilt� 20′
azimuth� 0′

Generation capacity
of a panel 170W

Number of solar
panels 156

Power generation
capacity 26.52 kW

Duration 8-24-2010∼8-22-
2020

DKASC-Yulara-
SITE-3A [70]

PV technology Mono-Si
Array structure Fixed: Roof mount

Panel type SunPower SPR-
327NE

Array tilt/azimuth Tilt� 10, azi� 0
(solar north)

Generation capacity
of a panel 327W

Number of solar
panels 69

Power generation
capacity 22.56 kW

Duration 4-1-2016∼6-27-2022

Table 2: Training details required for the proposed model.

Parameters Details
Programming language Python 3.6
Operating system Windows 10
Hardware GeForce RTX 2070 SUPER GPU
Deep learning framework Keras (TensorFlow backend)
Epochs 50
Batch size 20
Optimizer Adam
Learning rate 0.001

6 Complexity



Table 4: Comparative analysis of the proposedmodel with different existing deep learningmodels. Herein, DKASC-AS-1A, DKASC-AS-1B,
DKASC-AS-2Eco, and DKASC-Yulara-SITE-3A represent the PV power datasets. ,e bold text shows the experimental result of the
proposed models on one-hour ahead PV power forecasting.

Dataset Model RMSE MSE MAE MBE

DKASC-AS-1A [67]

Decision Tree 0.4531 0.2053 0.2484 0.0684
SVR 0.4309 0.1857 0.2373 0.0463
LSTM 0.3118 0.0972 0.1578 −0.0283
GRU 0.3004 0.0902 0.144 0.0322

CNN-LSTM 0.2873 0.0825 0.117 −0.0054
CNN-GRU 0.2606 0.0679 0.1535 0.082
LSTM-CNN 0.2239 0.0501 0.1485 −0.1472
GRU-CNN 0.1468 0.0216 0.0742 0.0171

DKASC-AS-1B [68]

Decision Tree 0.5344 0.2856 0.3365 −0.0824
SVR 0.5087 0.2588 0.303 0.0709
LSTM 0.3949 0.1559 0.2219 0.0287
GRU 0.389 0.1514 0.2064 0.0089

CNN-LSTM 0.2776 0.0771 0.1531 0.0172
CNN-GRU 0.262 0.0686 0.1364 −0.0318
LSTM-CNN 0.2496 0.0623 0.208 −0.187
GRU-CNN 0.1727 0.0298 0.0923 0.0235

DKASC-AS-2Eco [69]

Decision Tree 0.4911 0.2412 0.1909 0.0709
SVR 0.456 0.2079 0.2246 0.0187
LSTM 0.3167 0.1003 0.157 −0.0158
GRU 0.3302 0.109 0.1726 −0.0176

CNN-LSTM 0.2959 0.0876 0.1449 −0.0143
CNN-GRU 0.2801 0.0784 0.1467 0.0132
LSTM-CNN 0.2274 0.0517 0.1599 −0.0155
GRU-CNN 0.1646 0.0271 0.1157 −0.0641

DKASC-Yulara-SITE-3A [70]

Decision Tree 0.416 0.173 0.2566 0.0159
SVR 0.4966 0.2466 0.2443 −0.0122
LSTM 0.3627 0.1315 0.1735 0.0561
GRU 0.3864 0.1493 0.2368 −0.0013

CNN-LSTM 0.3056 0.0934 0.1388 −0.0153
CNN-GRU 0.3063 0.0938 0.1506 0.0354
LSTM-CNN 0.2465 0.0608 0.155 0.0919
GRU-CNN 0.1715 0.0294 0.1126 0.0099
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To summarize the Table 4 experiments, in the TS PV
power forecasting, effective feature extraction highly
correlates with the forecasting of the deep learning
models. In our case, the temporal features are prioritized
first and then reduced their dimensionality. Using 1D-
CNN to extract spatial features is an effective approach for
modelling complex PV power forecasting patterns.
However, extracting temporal features using an LSTM
model is not effective because it uses 3-layer structuring
gates. ,erefore, due to high-dimensional features, the
final layers of LSTM are not able to recognize the complex
patterns of PV power. While the GRU uses two layers of
structure, its feature space is small as compared to LSTM;
thereby, GRU requires fewer computations and achieves
the highest accuracy. ,e performance of the GRU-CNN
model on the four datasets concludes that the proposed

model is more suitable to be deployed in real-world PV
power forecasting at MG.

5.2. Quantitative Evaluation. In this section, the experi-
mental results are discussed to compare the performance of
our model with deep learning models. Table 5 shows the
performance of the proposed model with existing state-of-
the-art models, herein, the first part shows the results of the
DKASC-AS-1B dataset when compared with existing state-
of-the-art models. For instance, Wang et al. [45] used the
1D-CNN model and achieved 0.304 and 0.822 values for
MAE and RMSE, respectively.

Similarly, a hybrid approach is also used where they
extracted the spatial features with the help of CNN and
then LSTM is used to learn the temporal information,
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Figure 4: Visual representation of the proposed hybrid GRU-CNN forecasting model. (a) DKASC-AS-1A dataset, (b) DKASC-AS-1B
dataset, (c) DKASC-AS-2Eco, and (d) DKASC-Yulara-SITE-3A datasets actual and forecasting values.

Table 5: ,e performance of the proposed model is compared with an existing state-of-the-art model for PV power forecasting. ,e best
performance is shown in bold.

Dataset Methods RMSE MSE MAE MBE

DKASC-AS-1B [68]

LSTM [45] 0.709 — 0.327 —
CNN [45] 0.822 — 0.304 —

CNN-LSTM [45] 0.693 — 0.294 —
LSTM-CNN [45] 0.621 — 0.221 —

GRU-CNN 0.1727 0.0298 0.0923 0.0235

DKASC-AS-2Eco [69]

LSTM [44] 1.0382 — — −0.084
GRU [44] 1.0351 — — 0.1206
RNN [44] 1.0581 — — −0.1442
MLP [44] 1.0861 — — 0.1995

WPD-LSTM [44] 0.2357 — — 0.0067
GRU-CNN 0.1646 0.0271 0.1157 −0.0641

DKASC-Yulara-SITE-3A [70]

RCC-BPNN [71] 1.173 — — —
RCC-RBFNN [71] 1.37 — — —
RCC-Elman [71] 1.158 — — —

LSTM [71] 1.017 — — —
RCC-LSTM [71] 0.94 — 0.587 —

GRU-CNN 0.1715 0.0294 0.1126 0.0099
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achieving 0.294 and 0.693 values for MAE and RMSE,
respectively. Furthermore, when they first extracted
temporal information via LSTM, followed by spatial in-
formation, it achieved 0.221 and 0.621 values for MAE and
RMSE, respectively. ,erefore, in this direction, we fur-
ther proposed different feature extraction mechanisms,
and finally, our proposed model achieved 0.1727, 0.0298,
0.0923, and 0.0235 values for RMSE, MSE, MAE, and
MBE, respectively. ,e second row of Table 5 represents
the performance of the DKASC-AS-2Eco dataset com-
pared with existing techniques. In baseline research [44],
the author’s experiments on multilayer perceptron (MLP)
achieved 1.0861 and 0.1995 values for RMSE and MBE,
respectively. ,ey also used RNN and reported 1.0581
RMSE and −0.1442 MBE. An LSTM and GRU network is
also used for PV forecasting, and they have achieved
1.0382, −0.084, and 1.0351, 0.1206 values for RMSE and
MBE, respectively. In the last model [44], the authors
decomposed the power series task into subseries by
employing wavelet packet decomposition and then used
the LSTM model, achieving 0.2357 and 0.0067 values for
RMSE and MBE, respectively. Our proposed model
achieved superior performance of 0.1646, 0.0271, 0.1157,
and −0.0641 for RMSE, MSE, MAE, and MBE, respec-
tively, when compared to existing models. Finally, the
performance of the proposed model is evaluated on the
DKASC-Yulara-SITE-3A [70] dataset against state-of-
the-art methods. Chen et al. [71] proposed a radiation
coordinate classification called (RCC-LSTM) for solar
forecasting. ,eir proposed method achieved 0.94 and
0.587 values for RMSE and MAE on the DKASC-Yulara-
SITE-3A dataset, respectively. ,e proposed method
achieved 0.1715, 0.0294, 0.1126, and 0.0099 values for
RMSE, MSE, MAE, and MBE, respectively.

6. Conclusion

Accurate PV power forecasting plays an important role in
avoiding penalties enforced by customers on various pro-
duction companies, building trust in the energy markets,
and is helpful in energy generation scheduling. Mainstream
traditional and deep learning methods rely on simple fea-
tures and only consider spatial or temporal features to in-
herent nonlinear patterns of PV power series. In the
proposed framework, we have investigated different features
extraction mechanisms and experimentally proved that the
proposed temporal and spatial features extraction out-
performed the existing state-of-the-art methods. Our pro-
posed framework mainly consists of three steps. In the first
step, preprocessing is applied to the input data to fill in the
missing values and normalize the data. After normalization,
the data is fed to the GRU-CNN model to first learn the
temporal and then spatial features. Finally, the performance
of the proposed model is evaluated against its rivals, ad-
vocating better prediction abilities with the lowest error rates
and better generalization potential. In the future, we are
planning to deploy the proposed model over resource-
constrained devices of home appliances for energy
management.
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